Linear algebra 2: exercises for Section 8

- **Ex. 8.1.** Let V_1, V_2, U, W be vector spaces over a field F, and let $b: V_1 \times V_2 \to U$ be a bilinear map. Show that for each linear map $f: U \to W$ the composition $f \circ b$ is bilinear.
- **Ex. 8.2.** Let V, W be vector spaces over a field F. If $b: V \times V \to W$ is both bilinear and linear, show that b is the zero map.
- **Ex. 8.3.** Give an example of two vector spaces V, W over a field F and a bilinear map $b: V \times V \to W$ for which the image of b is not a subspace of W.
- **Ex. 8.4.** Let V, W be two 2-dimensional subspaces of the standard \mathbb{R} -vector space \mathbb{R}^3 . The restriction of the standard inner product $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ to $\mathbb{R}^3 \times W$ is a bilinear map $b \colon \mathbb{R}^3 \times W \to \mathbb{R}$.
 - 1. What is the left kernel of b? And the right kernel?
 - 2. Let $b': V \times W \to \mathbb{R}$ be the restriction of b to $V \times W$. Show that b' is degenerate if and only if the angle between V and W is 90° .
- **Ex. 8.5.** Let V, W be finite-dimensional vector spaces over a field F and $b: V \times W \to F$ a bilinear form with left kernel V_0 and right kernel W_0 . Show that b induces the non-degenerate bilinear form

$$b': V/V_0 \times W/W_0 \to F$$
, $(v + V_0, w + W_0) \longmapsto b(v, w)$.

and conclude that $\dim(V/V_0) = \dim(W/W_0)$.

- **Ex. 8.6.** Let V be a vector space over \mathbb{R} , and let $b: V \times V \to \mathbb{R}$ be a symmetric bilinear map. Let the "quadratic form" associated to b be the map $q: V \to \mathbb{R}$ that sends $x \in V$ to b(x, x). Show that b is uniquely determined by q.
- **Ex. 8.7.** Let V be a vector space over \mathbb{R} , and let $b: V \times V \to \mathbb{R}$ be a bilinear map. Show that b can be uniquely written as a sum of a symmetric and a skew-symmetric bilinear form.