Linear Algebra II

Course No. 100222
Spring 2007
Michael Stoll

With some additions by Ronald van Luijk, 2015

1. Review of Eigenvalues, Eigenvectors and Characteristic Polynomial 2
2. The Cayley-Hamilton Theorem and the Minimal Polynomial 2
3. The Structure of Nilpotent Endomorphisms 7
4. Direct Sums of Subspaces 11
5. The Jordan Normal Form Theorem 14
6. The Dual Vector Space 18
7. Norms on Real Vector Spaces 25
8. Bilinear Forms 27
9. Inner Product Spaces 36
10. Orthogonal Diagonalization 44
11. External Direct Sums 49
12. The Tensor Product 50
13. Symmetric and Alternating Products 59
References 65
Index of notation 66
Index 67

1. Review of Eigenvalues, Eigenvectors and Characteristic Polynomial

Recall the topics we finished Linear Algebra I with. We were discussing eigenvalues and eigenvectors of endomorphisms and square matrices, and the question when they are diagonalizable. For your convenience, I will repeat here the most relevant definitions and results.

Let V be a finite-dimensional F-vector space, $\operatorname{dim} V=n$, and let $f: V \rightarrow V$ be an endomorphism. Then for $\lambda \in F$, the λ-eigenspace of f was defined to be

$$
E_{\lambda}(f)=\{v \in V: f(v)=\lambda v\}=\operatorname{ker}\left(f-\lambda \operatorname{id}_{V}\right) .
$$

λ is an eigenvalue of f if $E_{\lambda}(f) \neq\{0\}$, i.e., if there is $0 \neq v \in V$ such that $f(v)=\lambda v$. Such a vector v is called an eigenvector of f for the eigenvalue λ.
The eigenvalues are exactly the roots (in F) of the characteristic polynomial of f,

$$
P_{f}(x)=\operatorname{det}\left(x \operatorname{id}_{V}-f\right),
$$

which is a monic polynomial of degree n with coefficients in F.
The geometric multiplicity of λ as an eigenvalue of f is defined to be the dimension of the λ-eigenspace, whereas the algebraic multiplicity of λ as an eigenvalue of f is defined to be its multiplicity as a root of the characteristic polynomial.
The endomorphism f is said to be diagonalizable if there exists a basis of V consisting of eigenvectors of f. The matrix representing f relative to this basis is then a diagonal matrix, with the various eigenvalues appearing on the diagonal.
Since $n \times n$ matrices can be identified with endomorphisms $F^{n} \rightarrow F^{n}$, all notions and results makes sense for square matrices, too. A matrix $A \in \operatorname{Mat}(n, F)$ is diagonalizable if and only if it is similar to a diagonal matrix, i.e., if there is an invertible matrix $P \in \operatorname{Mat}(n, F)$ such that $P^{-1} A P$ is diagonal.
It is an important fact that the geometric multiplicity of an eigenvalue cannot exceed its algebraic multiplicity. An endomorphism or square matrix is diagonalizable if and only if the sum of the geometric multiplicities of all eigenvalues equals the dimension of the space. This in turn is equivalent to the two conditions (a) the characteristic polynomial is a product of linear factors, and (b) for each eigenvalue, algebraic and geometric multiplicities agree. For example, both conditions are satisfied if P_{f} is the product of n distinct monic linear factors.

2. The Cayley-Hamilton Theorem and the Minimal Polynomial

Let $A \in \operatorname{Mat}(n, F)$. We know that $\operatorname{Mat}(n, F)$ is an F-vector space of dimension n^{2}. Therefore, the elements $I, A, A^{2}, \ldots, A^{n^{2}}$ cannot be linearly independent (because their number exceeds the dimension). If we define $p(A)$ in the obvious way for p a polynomial with coefficients in F, then we can deduce that there is a (non-zero) polynomial p of degree at most n^{2} such that $p(A)=0$ (0 here is the zero matrix). In fact, much more is true.

Consider a diagonal matrix $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$. (This notation is supposed to mean that λ_{j} is the (j, j) entry of D; the off-diagonal entries are zero, of course.) Its characteristic polynomial is

$$
P_{D}(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \cdots\left(x-\lambda_{n}\right) .
$$

Since the diagonal entries are roots of P_{D}, we also have $P_{D}(D)=0$. More generally, consider a diagonalizable matrix A. Then there is an invertible matrix Q such that $D=Q^{-1} A Q$ is diagonal. Since (Exercise!) $p\left(Q^{-1} A Q\right)=Q^{-1} p(A) Q$ for p a polynomial, we find

$$
0=P_{D}(D)=Q^{-1} P_{D}(A) Q=Q^{-1} P_{A}(A) Q \quad \Longrightarrow \quad P_{A}(A)=0 .
$$

(Recall that $P_{A}=P_{D}$ - similar matrices have the same characteristic polynomial.)
The following theorem states that this is true for all square matrices (or endomorphisms of finite-dimensional vector spaces).

2.1. Theorem (Cayley-Hamilton). Let $A \in \operatorname{Mat}(n, F)$. Then $P_{A}(A)=0$.

Proof. Here is a simple, but wrong "proof". By definition, $P_{A}(x)=\operatorname{det}(x I-A)$, so, plugging in A for x, we have $P_{A}(A)=\operatorname{det}(A I-A)=\operatorname{det}(A-A)=\operatorname{det}(0)=0$. (Exercise: find the mistake!)

For the correct proof, we need to consider matrices whose entries are polynomials. Since polynomials satisfy the field axioms except for the existence of inverses, we can perform all operations that do not require divisions. This includes addition, multiplication and determinants; in particular, we can use the adjugate matrix.

Let $B=x I-A$, then $\operatorname{det}(B)=P_{A}(x)$. Let \tilde{B} be the adjugate matrix; then we still have $\tilde{B} B=\operatorname{det}(B) I$. The entries of \tilde{B} come from determinants of $(n-1) \times(n-1)$ submatrices of B, therefore they are polynomials of degree at most $n-1$. We can then write

$$
\tilde{B}=x^{n-1} B_{n-1}+x^{n-2} B_{n-2}+\cdots+x B_{1}+B_{0},
$$

and we have the equality (of matrices with polynomial entries)
$\left(x^{n-1} B_{n-1}+x^{n-2} B_{n-2}+\cdots+B_{0}\right)(x I-A)=P_{A}(x) I=\left(x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0}\right) I$, where we have set $P_{A}(x)=x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0}$. Expanding the left hand side and comparing coefficients of like powers of x, we find the relations

$$
B_{n-1}=I, \quad B_{n-2}-B_{n-1} A=b_{n-1} I, \quad \ldots, \quad B_{0}-B_{1} A=b_{1} I, \quad-B_{0} A=b_{0} I .
$$

We multiply these from the right by $A^{n}, A^{n-1}, \ldots, A, I$, respectively, and add:

$$
\left.\begin{array}{ccc}
B_{n-1} A^{n} & & =A^{n} \\
B_{n-2} A^{n-1} & - & B_{n-1} A^{n}
\end{array}=b_{n-1} A^{n-1}\right) ~ \begin{array}{ccc}
\vdots & & \vdots \\
B_{0} A & -B_{1} A^{2} & =b_{1} A \\
& -B_{0} A & =b_{0} I \\
\hline & 0 & \\
\hline & =P_{A}(A)
\end{array}
$$

2.2. Remarks.

(1) The reason why we cannot simply plug in A for x in the identity

$$
\tilde{B} \cdot(x I-A)=P_{A}(x) I
$$

is that whereas x (as a scalar) commutes with the matrices occurring as coefficients of powers of x, it is not a priori clear that A does so, too. We will discuss this in more detail in the Introductory Algebra course, where polynomial rings will be studied in some detail.
(2) Another idea of proof (and maybe easier to grasp) is to say that a 'generic' matrix is diagonalizable (if we assume F to be algebraically closed...), hence the statement holds for 'most' matrices. Since it is just a bunch of polynomial relations between the matrix entries, it then must hold for all matrices. This can indeed be turned into a proof, but unfortunately, this requires rather advanced tools from algebra.
(3) Of course, the statement of the theorem remains true for endomorphisms. Let $f: V \rightarrow V$ be an endomorphism of the finite-dimensional F-vector space V, then $P_{f}(f)=0$ (which is the zero endomorphism in this case). For evaluating the polynomial at f, we have to interpret f^{n} as the n-fold composition $f \circ f \circ \cdots \circ f$, and $f^{0}=\mathrm{id}_{V}$.

Our next goal is to define the minimal polynomial of a matrix or endomorphism, as the monic polynomial of smallest degree that has the matrix or endomorphism as a "root". However, we need to know a few more facts about polynomials in order to see that this definition makes sense.
2.3. Lemma (Polynomial Division). Let f and g be polynomials, with g monic. Then there are unique polynomials q and r such that $r=0$ or $\operatorname{deg}(r)<\operatorname{deg}(g)$ and such that

$$
f=q g+r .
$$

Proof. We first prove existence, by induction on the degree of f. If $\operatorname{deg}(f)<$ $\operatorname{deg}(g)$, then we take $q=0$ and $r=f$. So we now assume that $m=\operatorname{deg}(f) \geq$ $\operatorname{deg}(g)=n, f=a_{m} x^{m}+\cdots+a_{0}$. Let $f^{\prime}=f-a_{m} x^{m-n} g$, then (since $g=x^{n}+\ldots$) $\operatorname{deg}\left(f^{\prime}\right)<\operatorname{deg}(f)$. By the induction hypothesis, there are q^{\prime} and r such that $\operatorname{deg}(r)<\operatorname{deg}(g)$ or $r=0$ and such that $f^{\prime}=q^{\prime} g+r$. Then $f=\left(q^{\prime}+a_{m} x^{m-n}\right) g+r$. (This proof leads to the well-known algorithm for polynomial long division.)
As to uniqueness, suppose we have $f=q g+r=q^{\prime} g+r^{\prime}$, with r and r^{\prime} both of degree less than $\operatorname{deg}(g)$ or zero. Then

$$
\left(q-q^{\prime}\right) g=r^{\prime}-r .
$$

If $q \neq q^{\prime}$, then the degree of the left hand side is at least $\operatorname{deg}(g)$, but the degree of the right hand side is smaller, hence this is not possible. So $q=q^{\prime}$, and therefore $r=r^{\prime}$, too.

Taking $g=x-\alpha$, this provides a different proof for case $k=1$ of Example 8.4 of Linear Algebra I, 2015 edition.
2.4. Lemma and Definition. Let $A \in \operatorname{Mat}(n, F)$. There is a unique monic polynomial $M_{A}(x)$ of minimal degree such that $M_{A}(A)=0$. If $p(x)$ is any polynomial satisfying $p(A)=0$, then p is divisible by M_{A} (as a polynomial).
This polynomial M_{A} is called the minimal (or minimum) polynomial of A. Similarly, we define the minimal polynomial M_{f} of an endomorphism f of a finitedimensional vector space.

Proof. It is clear that monic polynomials p with $p(A)=0$ exist (by the CayleyHamilton Theorem 2.1, we can take $p=P_{A}$). So there will be one such polynomial of minimal degree. Now assume p and p^{\prime} were two such monic polynomials of (the same) minimal degree with $p(A)=p^{\prime}(A)=0$. Then we would have $\left(p-p^{\prime}\right)(A)=$ $p(A)-p^{\prime}(A)=0$. If $p \neq p^{\prime}$, then we can divide $p-p^{\prime}$ by its leading coefficient,
leading to a monic polynomial q of smaller degree than p and p^{\prime} with $q(A)=0$, contradicting the minimality of the degree.

Now let p be any polynomial such that $p(A)=0$. By Lemma 2.3, there are polynomials q and r, $\operatorname{deg}(r)<\operatorname{deg}\left(M_{A}\right)$ or $r=0$, such that $p=q M_{A}+r$. Plugging in A, we find that

$$
0=p(A)=q(A) M_{A}(A)+r(A)=q(A) \cdot 0+r(A)=r(A) .
$$

If $r \neq 0$, then $\operatorname{deg}(r)<\operatorname{deg}\left(M_{A}\right)$, but the degree of M_{A} is the minimal possible degree for a polynomial that vanishes on A, so we have a contradiction. Therefore $r=0$ and hence $p=q M_{A}$.
2.5. Remark. In Introductory Algebra, you will learn that the set of polynomials as discussed in the lemma forms an ideal and that the polynomial ring is a principal ideal domain, which means that every ideal consists of the multiples of some fixed polynomial. The proof is exactly the same as for the lemma.

By Lemma 2.4, the minimal polynomial divides the characteristic polynomial. As a simple example, consider the identity matrix I_{n}. Its characteristic polynomial is $(x-1)^{n}$, whereas its minimal polynomial is $x-1$. In some sense, this is typical, as the following result shows.
2.6. Proposition. Let $A \in \operatorname{Mat}(n, F)$ and $\lambda \in F$. If λ is a root of the characteristic polynomial of A, then it is also a root of the minimal polynomial of A. In other words, both polynomials have the same linear factors.

Proof. If $P_{A}(\lambda)=0$, then λ is an eigenvalue of A, so there is $0 \neq v \in F^{n}$ such that $A v=\lambda v$. Setting $M_{A}(x)=a_{m} x^{m}+\cdots+a_{0}$, we find

$$
0=M_{A}(A) v=\sum_{j=0}^{m} a_{j} A^{j} v=\sum_{j=0}^{m} a_{j} \lambda^{j} v=M_{A}(\lambda) v .
$$

(Note that the terms in this chain of equalities are vectors.) Since $v \neq 0$, this implies $M_{A}(\lambda)=0$.

By Lemma 2.4, we know that each root of M_{A} is a root of P_{A}, and we have just shown the converse. So both polynomials have the same linear factors.
2.7. Remark. If F is algebraically closed (i.e., every non-zero polynomial is a product of linear factors), this shows that P_{A} is a multiple of M_{A}, and M_{A}^{k} is a multiple of P_{A} when k is large enough. In fact, the latter statement is true for general fields F (and can be interpreted as saying that both polynomials have the same irreducible factors). For the proof, one replaces F by a larger field F^{\prime} such that both polynomials split into linear factors over F^{\prime}. That this can always be done is shown in Introductory Algebra.

One nice property of the minimal polynomial is that it provides another criterion for diagonalizability.
2.8. Proposition. Let $A \in \operatorname{Mat}(n, F)$. Then A is diagonalizable if and only if its minimal polynomial M_{A} is a product of distinct monic linear factors.

Proof. First assume that A is diagonalizable. It is easy to see that similar matrices have the same minimal polynomial (Exercise), so we can as well assume that A is already diagonal. But for a diagonal matrix, the minimal polynomial is just the product of factors $x-\lambda$, where λ runs through the distinct diagonal entries. (It is the monic polynomial of smallest degree that has all diagonal entries as roots.)

Conversely, assume that $M_{A}(x)=\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{m}\right)$ with $\lambda_{1}, \ldots, \lambda_{m} \in F$ distinct. We write $M_{A}(x)=\left(x-\lambda_{j}\right) p_{j}(x)$ for polynomials p_{j}. I claim that

$$
E_{\lambda_{j}}(A)=\operatorname{im}\left(p_{j}(A)\right) .
$$

To show that $\operatorname{im}\left(p_{j}(A)\right) \subset E_{\lambda_{j}}(A)$, consider

$$
0=M_{A}(A) v=\left(A-\lambda_{j} I\right) p_{j}(A) v
$$

If $w \in \operatorname{im}\left(p_{j}(A)\right)$, then $w=p_{j}(A) v$ for some $v \in F^{n}$, hence

$$
A w-\lambda_{j} w=\left(A-\lambda_{j} I\right) w=0
$$

To show that $E_{\lambda_{j}}(A) \subset \operatorname{im}\left(p_{j}(A)\right)$, let $v \in E_{\lambda_{j}}(A)$, so that $A v=\lambda_{j} v$. Then

$$
p_{j}(A) v=p_{j}\left(\lambda_{j}\right) v
$$

and $p_{j}\left(\lambda_{j}\right) \neq 0$, so

$$
v=p_{j}(A)\left(p_{j}\left(\lambda_{j}\right)^{-1} v\right) \in \operatorname{im}\left(p_{j}(A)\right) .
$$

Finally, I claim that $\sum_{j=1}^{m} \operatorname{im}\left(p_{j}(A)\right)=F^{n}$. To see this, note that the polynomial

$$
p(x)=\sum_{j=1}^{m} p_{j}\left(\lambda_{j}\right)^{-1} p_{j}(x)
$$

has degree less than m and assumes the value 1 at the m distinct elements λ_{1}, \ldots, λ_{m} of F. There is only one such polynomial, and this is $p(x)=1$. So for $v \in F^{n}$, we have

$$
v=I v=p(A) v=\sum_{j=1}^{m} p_{j}\left(\lambda_{j}\right)^{-1} p_{j}(A) v \in \sum_{j=1}^{m} \operatorname{im}\left(p_{j}(A)\right) .
$$

Both claims together imply that

$$
\sum_{j=1}^{m} \operatorname{dim} E_{\lambda_{j}}(A) \geq n
$$

which in turn (by Cor. 17.10 of Linear Algebra I) implies that A is diagonalizable.

2.9. Example. Consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Is it diagonalizable?
Its characteristic polynomial is clearly $P_{A}(x)=(x-1)^{3}$, so its minimal polynomial must be $(x-1)^{m}$ for some $m \leq 3$. Since $A-I \neq 0, m>1$ (in fact, $m=3$), hence A is not diagonalizable.

On the other hand, the matrix (for $F=\mathbb{R}$, say)

$$
B=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 6
\end{array}\right)
$$

has $M_{B}(x)=P_{B}(x)=(x-1)(x-4)(x-6) ; B$ therefore is diagonalizable.
Exercise: what happens for fields F of small characteristic?

3. The Structure of Nilpotent Endomorphisms

3.1. Definition. A matrix $A \in \operatorname{Mat}(n, F)$ is said to be nilpotent, if $A^{m}=0$ for some $m \geq 1$. Similarly, if V is a finite-dimensional vector space and $f: V \rightarrow V$ is an endomorphism, then f is said to be nilpotent if $f^{m}=\underbrace{f \circ f \circ \cdots \circ f}_{m \text { times }}=0$ for some $m \geq 1$.

It follows that the of A or f is of the form x^{m}, where m is the smallest number that has the property required in the definition.
3.2. Corollary. A nilpotent matrix or endomorphism is diagonalizable if and only if it is zero.

Proof. The minimal polynomial is x^{m}. Prop. 2.6 then implies that the matrix or endomorphism is diagonalizable if and only if $m=1$. But then the minimal polynomial is x, which means that the matrix or endomorphism is zero.

The following result tells us more about the structure of nilpotent endomorphisms.
3.3. Theorem. Let V be an F-vector space, $\operatorname{dim} V=n$, and let $f: V \rightarrow V$ be a nilpotent endomorphism. Then V has a basis $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ such that $f\left(v_{j}\right)$ is either zero or v_{j+1}.

Proof using quotient spaces. Let $M_{f}(x)=x^{m}$. We will do induction on m. When $m=0$ (then $V=\{0\}$) or $m=1$, the claim is trivial, so we assume $m \geq 2$. Then $\{0\} \subsetneq \operatorname{ker}(f) \subsetneq V$, and we can consider the quotient space $W=V / \operatorname{ker}(f)$. Then f induces an endomorphism $\tilde{f}: W \rightarrow W$ that satisfies $\tilde{f}^{m-1}=0$. (Note that $f^{m-1}(V) \subset \operatorname{ker}(f)$.) So by induction, there is a basis w_{1}, \ldots, w_{k} of W such that $\tilde{f}\left(w_{j}\right)=0$ or w_{j+1}. We can then write the basis in the form
$\left(w_{1}, \ldots, w_{k}\right)=\left(w_{1}^{\prime}, \tilde{f}\left(w_{1}^{\prime}\right), \ldots, \tilde{f}^{e_{1}}\left(w_{1}^{\prime}\right), w_{2}^{\prime}, \tilde{f}\left(w_{2}^{\prime}\right), \ldots, \tilde{f}^{e_{2}}\left(w_{2}^{\prime}\right), \ldots, w_{\ell}^{\prime}, \ldots, \tilde{f}^{e_{\ell}}\left(w_{\ell}^{\prime}\right)\right)$
where $\tilde{f}^{e_{j}+1}\left(w_{j}^{\prime}\right)=0$ for $j=1, \ldots, \ell$. We now lift w_{j}^{\prime} to an element $v_{j}^{\prime} \in V$ (i.e., we pick $v_{j}^{\prime} \in V$ that maps to w_{j}^{\prime} under the canonical epimorphism $V \rightarrow W$). Then

$$
\begin{equation*}
v_{1}^{\prime}, f\left(v_{1}^{\prime}\right), \ldots, f^{e_{1}}\left(v_{1}^{\prime}\right), v_{2}^{\prime}, f\left(v_{2}^{\prime}\right), \ldots, f^{e_{2}}\left(v_{2}^{\prime}\right), \ldots, v_{\ell}^{\prime}, f\left(v_{\ell}^{\prime}\right), \ldots, f^{e_{\ell}}\left(v_{\ell}^{\prime}\right) \tag{1}
\end{equation*}
$$

are linearly independent in V (since their images in W are linearly independent; note that the image of $f^{i}\left(v_{j}^{\prime}\right)$ is $\left.\tilde{f}^{i}\left(w_{j}^{\prime}\right)\right)$. We must have $f^{e_{j}+1}\left(v_{j}^{\prime}\right) \in \operatorname{ker}(f)$ (since its image in W is zero). Note that the linear hull L of the elements in (1) is a complementary subspace of $\operatorname{ker}(f)$. I claim that the extended sequence

$$
v_{1}^{\prime}, f\left(v_{1}^{\prime}\right), \ldots, f^{e_{1}+1}\left(v_{1}^{\prime}\right), v_{2}^{\prime}, f\left(v_{2}^{\prime}\right), \ldots, f^{e_{2}+1}\left(v_{2}^{\prime}\right), \ldots, v_{\ell}^{\prime}, f\left(v_{\ell}^{\prime}\right), \ldots, f^{e_{\ell}+1}\left(v_{\ell}^{\prime}\right)
$$

is still linearly independent. So assume we have a linear combination that vanishes. Then we get an equality of two vectors, one a linear combination of what we had before, the other a linear combination of the new vectors. So the first vector is
in L, the second in $\operatorname{ker}(f)$, but $L \cap \operatorname{ker}(f)=\{0\}$, so both vectors have to vanish. Since the vectors we had previously are linearly independent, all their coefficients must vanish. It remains to show that the new vectors are linearly independent as well. So assume that we have

$$
\lambda_{1} f^{e_{1}+1}\left(v_{1}^{\prime}\right)+\lambda_{2} f^{e_{2}+1}\left(v_{2}^{\prime}\right)+\cdots+\lambda_{\ell} f^{e_{\ell}+1}\left(v_{\ell}^{\prime}\right)=0 .
$$

This implies that

$$
f\left(f^{e_{1}}\left(v_{1}^{\prime}\right)+\lambda_{2} f^{e_{2}}\left(v_{2}^{\prime}\right)+\cdots+\lambda_{\ell} f^{e_{\ell}}\left(v_{\ell}^{\prime}\right)\right)=0,
$$

so $f^{e_{1}}\left(v_{1}^{\prime}\right)+\lambda_{2} f^{e_{2}}\left(v_{2}^{\prime}\right)+\cdots+\lambda_{\ell} f^{e_{\ell}}\left(v_{\ell}^{\prime}\right) \in \operatorname{ker}(f)$. But this vector is also in L, hence it must be zero, and since the vectors involved in this linear combination are linearly independent (they are part of a basis of L), all the λ_{j} must vanish.
Finally, pick a basis $v_{\ell+1}^{\prime}, \ldots, v_{n-k}^{\prime}$ of a complementary subspace of the linear hull of $f^{e_{1}+1}\left(v_{1}^{\prime}\right), \ldots, f^{e_{\ell}+1}\left(v_{\ell}^{\prime}\right)$ in $\operatorname{ker}(f)$. Then

$$
\left(v_{1}, \ldots, v_{n}\right)=\left(v_{1}^{\prime}, f\left(v_{1}^{\prime}\right), \ldots, f^{e_{1}+1}\left(v_{1}^{\prime}\right), \ldots, v_{\ell}^{\prime}, f\left(v_{\ell}^{\prime}\right), \ldots, f^{e_{\ell}+1}\left(v_{\ell}^{\prime}\right), v_{\ell+1}^{\prime}, \ldots, v_{n-k}^{\prime}\right)
$$

is a basis of V with the required properties.
Alternative proof without quotient spaces. Let m be a non-negative integer such that $f^{m}=0$. The statement is equivalent to saying that there are elements $w_{1}, \ldots, w_{s} \in V$ and non-negative integers d_{1}, \ldots, d_{s}, such that the collection

$$
\begin{equation*}
\left.\left(f^{j}\left(w_{i}\right)\right)\right)_{\substack{1 \leq i \leq s \\ 0 \leq j \leq d_{i}}} \tag{2}
\end{equation*}
$$

is a basis for V and $f^{d_{i}+1}\left(w_{i}\right)=0$ for all $1 \leq i \leq s$ (with w_{1}, \ldots, w_{s} being those elements among v_{1}, \ldots, v_{n} that are not the image of their predecessor). We will prove this by induction to m.
For $m=0$ we have $f^{m}=\operatorname{id}_{V}$, so we conclude $V=\{0\}$ and we are done by taking $s=0$. Suppose $m>0$ and set $W=f(V)$. Let $f^{\prime}=\left.f\right|_{W}$ be the restriction of f to W and note that $\left(f^{\prime}\right)^{m-1}=0$. Hence, by the induction hypothesis, there are elements $x_{1}, \ldots, x_{t} \in W$ and non-negative integers e_{1}, \ldots, e_{t} such that

$$
\begin{equation*}
\left(f^{j}\left(x_{i}\right)\right)_{\substack{1 \leq i \leq t \\ 0 \leq j \leq e_{i}}}^{1} \tag{3}
\end{equation*}
$$

is a basis for W and $f^{e_{i}+1}\left(x_{i}\right)=0$ for all $1 \leq i \leq t$. For each $1 \leq i \leq t$, let $w_{i} \in V$ be such that $f\left(w_{i}\right)=x_{i}$, and set $d_{i}=e_{i}+1$. Then the t elements $f^{d_{i}}\left(w_{i}\right)=f^{e_{i}}\left(x_{i}\right) \in \operatorname{ker} f$ (for $1 \leq i \leq t$) are linearly independent, as they are part of the basis for W, so we can extend them to a basis

$$
f^{d_{1}}\left(w_{1}\right), \ldots, f^{d_{t}}\left(w_{t}\right), w_{t+1}, \ldots, w_{s}
$$

of ker f. We set $d_{t+1}=\ldots=d_{s}=0$ and claim that the collection given by (2) is a basis for V. To see that the collection is linearly independent, assume there are scalars $\lambda_{i j} \in F$ with

$$
\begin{equation*}
0=\sum_{\substack{1 \leq i \leq s \\ 0 \leq j \leq d_{i}}} \lambda_{i j} f^{j}\left(w_{i}\right) . \tag{4}
\end{equation*}
$$

From $f^{d_{i}+1}\left(w_{i}\right)=0$ we find, by applying f,

$$
0=\sum_{\substack{1 \leq i \leq s \\ 0 \leq j \leq d_{i}}} \lambda_{i j} f^{j+1}\left(w_{i}\right)=\sum_{\substack{1 \leq i \leq t \\ 0 \leq j \leq e_{i}}} \lambda_{i j} f^{j}\left(x_{i}\right) .
$$

Since (3) is a basis for W, we conclude $\lambda_{i j}=0$ for $1 \leq i \leq t$ and $j<d_{i}$. Finally, the relation (4) then reduces to the relation $0=\sum_{i=1}^{t} \lambda_{i, d_{i}} f^{d_{i}}\left(w_{i}\right)$ on the elements of the basis for $\operatorname{ker} f$, so we conclude $\lambda_{i j}=0$ for all i, j, and the collection (2) is indeed linearly independent. To see that it also generates V, take any element $v \in V$. Then $f(v) \in W$, so there are scalars $\lambda_{i j}$ with

$$
f(v)=\sum_{\substack{1 \leq i \leq t \\ 0 \leq j \leq e_{i}}} \lambda_{i j} f^{j}\left(x_{i}\right) .
$$

We use the same scalars to set

$$
w=\sum_{\substack{1 \leq i \leq t \\ 0 \leq j \leq e_{i}}} \lambda_{i j} f^{j}\left(w_{i}\right),
$$

so that we have $f(v)=f(w)$. Then w is a linear combination of elements of the collection (2). As we have $v-w \in \operatorname{ker} f$, the element $v-w$ is a linear combination of elements of the collection (2) as well and hence so is the sum $v=w+(v-w)$, which finishes the proof.
3.4. Remark. The matrix $A=\left(a_{i j}\right)$ representing f with respect to $v_{n}, \ldots, v_{2}, v_{1}$, where v_{1}, \ldots, v_{n} is a basis as in Thm. 3.3 above, has all entries zero except $a_{j, j+1}=$ 1 if $f\left(v_{n-j}\right)=v_{n+1-j}$. Therefore A is a block diagonal matrix

$$
A=\left(\begin{array}{c|c|c|c}
B_{1} & 0 & \cdots & 0 \\
\hline 0 & B_{2} & \cdots & 0 \\
\hline \vdots & \vdots & \ddots & \vdots \\
\hline 0 & 0 & \cdots & B_{n-k}
\end{array}\right)
$$

with blocks of the form

$$
B_{j}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{array}\right) .
$$

3.5. Corollary. A nilpotent matrix is similar to a matrix of the form just described.

Proof. This is clear from our discussion.
3.6. Corollary. A matrix $A \in \operatorname{Mat}(n, F)$ is nilpotent if and only if $P_{A}(x)=x^{n}$.

Proof. If $P_{A}(x)=x^{n}$, then $A^{n}=0$ by the Cayley-Hamilton Theorem 2.1, hence A is nilpotent. Conversely, if A is nilpotent, then it is similar to a matrix of the form above, which visibly has characteristic polynomial x^{n}.
3.7. Remark. The statement of Cor. 3.6 would also follow from the fact that $P_{A}(x)$ divides some power of $M_{A}(x)=x^{m}$, see Remark 2.7. However, we have proved this only in the case that $P_{A}(x)$ splits into linear factors (which we know is true, but only after the fact).
3.8. Remark. The first proof of Theorem 3.3, which uses quotient spaces, gives a more efficient algorithm to compute such a special basis. In fact, we can phrase that without the use of quotient spaces. Note first that we have a filtration

$$
\{0\}=\operatorname{ker} f^{0} \subset \operatorname{ker} f \subset \operatorname{ker} f^{2} \subset \cdots \subset \operatorname{ker} f^{i} \subset \operatorname{ker} f^{i+1} \subset \cdots \subset \operatorname{ker} f^{m}=V
$$

which gives rise to a sequence of maps

$$
V \rightarrow V / \operatorname{ker} f \rightarrow V / \operatorname{ker}\left(f^{2}\right) \rightarrow \cdots \rightarrow V / \operatorname{ker}\left(f^{i}\right) \rightarrow V / \operatorname{ker}\left(f^{i+1}\right) \rightarrow \cdots \rightarrow V / \operatorname{ker}\left(f^{m}\right)=\{0\}
$$

Every map $V / \operatorname{ker}\left(f^{i}\right) \rightarrow V / \operatorname{ker}\left(f^{i+1}\right)$ is in fact a quotient map as described in the proof of Theorem 3.3, as for $V^{\prime}=V / \operatorname{ker} f^{i}$ and the induced map $f^{\prime}: V^{\prime} \rightarrow V^{\prime}$, we have $V^{\prime} / f^{\prime}\left(V^{\prime}\right) \cong V / \operatorname{ker}\left(f^{i+1}\right)$.
For each i, any complement U_{i} of $\operatorname{ker} f^{i}$ in V maps isomorphically to the quotient $V / \operatorname{ker}\left(f^{i}\right)$. The proof of Theorem 3.3 shows that we can find a filtration

$$
V=U_{0} \supset U_{1} \supset \cdots \supset U_{i} \supset U_{i+1} \supset \cdots \supset U_{m}=\{0\}
$$

of subspaces with each U_{i} a complement of $\operatorname{ker}\left(f^{i}\right)$ in V together with bases of the form we are looking for as follows.
(1) Compute an m with $f^{m}=0$.
(2) Start with $i=m$ and $U_{m}=\{0\}$ and $\ell=0$ and the empty basis for U_{m}.
(3) Decrease i by 1 .

- We now have a basis
$\left(v_{1}^{\prime}, f\left(v_{1}^{\prime}\right), \ldots, f^{e_{1}}\left(v_{1}^{\prime}\right), v_{2}^{\prime}, f\left(v_{2}^{\prime}\right), \ldots, f^{e_{2}}\left(v_{2}^{\prime}\right), \ldots, v_{\ell}^{\prime}, f\left(v_{\ell}^{\prime}\right), \ldots, f^{e_{\ell}}\left(v_{\ell}^{\prime}\right)\right)$
for a complement U_{i+1} of $\operatorname{ker}\left(f^{i+1}\right)$ in V such that $f^{e_{j}+1}\left(v_{j}^{\prime}\right) \in \operatorname{ker}\left(f^{i+1}\right)$ for $1 \leq j \leq \ell$.
(4) Extend $f^{e_{1}+1}\left(v_{1}^{\prime}\right), \ldots, f^{e_{\ell}+1}\left(v_{\ell}^{\prime}\right)$ to a basis

$$
f^{e_{1}+1}\left(v_{1}^{\prime}\right), \ldots, f^{e_{\ell}+1}\left(v_{\ell}^{\prime}\right), v_{\ell+1}^{\prime}, \ldots, v_{r}^{\prime}
$$

of a complementary space of $\operatorname{ker} f^{i}$ in $\operatorname{ker} f^{i+1}$.
(5a) For $1 \leq j \leq \ell$, increase e_{j} by 1 .
(5b) For $\ell<j \leq r$, set $e_{j}=0$.
(5c) Set ℓ equal to r.
(6) If $i=0$, then we are done. If $i>1$, go to (3).

The proof of Theorem 3.3 shows that step (4) is possible, that the condition after step (3) always holds, and that in the end we end up with a basis of the desired form. The proof can also be rewritten completely in terms of complementary spaces U_{i} of $\operatorname{ker}\left(f^{i}\right)$ instead of the quotients $V / \operatorname{ker}\left(f^{i}\right)$, but this is a bit more tedious.
3.9. Example. Consider

$$
A=\left(\begin{array}{ccc}
3 & 4 & -7 \\
1 & 2 & -3 \\
2 & 3 & -5
\end{array}\right) \in \operatorname{Mat}(3, \mathbb{R})
$$

We find

$$
A^{2}=\left(\begin{array}{lll}
-1 & -1 & 2 \\
-1 & -1 & 2 \\
-1 & -1 & 2
\end{array}\right)
$$

and $A^{3}=0$, so A is nilpotent. Let us find a basis as given in Thm. 3.3. The first step in the process comes down to finding a complementary subspace of $\operatorname{ker}\left(A^{2}\right)=L\left((2,0,1)^{\top},(0,2,1)^{\top}\right)$. We can take $(1,0,0)^{\top}$, for example, as the basis
of a complement. This will be v_{1}^{\prime} in the notation of the proof above. We then have $A v_{1}^{\prime}=(3,1,2)^{\top}$ and $A^{2} v_{1}^{\prime}=(-1,-1,-1)^{\top}$, and these three already form a basis. Reversing the order, we get

$$
\left(\begin{array}{lll}
-1 & 3 & 1 \\
-1 & 1 & 0 \\
-1 & 2 & 0
\end{array}\right)^{-1}\left(\begin{array}{lll}
3 & 4 & -7 \\
1 & 2 & -3 \\
2 & 3 & -5
\end{array}\right)\left(\begin{array}{lll}
-1 & 3 & 1 \\
-1 & 1 & 0 \\
-1 & 2 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

4. Direct Sums of Subspaces

The proof of the Jordan Normal Form Theorem, which is our next goal, uses the idea to split the vector space V into subspaces on which the endomorphism can be more easily described. In order to make this precise, we introduce the notion of direct sum of linear subspaces of V.
4.1. Lemma and Definition. Let V be a vector space, $U_{i} \subset V$ (for $\left.i \in I\right)$ linear subspaces. Then the following statements are equivalent.
(1) Every $v \in V$ can be written uniquely as $v=\sum_{i \in I} u_{i}$ with $u_{i} \in U_{i}$ for all $i \in I$ (and only finitely many $u_{i} \neq 0$).
(2) $\sum_{i \in I} U_{i}=V$, and for all $j \in I$, we have $U_{j} \cap \sum_{i \in I \backslash\{j\}} U_{i}=\{0\}$.
(3) If B_{i} is a basis of U_{i}, for $i \in I$, then the B_{i} are pairwise disjoint, and $\bigcup_{i \in I} B_{i}$ is a basis of V.

If these conditions are satisfied, we say that V is the direct sum of the subspaces U_{i} and write $V=\bigoplus_{i \in I} U_{i}$. If $I=\{1,2, \ldots, n\}$, we also write $V=U_{1} \oplus U_{2} \oplus \cdots \oplus U_{n}$.

Proof. "(1) $\Rightarrow(2)$ ": Since every $v \in V$ can be written as a sum of elements of the U_{i}, we have $V=\sum_{i \in I} U_{i}$. Now assume that $v \in U_{j} \cap \sum_{i \neq j} U_{i}$. This gives two representations of v as $v=u_{j}=\sum_{i \neq j} u_{i}$. Since there is only one way of writing v as a sum of u_{i} 's, this is only possible when $v=0$.
" 2$) \Rightarrow(3)$ ": Let $B=\bigcup_{i \in I} B_{i}$, considered as a 'multiset' (i.e., such that elements can occur several times). Since B_{i} generates U_{i} and $\sum_{i} U_{i}=V, B$ generates V. To show that B is linearly independent, consider a linear combination

$$
\sum_{i \in I} \sum_{b \in B_{i}} \lambda_{i, b} b=0 .
$$

For any fixed $j \in I$, we can write this as

$$
U_{j} \ni u_{j}=\sum_{b \in B_{j}} \lambda_{j, b} b=-\sum_{i \neq j} \sum_{b \in B_{i}} \lambda_{i, b} B \in \sum_{i \neq j} U_{i} .
$$

By (2), this implies that $u_{j}=0$. Since B_{j} is a basis of U_{j}, this is only possible when $\lambda_{j, b}=0$ for all $b \in B_{j}$. Since $j \in I$ was arbitrary, this shows that all coefficients vanish.
" $(3) \Rightarrow(1)$ ": Write $v \in V$ as a linear combination of the basis elements in $\bigcup_{i} B_{i}$. Since B_{i} is a basis of U_{i}, this shows that $v=\sum_{i} u_{i}$ with $u_{i} \in U_{i}$. Since there is only one way of writing v as such a linear combination, all the u_{i} are uniquely determined.
4.2. Remark. The proof of the implication $(3) \Rightarrow(1)$ implicitly assumes the existence of a basis B_{i} for each U_{i}, so that we may use the basis $\bigcup_{i} B_{i}$ for V. The existence of a basis B_{i} for U_{i} is clear when U_{i} is finite-dimensional, but for infinite-dimensional vector spaces this is more subtle. Using Zorn's Lemma, which is equivalent to the Axiom of Choice of Set Theory, one can prove that all vector spaces do indeed have a basis. See Appendix D of Linear Algebra I, 2015 edition. We will use this more often.
4.3. Remark. If U_{1} and U_{2} are linear subspaces of the vector space V, then $V=$ $U_{1} \oplus U_{2}$ is equivalent to U_{1} and U_{2} being complementary subspaces.
4.4. Remark. Suppose V is a vector space with subspaces U and U^{\prime} such that $V=U \oplus U^{\prime}$. If U_{1}, \ldots, U_{r} are subspaces of U with $U=U_{1} \oplus \cdots \oplus U_{r}$ and $U_{1}^{\prime}, \ldots, U_{s}^{\prime}$ are subspaces of U^{\prime} with $U^{\prime}=U_{1}^{\prime} \oplus \cdots \oplus U_{s}^{\prime}$, then we have

$$
V=U_{1} \oplus \cdots \oplus U_{r} \oplus U_{1}^{\prime} \oplus \cdots \oplus U_{s}^{\prime} .
$$

This follows most easily from part (1) of Lemma 4.1. In particular, we have $U_{1} \oplus\left(U_{2} \oplus \cdots \oplus U_{r}\right)=U_{1} \oplus \cdots \oplus U_{r}$.

Next, we discuss the relation between endomorphisms of V and endomorphisms between the U_{i}.
4.5. Lemma and Definition. Let V be a vector space with linear subspaces U_{i} $(i \in I)$ such that $V=\bigoplus_{i \in I} U_{i}$. For each $i \in I$, let $f_{i}: U_{i} \rightarrow U_{i}$ be an endomorphism. Then there is a unique endomorphism $f: V \rightarrow V$ such that $\left.f\right|_{U_{i}}=f_{i}$ for all $i \in I$.
We call f the direct sum of the f_{i} and write $f=\bigoplus_{i \in I} f_{i}$.
Proof. Let $v \in V$. Then we have $v=\sum_{i} u_{i}$ as above, therefore the only way to define f is by $f(v)=\sum_{i} f_{i}\left(u_{i}\right)$. This proves uniqueness. Since the u_{i} in the representation of v above are unique, f is a well-defined map, and it is clear that f is linear, so f is an endomorphism of V.
4.6. Remark. If in the situation just described V is finite-dimensional and we choose a basis of V that is the union of bases of the U_{i}, then the matrix representing f relative to that basis will be a block diagonal matrix, where the diagonal blocks are the matrices representing the f_{i} relative to the bases of the U_{i}.
4.7. Lemma. Let V be a vector space with linear subspaces $U_{i}(i \in I)$ such that $V=\bigoplus_{i \in I} U_{i}$. Let $f: V \rightarrow V$ be an endomorphism. Then there are endomorphims $f_{i}: U_{i} \rightarrow U_{i}$ for $i \in I$ such that $f=\bigoplus_{i \in I} f_{i}$ if and only if each U_{i} is invariant under f (or f-invariant), i.e., $f\left(U_{i}\right) \subset U_{i}$.

Proof. If $f=\bigoplus_{i} f_{i}$, then $f_{i}=\left.f\right|_{U_{i}}$, hence $f\left(U_{i}\right)=\left.f\right|_{U_{i}}\left(U_{i}\right)=f_{i}\left(U_{i}\right) \subset U_{i}$. Conversely, suppose that $f\left(U_{i}\right) \subset U_{i}$. Then we can define $f_{i}: U_{i} \rightarrow U_{i}$ to be the restriction of f to U_{i}; it is then clear that f_{i} is an endomorphism of U_{i} and that $f=\bigoplus_{i} f_{i}$.

We now come to a relation between splittings of f as a direct sum and the characteristic or minimal polynomial of f.
4.8. Lemma. Let V be a vector space and $f: V \rightarrow V$ an endomorphism. Let $p(x)=p_{1}(x) p_{2}(x)$ be a polynomial such that $p(f)=0$ and such that $p_{1}(x)$ and $p_{2}(x)$ are coprime, i.e., there are polynomials $a_{1}(x)$ and $a_{2}(x)$ such that $a_{1}(x) p_{1}(x)+$ $a_{2}(x) p_{2}(x)=1$. Let $U_{i}=\operatorname{ker}\left(p_{i}(f)\right)$, for $i=1,2$. Then $V=U_{1} \oplus U_{2}$ and the U_{i} are f-invariant. In particular, $f=f_{1} \oplus f_{2}$, where $f_{i}=\left.f\right|_{U_{i}}$.

Proof. We first show that

$$
\operatorname{im}\left(p_{2}(f)\right) \subset U_{1}=\operatorname{ker}\left(p_{1}(f)\right) \quad \text { and } \quad \operatorname{im}\left(p_{1}(f)\right) \subset U_{2}=\operatorname{ker}\left(p_{2}(f)\right) .
$$

Let $v \in \operatorname{im}\left(p_{2}(f)\right)$, so $v=\left(p_{2}(f)\right)(u)$ for some $u \in U$. Then

$$
\left(p_{1}(f)\right)(v)=\left(p_{1}(f)\right)\left(\left(p_{2}(f)\right)(u)\right)=\left(p_{1}(f) p_{2}(f)\right)(u)=(p(f))(u)=0
$$

so $\operatorname{im}\left(p_{2}(f)\right) \subset \operatorname{ker}\left(p_{1}(f)\right)$; the other statement is proved in the same way.
Now we show that $U_{1} \cap U_{2}=\{0\}$. So let $v \in U_{1} \cap U_{2}$. Then $\left(p_{1}(f)\right)(v)=$ $\left(p_{2}(f)\right)(v)=0$. Using

$$
\operatorname{id}_{V}=1(f)=\left(a_{1}(x) p_{1}(x)+a_{2}(x) p_{2}(x)\right)(f)=a_{1}(f) \circ p_{1}(f)+a_{2}(f) \circ p_{2}(f),
$$

we see that

$$
v=\left(a_{1}(f)\right)\left(\left(p_{1}(f)\right)(v)\right)+\left(a_{2}(f)\right)\left(\left(p_{2}(f)\right)(v)\right)=\left(a_{1}(f)\right)(0)+\left(a_{2}(f)\right)(0)=0
$$

Next, we show that $\operatorname{im}\left(p_{1}(f)\right)+\operatorname{im}\left(p_{2}(f)\right)=V$. Using the same relation above, and the fact that $p_{i}(f)$ and $a_{i}(f)$ commute, we find for $v \in V$ arbitrary that

$$
v=\left(p_{1}(f)\right)\left(\left(a_{1}(f)\right)(v)\right)+\left(p_{2}(f)\right)\left(\left(a_{2}(f)\right)(v)\right) \in \operatorname{im}\left(p_{1}(f)\right)+\operatorname{im}\left(p_{2}(f)\right) .
$$

These statements together imply that $\operatorname{im}\left(p_{1}(f)\right)=U_{2}, \operatorname{im}\left(p_{2}(f)\right)=U_{1}$ and $V=$ $U_{1} \oplus U_{2}$: Let $v \in U_{1}$. We can write $v=v_{1}+v_{2}$ with $v_{i} \in \operatorname{im}\left(p_{i}(f)\right)$. Then $U_{1} \ni v-v_{1}=v_{2} \in U_{2}$, but $U_{1} \cap U_{2}=\{0\}$, so $v=v_{1} \in \operatorname{im}\left(p_{1}(f)\right)$.
Finally, we have to show that U_{1} and U_{2} are f-invariant. So let (e.g.) $v \in U_{1}$. We have

$$
\left(p_{1}(f)\right)(f(v))=\left(p_{1}(f) \circ f\right)(v)=\left(f \circ p_{1}(f)\right)(v)=f\left(\left(p_{1}(f)\right)(v)\right)=f(0)=0
$$

(since $v \in U_{1}=\operatorname{ker}\left(p_{1}(f)\right)$), hence $f(v) \in U_{1}$ as well.
4.9. Proposition. Let V be a vector space and $f: V \rightarrow V$ an endomorphism. Let $p(x)=p_{1}(x) p_{2}(x) \cdots p_{k}(x)$ be a polynomial such that $p(f)=0$ and such that the factors $p_{i}(x)$ are coprime in pairs. Let $U_{i}=\operatorname{ker}\left(p_{i}(f)\right)$. Then $V=U_{1} \oplus \cdots \oplus U_{k}$ and the U_{i} are f-invariant. In particular, $f=f_{1} \oplus \cdots \oplus f_{k}$, where $f_{i}=\left.f\right|_{U_{i}}$.

Proof. We proceed by induction on k. The case $k=1$ is trivial. So let $k \geq 2$, and denote $q(x)=p_{2}(x) \cdots p_{k}(x)$. Then I claim that $p_{1}(x)$ and $q(x)$ are coprime. To see this, note that by assumption, we can write, for $i=2, \ldots, k$,

$$
a_{i}(x) p_{1}(x)+b_{i}(x) p_{i}(x)=1 .
$$

Multiplying these equations, we obtain

$$
A(x) p_{1}(x)+b_{2}(x) \cdots b_{k}(x) q(x)=1 ;
$$

note that all the terms except $b_{2}(x) \cdots b_{k}(x) q(x)$ that we get when expanding the product of the left hand sides contains a factor $p_{1}(x)$.

We can then apply Lemma 4.8 to $p(x)=p_{1}(x) q(x)$ and find that $V=U_{1} \oplus U^{\prime}$ and $f=f_{1} \oplus f^{\prime}$ with $U_{1}=\operatorname{ker}\left(p_{1}(f)\right), f_{1}=\left.f\right|_{U_{1}}$, and $U^{\prime}=\operatorname{ker}(q(f)), f^{\prime}=\left.f\right|_{U^{\prime}}$. In particular, $q\left(f^{\prime}\right)=0$. By induction, we then know that $U^{\prime}=U_{2} \oplus \cdots \oplus U_{k}$ with $U_{j}=\operatorname{ker}\left(p_{j}\left(f^{\prime}\right)\right)$ and $f^{\prime}=f_{2} \oplus \cdots \oplus f_{k}$, where $f_{j}=\left.f^{\prime}\right|_{U_{j}}$, for $j=2, \ldots, k$. Finally, $\operatorname{ker}\left(p_{j}\left(f^{\prime}\right)\right)=\operatorname{ker}\left(p_{j}(f)\right)$ (since the latter is contained in $\left.U^{\prime}\right)$ and $f_{j}=\left.f^{\prime}\right|_{U_{j}}=\left.f\right|_{U_{j}}$, so that we obtain the desired conclusion from Remark 4.4.

5. The Jordan Normal Form Theorem

In this section, we will formulate and prove the Jordan Normal Form Theorem, which will tell us that any matrix whose characteristic polynomial is a product of linear factors is similar to a matrix of a very special near-diagonal form.

But first we need a little lemma about polynomials.
5.1. Lemma. If $p(x)$ is a polynomial (over F) and $\lambda \in F$ such that $p(\lambda) \neq 0$, then $(x-\lambda)^{m}$ and $p(x)$ are coprime for all $m \geq 1$.

Proof. First, consider $m=1$. Let

$$
q(x)=\frac{p(x)}{p(\lambda)}-1
$$

this is a polynomial such that $q(\lambda)=0$. Therefore, we can write $q(x)=(x-\lambda) r(x)$ with some polynomial $r(x)$. This gives us

$$
-r(x)(x-\lambda)+\frac{1}{p(\lambda)} p(x)=1
$$

Now, taking the m th power on both sides, we obtain an equation

$$
(-r(x))^{m}(x-\lambda)^{m}+a(x) p(x)=1 .
$$

Now we can feed this into Prop. 4.9
5.2. Theorem. Let V be a finite-dimensional vector space, and let $f: V \rightarrow V$ be an endomorphism whose characteristic polynomial splits into linear factors:

$$
P_{f}(x)=\left(x-\lambda_{1}\right)^{m_{1}} \cdots\left(x-\lambda_{k}\right)^{m_{k}},
$$

where the λ_{i} are distinct. Then $V=U_{1} \oplus \cdots \oplus U_{k}$, where $U_{j}=\operatorname{ker}\left(f-\lambda \mathrm{id}_{V}\right)^{m_{j}}$ is the generalized λ_{j}-eigenspace of f.

Proof. Write $P_{f}(x)=p_{1}(x) \cdots p_{k}(x)$ with $p_{j}(x)=\left(x-\lambda_{j}\right)^{m_{j}}$. By Lemma 5.1, we know that the $p_{j}(x)$ are coprime in pairs. By the Cayley-Hamilton Theorem 2.1, we know that $P_{f}(f)=0$. The result then follows from Prop. 4.9.
5.3. Theorem (Jordan Normal Form). Let V be a finite-dimensional vector space, and let $f: V \rightarrow V$ be an endomorphism whose characteristic polynomial splits into linear factors:

$$
P_{f}(x)=\left(x-\lambda_{1}\right)^{m_{1}} \cdots\left(x-\lambda_{k}\right)^{m_{k}}
$$

where the λ_{i} are distinct. Then there is a basis of V such that the matrix representing f with respect to that basis is a block diagonal matrix with blocks of the form

$$
B(\lambda, m)=\left(\begin{array}{cccccc}
\lambda & 1 & 0 & \cdots & 0 & 0 \\
0 & \lambda & 1 & \cdots & 0 & 0 \\
0 & 0 & \lambda & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \lambda & 1 \\
0 & 0 & 0 & \cdots & 0 & \lambda
\end{array}\right) \in \operatorname{Mat}(F, m)
$$

where $\lambda \in\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$.
Proof. We keep the notations of Thm. 5.2. We know that on $U_{j},\left(f-\lambda_{j} \mathrm{id}\right)^{m_{j}}=0$, so $\left.f\right|_{U_{j}}=\lambda_{j} \mathrm{id}_{U_{j}}+g_{j}$, where $g_{j}^{m_{j}}=0$, i.e., g_{j} is nilpotent. By Thm. 3.3, there is a basis of U_{j} such that g_{j} is represented by a block diagonal matrix B_{j} with blocks of the form $B(0, m)$ (such that the sum of the m 's is m_{j}). Therefore, $\left.f\right|_{U_{j}}$ is represented by $B_{j}+\lambda_{j} I_{\operatorname{dim} U_{j}}$, which is a block diagonal matrix composed of blocks $B\left(\lambda_{j}, m\right)$ (with the same m 's as before). The basis of V that is given by the union of the various bases of the U_{j} then does what we want, compare Remark 4.6.

Here is a less precise, but for many applications sufficient version.
5.4. Corollary. Let V be a finite-dimensional vector space, and let $f: V \rightarrow V$ be an endomorphism whose characteristic polynomial splits into linear factors, as above. Then we can write $f=d+n$, with endomorphisms d and n of V, such that d is diagonalizable, n is nilpotent, and d and n commute: $d \circ n=n \circ d$.

Proof. We just take d to be the endomorphism corresponding to the 'diagonal part' of the matrix given in Thm. 5.3 and n to be that corresponding to the 'nilpotent part' (obtained by setting all diagonal entries equal to zero). Since the two parts commute within each 'Jordan block,' the two endomorphisms commute.
5.5. Example. Let us compute the Jordan Normal Form and a suitable basis for the endomorphism $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by the matrix

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-4 & 0 & 3
\end{array}\right)
$$

We first compute the characteristic polynomial:

$$
P_{f}(x)=\left|\begin{array}{ccc}
x & -1 & 0 \\
0 & x & -1 \\
4 & 0 & x-3
\end{array}\right|=x^{2}(x-3)+4=x^{3}-3 x^{2}+4=(x-2)^{2}(x+1) .
$$

We see that it splits into linear factors, which is good. We now have to find the generalized eigenspaces. We have a simple eigenvalue -1 ; the eigenspace is

$$
E_{-1}(f)=\operatorname{ker}\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
-4 & 0 & 4
\end{array}\right)=L\left((1,-1,1)^{\top}\right)
$$

The other eigenspace is

$$
E_{2}(f)=\operatorname{ker}\left(\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 1 \\
-4 & 0 & 1
\end{array}\right)=L\left((1,2,4)^{\top}\right) .
$$

This space has only dimension 1 , so f is not diagonalizable, and we have to look at the generalized eigenspace:

$$
\operatorname{ker}\left(\left(f-2 \operatorname{id}_{V}\right)^{2}\right)=\operatorname{ker}\left(\begin{array}{ccc}
4 & -4 & 1 \\
-4 & 4 & -1 \\
4 & -4 & 1
\end{array}\right)=L\left((1,1,0)^{\top},(1,0,-4)^{\top}\right)
$$

So we can take as our basis

$$
\left(f-2 \operatorname{id}_{V}\right)\left((1,1,0)^{\top}\right)=(-1,-2,-4)^{\top},(1,1,0)^{\top},(1,-1,1)^{\top}
$$

and we find

$$
\left(\begin{array}{ccc}
-1 & 1 & 1 \\
-2 & 1 & -1 \\
-4 & 0 & 1
\end{array}\right)^{-1}\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-4 & 0 & 3
\end{array}\right)\left(\begin{array}{ccc}
-1 & 1 & 1 \\
-2 & 1 & -1 \\
-4 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

5.6. Application. One important application of the Jordan Normal Form Theorem is to the explicit solution of systems of linear first-order differential equations with constant coefficients. Such a system can be written

$$
\frac{d}{d t} y(t)=A \cdot y(t)
$$

where y is a vector-valued function and A is a matrix. One can then show (Exercise) that there is a unique solution with $y(0)=y_{0}$ for any specified initial value y_{0}, and it is given by

$$
y(t)=\exp (t A) \cdot y_{0}
$$

with the matrix exponential

$$
\exp (t A)=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} A^{n}
$$

If A is in Jordan Normal Form, the exponental can be easily determined. In general, A can be transformed into Jordan Normal Form, the exponential can be evaluated for the transformed matrix, then we can transform it back - note that

$$
\exp \left(t P^{-1} A P\right)=P^{-1} \exp (t A) P
$$

5.7. Remark. What can we do when the characteristic polynomial does not split into linear factors (which is possible when the field F is not algebraically closed)? In this case, we have to use a weaker notion than that of diagonalizability. Define the endomorphism $f: V \rightarrow V$ to be semi-simple if every f-invariant subspace $U \subset V$ has an f-invariant complementary subspace in V. One can show (Exercise) that if the characteristic polynomial of f splits into linear factors, then f is semisimple if and only if it is diagonalizable. The general version of the Jordan Normal Form Theorem then is as follows.
Let V be a finite-dimensional vector space, $f: V \rightarrow V$ an endomorphism. Then $f=s+n$ with endomorphisms s and n of V such that s is semi-simple, n is nilpotent, and $s \circ n=n \circ s$.
Unfortunately, we do not have the means and time to prove this result here.
However, we can state the result we get over $F=\mathbb{R}$.
5.8. Theorem (Real Jordan Normal Form). Let V be a finite-dimensional real vector space, $f: V \rightarrow V$ an endomorphism. Then there is a basis of V such that the matrix representing f with respect to this basis is a block diagonal matrix with blocks of the form $B(\lambda, m)$ and of the form (with $\mu>0$)

$$
B^{\prime}(\lambda, \mu, m)=\left(\begin{array}{ccccccccc}
\lambda & -\mu & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\
\mu & \lambda & 0 & 1 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & \lambda & -\mu & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & \mu & \lambda & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \lambda & -\mu & 1 & 0 \\
0 & 0 & 0 & 0 & \cdots & \mu & \lambda & 0 & 1 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & \lambda & -\mu \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & \mu & \lambda
\end{array}\right) \in \operatorname{Mat}(\mathbb{R}, 2 m) .
$$

Blocks $B(\lambda, m)$ occur for eigenvalues λ of f; blocks $B^{\prime}(\lambda, \mu, m)$ occur if $P_{f}(x)$ is divisible by $x^{2}-2 \lambda x+\lambda^{2}+\mu^{2}$.

Proof. Here is a sketch that gives the main ideas. First choose any basis $B=$ $\left(x_{1}, \ldots, x_{n}\right)$ for V, so that $\varphi_{B}: \mathbb{R}^{n} \rightarrow V$ given by $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mapsto \sum_{i} \lambda_{i} x_{i}$ is an isomorphism. Identifying V with \mathbb{R}^{n} through this isomorphism reduces the problem to the case $V=\mathbb{R}^{n}$, which is naturally contained in \mathbb{C}^{n}, and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ being given by a real $n \times n$ matrix A.

Over \mathbb{C}, the characteristic polynomial $P_{f}=P_{A}$ will split into linear factors. Some of them will be of the form $x-\lambda$ with $\lambda \in \mathbb{R}$, the others will be of the form $x-(\lambda+\mu i)$ with $\lambda, \mu \in \mathbb{R}$ and $\mu \neq 0$. These latter ones occur in pairs

$$
(x-(\lambda+\mu i))(x-(\lambda-\mu i))=x^{2}-2 \lambda x+\lambda^{2}+\mu^{2} .
$$

If $v_{1}, \ldots, v_{m} \in \mathbb{C}^{n}$ is a basis of the generalized eigenspace (over \mathbb{C}) for the eigenvalue $\lambda+\mu i$, then $\bar{v}_{1}, \ldots, \bar{v}_{m}$ is a basis of the generalized eigenspace for the eigenvalue $\lambda-\mu i$, where \bar{v} denotes the vector obtained from $v \in \mathbb{C}^{n}$ by replacing each coordinate with its complex conjugate. If we now consider

$$
\left(v_{1}+\bar{v}_{1}\right), i\left(v_{1}-\bar{v}_{1}\right), \ldots,\left(v_{m}+\bar{v}_{m}\right), i\left(v_{m}-\bar{v}_{m}\right),
$$

then these vectors are in \mathbb{R}^{n} and form a basis of the sum of the two generalized eigenspaces. If $\left(v_{1}, \ldots, v_{m}\right)$ gives rise to a Jordan block $B(\lambda+\mu i, m)$, then we have

$$
\begin{aligned}
f\left(v_{i}+\bar{v}_{i}\right) & =f\left(v_{i}\right)+f\left(\bar{v}_{i}\right)=f\left(v_{i}\right)+\overline{f\left(v_{i}\right)} \\
& =(\lambda+\mu i) v_{i}+v_{i-1}^{\prime}+(\lambda-\mu i) \bar{v}_{i}+\overline{v_{i-1}^{\prime}} \\
& =\lambda\left(v_{i}+\bar{v}_{i}\right)+\mu i\left(v_{i}-\bar{v}_{i}\right)+v_{i-1}^{\prime}+\overline{v_{i-1}^{\prime}}, \\
f\left(i\left(v_{i}-\bar{v}_{i}\right)\right) & =i f\left(v_{i}\right)-i f\left(\bar{v}_{i}\right)=i \cdot f\left(v_{i}\right)-i \cdot \overline{f\left(v_{i}\right)} \\
& =i(\lambda+\mu i) v_{i}+i v_{i-1}^{\prime}-i(\lambda-\mu i) \bar{v}_{i}-\overline{i v_{i-1}^{\prime}} \\
& =\lambda i\left(v_{i}-\bar{v}_{i}\right)-\mu\left(v_{i}+\bar{v}_{i}\right)+i\left(v_{i-1}^{\prime}-\overline{v_{i-1}^{\prime}}\right),
\end{aligned}
$$

for $v_{i-1}^{\prime}=0$ if $i=1$ and $v_{i-1}^{\prime}=v_{i-1}$ if $i>1$, so the new basis gives rise to a block of the form $B^{\prime}(\lambda, \mu, m)$.
5.9. Theorem. Let V be a finite-dimensional vector space, $f_{1}, \ldots, f_{k}: V \rightarrow V$ diagonalizable endomorphisms that commute in pairs. Then f_{1}, \ldots, f_{k} are simultaneously diagonalizable, i.e., there is a basis of V consisting of vectors that are eigenvectors for all the f_{j} at the same time. In particular, any linear combination of the f_{j} is again diagonalizable.

Proof. First note that if f and g are commuting endomorphisms and v is a λ eigenvector of f, then $g(v)$ is again a λ-eigenvector of f (or zero):

$$
f(g(v))=g(f(v))=g(\lambda v)=\lambda g(v) .
$$

We now proceed by induction on k. For $k=1$, there is nothing to prove. So assume $k \geq 2$. We can write $V=U_{1} \oplus \cdots \oplus U_{l}$, where the U_{i} are the nontrivial eigenspaces of f_{k}. By the observation just made, we have splittings, for $j=1, \ldots, k-1$,

$$
f_{j}=f_{j}^{(1)} \oplus \cdots \oplus f_{j}^{(l)} \quad \text { with } f_{j}^{(i)}: U_{i} \rightarrow U_{i}
$$

By the induction hypothesis, $f_{1}^{(i)}, \ldots, f_{k-1}^{(i)}$ are simultaneously diagonalizable on U_{i}, for each i. Since U_{i} consists of eigenvectors of f_{k}, any basis of U_{i} that consists of eigenvectors of all the $f_{j}, j<k$, will also consist of eigenvectors for all the $f_{j}, j \leq k$. To get a suitable basis of V, we take the union of the bases of the various U_{i}.

To finish this section, here is a uniqueness statement related to Cor. 5.4.
5.10. Theorem. The diagonalizable and nilpotent parts of f in Cor. 5.4 are uniquely determined.

Proof. Let $f=d+n=d^{\prime}+n^{\prime}$, where d and n are constructed as in the Jordan Normal Form Theorem 5.3 and $d \circ n=n \circ d, d^{\prime} \circ n^{\prime}=n^{\prime} \circ d^{\prime}$. Then d^{\prime} and n^{\prime} commute with $f\left(d^{\prime} \circ f=d^{\prime} \circ d^{\prime}+d^{\prime} \circ n^{\prime}=d^{\prime} \circ d^{\prime}+n^{\prime} \circ d^{\prime}=f \circ d^{\prime}\right.$, same for $\left.n^{\prime}\right)$. Now let g be any endomorphism commuting with f, and consider $v \in U_{j}=\operatorname{ker}\left(\left(f-\lambda_{j} \mathrm{id}\right)^{m_{j}}\right)$. Then

$$
\left(f-\lambda_{j} \mathrm{id}\right)^{m_{j}}(g(v))=g\left(\left(f-\lambda_{j} \mathrm{id}\right)^{m_{j}}(v)\right)=0
$$

so $g(v) \in U_{j}$, i.e., U_{j} is g-invariant. So $g=g_{1} \oplus \cdots \oplus g_{k}$ splits as a direct sum of endomorphisms of the generalized eigenspaces U_{j} of f. Since on U_{j}, we have $\left.f\right|_{U_{j}}=\lambda_{j} \mathrm{id}+\left.n\right|_{U_{j}}$ and g commutes with f, we find that g_{j} commutes with $\left.n\right|_{U_{j}}$ for all j, hence g commutes with n (and also with d).

Applying this to d^{\prime} and n^{\prime}, we see that d and d^{\prime} commute, and that n and n^{\prime} commute. We can write

$$
d-d^{\prime}=n^{\prime}-n ;
$$

then the right hand side is nilpotent (for this we need that n and n^{\prime} commute!). By Thm. 5.9, the left hand side is diagonalizable, so we can assume it is represented by a diagonal matrix. But the only nilpotent diagonal matrix is the zero matrix, therefore $d-d^{\prime}=n^{\prime}-n=0$, i.e., $d^{\prime}=d$ and $n^{\prime}=n$.

6. The Dual Vector Space

6.1. Defintion. Let V be an F-vector space. A linear form or linear functional on V is a linear map $\phi: V \rightarrow F$.
The dual vector space of V is $V^{*}=\operatorname{Hom}(V, F)$, the vector space of all linear forms on V.

Recall how the vector space structure on $V^{*}=\operatorname{Hom}(V, F)$ is defined: for $\phi, \psi \in V^{*}$ and $\lambda, \mu \in F$, we have, for $v \in V$,

$$
(\lambda \phi+\mu \psi)(v)=\lambda \phi(v)+\mu \psi(v) .
$$

6.2. Example. Consider the standard example $V=F^{n}$. Then the coordinate maps

$$
p_{j}:\left(x_{1}, \ldots, x_{n}\right) \longmapsto x_{j}
$$

are linear forms on V.
The following result is important.
6.3. Proposition and Definition. Let V be a finite-dimensional vector space with basis $\left(v_{1}, \ldots, v_{n}\right)$. Then V^{*} has a unique basis $\left(v_{1}^{*}, \ldots, v_{n}^{*}\right)$ such that

$$
v_{i}^{*}\left(v_{j}\right)=\delta_{i j}=\left\{\begin{array}{ll}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array} .\right.
$$

This basis $\left(v_{1}^{*}, \ldots, v_{n}^{*}\right)$ of V^{*} is called the dual basis of $\left(v_{1}, \ldots, v_{n}\right)$ or the basis dual to $\left(v_{1}, \ldots, v_{n}\right)$.

Proof. Since linear maps are uniquely determined by their images on a basis, there certainly exist unique linear forms $v_{i}^{*} \in V^{*}$ with $v_{i}^{*}\left(v_{j}\right)=\delta_{i j}$. We have to show that they form a basis of V^{*}. First, it is easy to see that they are linearly independent, by applying a linear combination to the basis vectors v_{j} :

$$
0=\left(\lambda_{1} v_{1}^{*}+\cdots+\lambda_{n} v_{n}^{*}\right)\left(v_{j}\right)=\lambda_{1} \delta_{1 j}+\cdots+\lambda_{n} \delta_{n j}=\lambda_{j} .
$$

It remains to show that the v_{i}^{*} generate V^{*}. So let $\phi \in V^{*}$. Then

$$
\phi=\phi\left(v_{1}\right) v_{1}^{*}+\cdots+\phi\left(v_{n}\right) v_{n}^{*},
$$

since both sides take the same values on the basis v_{1}, \ldots, v_{n}.
It is important to keep in mind that the dual basis vectors depend on all of v_{1}, \ldots, v_{n} - the notation v_{j}^{*} is not intended to imply that v_{j}^{*} depends only on v_{j} !

Note that for $\phi \in V^{*}$, we have

$$
\phi=\sum_{j=1}^{n} \phi\left(v_{j}\right) v_{j}^{*},
$$

and for $v \in V$, we have

$$
v=\sum_{i=1}^{n} v_{i}^{*}(v) v_{i}
$$

(write $v=\lambda_{1} v_{1}+\cdots+\lambda_{n} v_{n}$, then $\left.v_{i}^{*}(v)=\lambda_{i}\right)$.
6.4. Example. Consider $V=F^{n}$, with the canonical basis $\left(e_{1}, \ldots, e_{n}\right)$. Then the dual basis is $\left(p_{1}, \ldots, p_{n}\right)$.
6.5. Corollary. If V is finite-dimensional, then $\operatorname{dim} V^{*}=\operatorname{dim} V$.

Proof. Clear from Prop. 6.3.
6.6. Remark. The statement in Cor. 6.5 is actually an equivalence, if we define dimension to be the cardinality of a basis. If V has infinite dimension, then the dimension of V^{*} is "even more infinite". This is related to the following fact. Let B be a basis of V. Then the power set of B, i.e., the set of all subsets of B, has larger cardinality than B. To each subset S of B, we can associate an element $\psi_{S} \in V^{*}$ such that $\psi_{S}(b)=1$ for $b \in S$ and $\psi_{S}(b)=0$ for $b \in B \backslash S$. Now there are certainly linear relations between the ψ_{S}, but one can show that no subset of $\left\{\psi_{S}: S \subset B\right\}$ whose cardinality is that of B can generate all the ψ_{S}. Therefore any basis of V^{*} must be of strictly larger cardinality than B.

Note that again, we are implicitly assuming that every vector space has a basis (cf. Remark 4.2). Also, we are using the fact that for any basis $B=\left(v_{i}\right)_{i \in I}$ of V and any collection $C=\left(w_{i}\right)_{i \in I}$ of elements in a vector space W, there is a linear map $\varphi: V \rightarrow W$ that sends v_{i} to w_{i} for each $i \in I$. Indeed, this follows from the fact that the map $\varphi_{B}: F^{(I)} \rightarrow V$ that sends $\left(\lambda_{i}\right)_{i \in I}$ to $\sum_{i} \lambda_{i} v_{i}$ is an isomorphism, so the map $\varphi: V \rightarrow W$ is $\varphi_{C} \circ \varphi_{B}^{-1}$. See Exercises 3.1.9, 4.3.7, 9.1.9, and 9.2.6 of Linear Algebra I, 2015 edition, also to recall that $F^{(I)}$ denotes the vector space of all functions from $I \rightarrow F$ that are zero for all but finitely many elements of I.
6.7. Example. If $V=L(\sin , \cos)$ (a linear subspace of the real vector space of real-valued functions on \mathbb{R}), then the basis dual to \sin , \cos is given by the functionals $f \mapsto f(\pi / 2), f \mapsto f(0)$.
6.8. Theorem. Let V be a vector space. Then there is a canonical injective homomorphism $\alpha_{V}: V \rightarrow V^{* *}$ of V into its bidual $V^{* *}=\left(V^{*}\right)^{*}$. It is an isomorphism when V is finite-dimensional.

Proof. In order to construct α_{V}, we have to associate to each $v \in V$ a linear form on V^{*}. More or less the only thing we can do with a linear form is to evaluate it on elements of V. Therefore we set

$$
\alpha_{V}(v)=\left(V^{*} \ni \phi \mapsto \phi(v) \in F\right) .
$$

We sometimes denote the evaluation map $\alpha_{V}(v): V^{*} \rightarrow F$ by ev ${ }_{v}$, though this notation may also be used for any other evaluation map (cf. Example 6.10). Then $\alpha_{V}(v)$ is a linear form on V^{*} by the definition of the linear structure on V^{*}. Also, α_{V} is itself linear:

$$
\begin{aligned}
\alpha_{V}\left(\lambda v+\lambda^{\prime} v^{\prime}\right)(\phi) & =\phi\left(\lambda v+\lambda^{\prime} v^{\prime}\right)=\lambda \phi(v)+\lambda^{\prime} \phi\left(v^{\prime}\right) \\
& =\lambda \alpha_{V}(v)(\phi)+\lambda^{\prime} \alpha_{V}\left(v^{\prime}\right)(\phi)=\left(\lambda \alpha_{V}(v)+\lambda^{\prime} \alpha_{V}\left(v^{\prime}\right)\right)(\phi) .
\end{aligned}
$$

In order to prove that α_{V} is injective, it suffices to show that its kernel is trivial. So let $0 \neq v \in V$. Using Zorn's Lemma from Set Theory (cf. Remark 4.2 and see Appendix D of Linear Algebra I, 2015 edition), we can choose a basis of V containing v. Then there is a linear form ϕ on V such that $\phi(v)=1($ and $\phi(w)=0$ on all the other basis elements, say). But this means $\alpha_{V}(v)(\phi)=1$, so $\alpha_{V}(v) \neq 0$ and $v \notin \operatorname{ker} \alpha_{V}$.

Finally, if V is finite-dimensional, then by Cor. 6.5, we have $\operatorname{dim} V^{* *}=\operatorname{dim} V^{*}=$ $\operatorname{dim} V$, so α_{V} must be surjective as well (use $\operatorname{dim} \operatorname{im}\left(\alpha_{V}\right)=\operatorname{dim} V-\operatorname{dim} \operatorname{ker}\left(\alpha_{V}\right)=$ $\operatorname{dim} V^{* *}$.)
6.9. Corollary. Let V be a finite-dimensional vector space, and let $\left(\phi_{1}, \ldots, \phi_{n}\right)$ be a basis of V^{*}. Then there is a unique basis $\left(v_{1}, \ldots, v_{n}\right)$ of V such that $\phi_{i}\left(v_{j}\right)=\delta_{i j}$.

Proof. By Prop. 6.3, there is a unique dual basis $\left(\phi_{1}^{*}, \ldots, \phi_{n}^{*}\right)$ of $V^{* *}=\left(V^{*}\right)^{*}$. Since α_{V} is an isomorphism, there are unique v_{1}, \ldots, v_{n} in V such that $\alpha_{V}\left(v_{j}\right)=\phi_{j}^{*}$. They form a basis of V, and

$$
\phi_{i}\left(v_{j}\right)=\operatorname{ev}_{v_{j}}\left(\phi_{i}\right)=\alpha_{V}\left(v_{j}\right)\left(\phi_{i}\right)=\phi_{j}^{*}\left(\phi_{i}\right)=\delta_{i j} .
$$

In other words, $\left(\phi_{1}, \ldots, \phi_{n}\right)$ is the basis of V^{*} dual to $\left(v_{1}, \ldots, v_{n}\right)$.
6.10. Example. Let V be the vector space of polynomials of degree less than n; then $\operatorname{dim} V=n$. For any $\alpha \in F$, the evaluation map

$$
\mathrm{ev}_{\alpha}: V \ni p \mapsto p(\alpha) \in F
$$

is a linear form on V. Now pick $\alpha_{1}, \ldots, \alpha_{n} \in F$ distinct. Then $\mathrm{ev}_{\alpha_{1}}, \ldots, \mathrm{ev}_{\alpha_{n}} \in V^{*}$ are linearly independent, hence form a basis. (This comes from the fact that the Vandermonde matrix $\left(\alpha_{i}^{j}\right)_{1 \leq i \leq n, 0 \leq j \leq n-1}$ has determinant $\prod_{i<j}\left(\alpha_{j}-\alpha_{i}\right) \neq 0$.) What is the basis of V dual to that? What we need are polynomials p_{1}, \ldots, p_{n} of degree less than n such that $p_{i}\left(\alpha_{j}\right)=\delta_{i j}$. So $p_{i}(x)$ has to be a multiple of $\prod_{j \neq i}\left(x-\alpha_{j}\right)$. We then obtain

$$
p_{i}(x)=\prod_{j \neq i} \frac{x-\alpha_{j}}{\alpha_{i}-\alpha_{j}},
$$

these are exactly the Lagrange interpolation polynomials.
We then find that the unique polynomial of degree less than n that takes the value β_{j} on α_{j}, for all j, is given by

$$
p(x)=\sum_{j=1}^{n} \beta_{j} p_{j}(x)=\sum_{j=1}^{n} \beta_{j} \prod_{i \neq j} \frac{x-\alpha_{i}}{\alpha_{j}-\alpha_{i}} .
$$

So far, we know how to 'dualize' vector spaces (and bases). Now we will see how we can also 'dualize' linear maps.
6.11. Definition. Let V and W be F-vector spaces, $f: V \rightarrow W$ a linear map. Then the transpose or dual linear map of f is defined as

$$
f^{\top}: W^{*} \longrightarrow V^{*}, \quad \psi \longmapsto f^{\top}(\psi)=\psi \circ f
$$

A diagram clarifies perhaps what is happening here.

$$
V \xrightarrow{f} W \xrightarrow{\psi} F
$$

The composition $\psi \circ f$ is a linear map from V to F, and is therefore an element of V^{*}. It is easy to see that f^{\top} is again linear: for $\psi_{1}, \psi_{2} \in W^{*}$ and $\lambda_{1}, \lambda_{2} \in F$, we have
$f^{\top}\left(\lambda_{1} \psi_{1}+\lambda_{2} \psi_{2}\right)=\left(\lambda_{1} \psi_{1}+\lambda_{2} \psi_{2}\right) \circ f=\lambda_{1} \psi_{1} \circ f+\lambda_{2} \psi_{2} \circ f=\lambda_{1} f^{\top}\left(\psi_{1}\right)+\lambda_{2} f^{\top}\left(\psi_{2}\right)$.
Also note that for linear maps $f_{1}, f_{2}: V \rightarrow W$ and scalars λ_{1}, λ_{2}, we have

$$
\left(\lambda_{1} f_{1}+\lambda_{2} f_{2}\right)^{\top}=\lambda_{1} f_{1}^{\top}+\lambda_{2} f_{2}^{\top},
$$

and for linear maps $f_{1}: V_{1} \rightarrow V_{2}, f_{2}: V_{2} \rightarrow V_{3}$, we obtain $\left(f_{2} \circ f_{1}\right)^{\top}=f_{1}^{\top} \circ f_{2}^{\top}-$ note the reversal.
Another simple observation is that $\operatorname{id}_{V}^{\top}=\operatorname{id}_{V^{*}}$.
6.12. Proposition. Let $f: V \rightarrow W$ be an isomorphism. Then $f^{\top}: W^{*} \rightarrow V^{*}$ is also an isomorphism, and $\left(f^{\top}\right)^{-1}=\left(f^{-1}\right)^{\top}$.

Proof. We have $f \circ f^{-1}=\operatorname{id}_{W}$ and $f^{-1} \circ f=\operatorname{id}_{V}$. This implies that

$$
\left(f^{-1}\right)^{\top} \circ f^{\top}=\operatorname{id}_{W^{*}} \quad \text { and } \quad f^{\top} \circ\left(f^{-1}\right)^{\top}=\operatorname{id}_{V^{*}} .
$$

The claim follows.
The reason for calling f^{\top} the "transpose" of f becomes clear through the following result.
6.13. Proposition. Let V and W be finite-dimensional vector spaces, with bases $B=\left(v_{1}, \ldots, v_{n}\right)$ and $C=\left(w_{1}, \ldots, w_{m}\right)$, respectively. Let $B^{*}=\left(v_{1}^{*}, \ldots, v_{n}^{*}\right)$ and $C^{*}=\left(w_{1}^{*}, \ldots, w_{m}^{*}\right)$ be the corresponding dual bases of V^{*} and W^{*}, respectively. Let $f: V \rightarrow W$ be a linear map, represented by the matrix A with respect to the given bases of V and W. Then the matrix representing f^{\top} with respect to the dual bases is A^{\top}, that is

$$
\left[f^{\top}\right]_{B^{*}}^{C^{*}}=\left([f]_{C}^{B}\right)^{\top} .
$$

Proof. Let $A=\left(a_{i j}\right)_{1 \leq i \leq m, 1 \leq j \leq n}$; then

$$
f\left(v_{j}\right)=\sum_{i=1}^{m} a_{i j} w_{i} .
$$

We then have

$$
\left(f^{\top}\left(w_{i}^{*}\right)\right)\left(v_{j}\right)=\left(w_{i}^{*} \circ f\right)\left(v_{j}\right)=w_{i}^{*}\left(f\left(v_{j}\right)\right)=w_{i}^{*}\left(\sum_{k=1}^{m} a_{k j} w_{k}\right)=a_{i j} .
$$

Since we always have, for $\phi \in V^{*}$, that $\phi=\sum_{j=1}^{n} \phi\left(v_{j}\right) v_{j}^{*}$, this implies that

$$
f^{\top}\left(w_{i}^{*}\right)=\sum_{j=1}^{n} a_{i j} v_{j}^{*} .
$$

Therefore the columns of the matrix representing f^{\top} with respect to the dual bases are exactly the rows of A.
6.14. Corollary. Let V be a finite-dimensional vector space, and let $B=\left(v_{1}, \ldots, v_{n}\right)$ and $C=\left(w_{1}, \ldots, w_{n}\right)$ be two bases of V. Let $B^{*}=\left(v_{1}^{*}, \ldots, v_{n}^{*}\right)$ and $C^{*}=$ $\left(w_{1}^{*}, \ldots, w_{n}^{*}\right)$ be the corresponding dual bases. If P is the basis change matrix associated to changing the basis of V from B to C, then the basis change matrix associated to changing the basis of V^{*} from B^{*} to C^{*} is $\left(P^{\top}\right)^{-1}=\left(P^{-1}\right)^{\top}=: P^{-\top}$.

Proof. By definition (see Linear Algebra I, 2015 edition, Section 9.3), P is the matrix representing the identity map id_{V} with respect to the bases C (on the domain side) and B (on the target side), that is $P=\left[\mathrm{id}_{V}\right]_{B}^{C}$. By Prop. 6.13, the matrix $\left[\mathrm{id}_{V^{*}}\right]_{C^{*}}^{B^{*}}$ representing $\mathrm{id}_{V^{*}}=\mathrm{id}_{V}^{\top}$ with respect to the basis B^{*} (domain) and C^{*} (target) is P^{\top}. So this is the basis change matrix associated to changing the basis from C^{*} to B^{*}; hence we have to take the inverse in order to get the matrix we want.

As is to be expected, we have a compatibility between $f^{\top \top}$ and the canonical $\operatorname{map} \alpha_{V}$.
6.15. Proposition. Let V and W be vector spaces, $f: V \rightarrow W$ a linear map. Then the following diagram commutes.

Proof. We have to show that $f^{\top T} \circ \alpha_{V}=\alpha_{W} \circ f$. So let $v \in V$ and $\psi \in W^{*}$. Then

$$
\begin{aligned}
f^{\top \top}\left(\alpha_{V}(v)\right)(\psi) & =\left(\alpha_{V}(v) \circ f^{\top}\right)(\psi)=\alpha_{V}(v)\left(f^{\top}(\psi)\right) \\
& =\alpha_{V}(v)(\psi \circ f)=(\psi \circ f)(v) \\
& =\psi(f(v))=\alpha_{W}(f(v))(\psi)
\end{aligned}
$$

6.16. Proposition. Let V be a vector space. Then we have $\alpha_{V}^{\top} \circ \alpha_{V^{*}}=\mathrm{id}_{V^{*}}$. If V is finite-dimensional, then $\alpha_{V}^{\top}=\alpha_{V^{*}}^{-1}$.

Proof. Let $\phi \in V^{*}, v \in V$. Then

$$
\alpha_{V}^{\top}\left(\alpha_{V^{*}}(\phi)\right)(v)=\left(\alpha_{V^{*}}(\phi) \circ \alpha_{V}\right)(v)=\alpha_{V^{*}}(\phi)\left(\alpha_{V}(v)\right)=\left(\alpha_{V}(v)\right)(\phi)=\phi(v),
$$

so $\alpha_{V}^{\top}\left(\alpha_{V^{*}}(\phi)\right)=\phi$, and $\alpha_{V}^{\top} \circ \alpha_{V^{*}}=\operatorname{id}_{V^{*}}$.
If $\operatorname{dim} V<\infty$, then $\operatorname{dim} V^{*}=\operatorname{dim} V<\infty$, and $\alpha_{V^{*}}$ is an isomorphism; the relation we have shown then implies that $\alpha_{V}^{\top}=\alpha_{V^{*}}^{-1}$.
6.17. Corollary. Let V and W be finite-dimensional vector spaces. Then

$$
\operatorname{Hom}(V, W) \ni f \longmapsto f^{\top} \in \operatorname{Hom}\left(W^{*}, V^{*}\right)
$$

is an isomorphism.
Proof. By the observations made in Def. 6.11, the map is linear. We have another map

$$
\operatorname{Hom}\left(W^{*}, V^{*}\right) \ni \phi \longmapsto \alpha_{W}^{-1} \circ \phi^{\top} \circ \alpha_{V} \in \operatorname{Hom}(V, W),
$$

and by Prop. 6.15 and Prop. 6.16, the two maps are inverses of each other:

$$
\alpha_{W}^{-1} \circ f^{\top \top} \circ \alpha_{V}=f
$$

and

$$
\left(\alpha_{W}^{-1} \circ \phi^{\top} \circ \alpha_{V}\right)^{\top}=\alpha_{V}^{\top} \circ \phi^{\top \top} \circ\left(\alpha_{W}^{\top}\right)^{-1}=\alpha_{V^{*}}^{-1} \circ \phi^{\top \top} \circ \alpha_{W^{*}}=\phi .
$$

Next, we study how subspaces relate to dualization.
6.18. Definition. Let V be a vector space and $S \subset V$ a subset. Then

$$
S^{\circ}=\left\{\phi \in V^{*}: \phi(v)=0 \text { for all } v \in S\right\} \subset V^{*}
$$

is called the annihilator of S.
S° is a linear subspace of V^{*}, since we can write

$$
S^{\circ}=\bigcap_{v \in S} \operatorname{ker}\left(\alpha_{V}(v)\right)
$$

Trivial examples are $\left\{0_{V}\right\}^{\circ}=V^{*}$ and $V^{\circ}=\left\{0_{V^{*}}\right\}$.
6.19. Theorem. Let V be a finite-dimensional vector space, $W \subset V$ a linear subspace. Then we have

$$
\operatorname{dim} W+\operatorname{dim} W^{\circ}=\operatorname{dim} V \quad \text { and } \quad \alpha_{V}(W)=W^{\circ \circ}
$$

So we have $W^{\circ \circ}=W$ if we identify V and $V^{* *}$ via α_{V}.
Proof. Let $\left(v_{1}, \ldots, v_{n}\right)$ be a basis of V such that $\left(v_{1}, \ldots, v_{m}\right)$ is a basis of W (where $m=\operatorname{dim} W \leq \operatorname{dim} V=n)$. Let $\left(v_{1}^{*}, \ldots, v_{n}^{*}\right)$ be the corresponding dual basis of V^{*}. Then for $\phi=\lambda_{1} v_{1}^{*}+\cdots+\lambda_{n} v_{n}^{*} \in V^{*}$,

$$
\begin{aligned}
\phi \in W^{\circ} & \Longleftrightarrow \forall w \in W: \phi(w)=0 \\
& \Longleftrightarrow \forall j \in\{1, \ldots, m\}: \phi\left(v_{j}\right)=0 \\
& \Longleftrightarrow \forall j \in\{1, \ldots, m\}: \lambda_{j}=0
\end{aligned}
$$

so $\left(v_{m+1}^{*}, \ldots, v_{n}^{*}\right)$ is a basis of W°. The dimension formula follows.
In a similar way, we find that $\left(\alpha_{V}\left(v_{1}\right), \ldots, \alpha_{V}\left(v_{m}\right)\right)$ is a basis of $W^{\circ \circ}$, therefore $\alpha_{V}(W)=W^{\circ \circ}$.
Alternatively, we trivially have $\alpha_{V}(W) \subset W^{\circ \circ}$ (check the definitions!), and since both spaces have the same dimension by the first claim, they must be equal.

Finally, we discuss how annihilators and transposes of linear maps are related.
6.20. Theorem. Let V and W be vector spaces, $f: V \rightarrow W$ a linear map. Then

$$
(\operatorname{im}(f))^{\circ}=\operatorname{ker}\left(f^{\top}\right) \quad \text { and } \quad(\operatorname{ker}(f))^{\circ}=\operatorname{im}\left(f^{\top}\right)
$$

If V and W are finite-dimensional, we have the equality

$$
\operatorname{dimim}\left(f^{\top}\right)=\operatorname{dimim}(f)
$$

Proof. Let $\psi \in W^{*}$. Then we have

$$
\begin{aligned}
\psi \in(\operatorname{im}(f))^{\circ} & \Longleftrightarrow \psi(f(v))=0 \text { for all } v \in V \\
& \Longleftrightarrow\left(f^{\top}(\psi)\right)(v)=0 \text { for all } v \in V \\
& \Longleftrightarrow f^{\top}(\psi)=0 \Longleftrightarrow \psi \in \operatorname{ker}\left(f^{\top}\right)
\end{aligned}
$$

Similarly, for $\phi \in V^{*}$, we have

$$
\begin{aligned}
\phi \in \operatorname{im}\left(f^{\top}\right) & \Longleftrightarrow \exists \psi \in W^{*}: \phi=\psi \circ f \\
& \Longleftrightarrow \forall v \in \operatorname{ker}(f): \psi(v)=0 \\
& \Longleftrightarrow \psi \in(\operatorname{ker}(f))^{\circ}
\end{aligned}
$$

This proves $\operatorname{im}\left(f^{\top}\right) \subset(\operatorname{ker}(f))^{\circ}$. For the other inclusion, write $W=f(V) \oplus U$ for some U. Assume that $\phi \in V^{*}$ satisfies $\left.\phi\right|_{\operatorname{ker}(f)}=0$. Define ψ on $f(V)$ by $\psi(f(v))=\phi(v)$; this is well-defined since ϕ takes the same value on all preimages under f of a given element of W. We can extend ψ to all of W by setting $\left.\psi\right|_{U}=0$. Then $\phi=\psi \circ f=f^{\top}(\psi)$, so $\phi \in \operatorname{im}\left(f^{\top}\right)$.
The dimension formula now follows:

$$
\operatorname{dimim}\left(f^{\top}\right)=\operatorname{dim}(\operatorname{ker}(f))^{\circ}=\operatorname{dim} V-\operatorname{dim} \operatorname{ker}(f)=\operatorname{dim} \operatorname{im}(f)
$$

6.21. Remark. The equality of dimensions $\operatorname{dim} \operatorname{im}\left(f^{\top}\right)=\operatorname{dim} \operatorname{im}(f)$ is, by Prop. 6.13, equivalent to the statement "row rank equals column rank" for matrices.
Note that [BR2] claims (in Thm. 7.8) that we also have $\operatorname{dim} \operatorname{ker}\left(f^{\top}\right)=\operatorname{dim} \operatorname{ker}(f)$. However, this is false unless $\operatorname{dim} V=\operatorname{dim} W!$ (Find a counterexample!)
6.22. Interpretation in Terms of Matrices. Let us consider the vector spaces $V=F^{n}$ and $W=F^{m}$ and a linear map $f: V \rightarrow W$. Then f is represented by a matrix A, and the image of f is the column space of A, i.e., the subspace of F^{m} spanned by the columns of A. We identify $V^{*}=\left(F^{n}\right)^{*}$ and $W^{*}=\left(F^{m}\right)^{*}$ with F^{n} and F^{m} via the dual bases consisting of the coordinate maps. Then for $x \in W^{*}$, we have $x \in(\operatorname{im}(f))^{\circ}$ if and only if $x^{\top} y=x \cdot y=0$ for all columns y of A, which is the case if and only if $x^{\top} A=0$. This is equivalent to $A^{\top} x=0$, which says that $x \in \operatorname{ker}\left(f^{\top}\right)$ - remember that A^{\top} represents $f^{\top}: W^{*} \rightarrow V^{*}$.
If we define a kernel matrix of A to be a matrix whose columns span the kernel of A, then this says the following. Let $A \in \operatorname{Mat}(m \times n, F)$ and $B \in \operatorname{Mat}(m \times k, F)$ be matrices. Then the image of B (i.e., the column space of B) is the annihilator of the image of A if and only if B is a kernel matrix of A^{\top}. The condition for B to be a kernel matrix of A^{\top} means

$$
A^{\top} B=0 \quad \text { and } \quad A^{\top} x=0 \Longrightarrow \exists y: x=B y
$$

Since the relation " U is the annihilator of $U^{\prime \prime}$ " is symmetric (if we identify a space with its bidual), we find that B is a kernel matrix of A^{\top} if and only if A is a kernel matrix of B^{\top}.

The statement $(\operatorname{ker}(f))^{\circ}=\operatorname{im}\left(f^{\top}\right)$ translates into "if B is a kernel matrix of A, then A^{\top} is a kernel matrix of B^{\top} ", which follows from the equivalence just stated.

7. Norms on Real Vector Spaces

The following has some relevance for Analysis.
7.1. Definition. Let V be a real vector space. A norm on V is a map $V \rightarrow \mathbb{R}$, usually written $x \mapsto\|x\|$, such that
(i) $\|x\| \geq 0$ for all $x \in V$, and $\|x\|=0$ if and only if $x=0$;
(ii) $\|\lambda x\|=|\lambda|\|x\|$ for all $\lambda \in \mathbb{R}, x \in V$;
(iii) $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in V$ (triangle inequality).
7.2. Examples. If $V=\mathbb{R}^{n}$, then we have the following standard examples of norms.
(1) The maximum norm:

$$
\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}
$$

(2) The euclidean norm (see Section 9 below):

$$
\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{2}=\sqrt{x_{1}^{2}+\ldots x_{n}^{2}}
$$

(3) The sum norm (or 1-norm):

$$
\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{1}=\left|x_{1}\right|+\cdots+\left|x_{n}\right| .
$$

7.3. Remark. A norm on a real vector space V induces a metric: we set

$$
d(x, y)=\|x-y\|,
$$

then the axioms of a metric (positivity, symmetry, triangle inequality) follow from the properties of a norm.

7.4. Lemma. Every norm on \mathbb{R}^{n} is continuous (as a map from \mathbb{R}^{n} to \mathbb{R}).

Proof. We use the maximum metric on \mathbb{R}^{n} :

$$
d(x, y)=\max \left\{\left|x_{j}-y_{j}\right|: j \in\{1, \ldots, n\}\right\} .
$$

Let $\|\cdot\|$ be a norm, and let $C=\sum_{j=1}^{n}\left\|e_{j}\right\|$, where e_{1}, \ldots, e_{n} is the canonical basis of \mathbb{R}^{n}. Then we have

$$
\begin{aligned}
\left\|\left(x_{1}, \ldots, x_{n}\right)\right\| & =\left\|x_{1} e_{1}+\cdots+x_{n} e_{n}\right\| \leq\left\|x_{1} e_{1}\right\|+\cdots+\left\|x_{n} e_{n}\right\| \\
& =\left|x_{1}\right|\left\|e_{1}\right\|+\cdots+\left|x_{n}\right|\left\|e_{n}\right\| \leq \max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\} C .
\end{aligned}
$$

From the triangle inequality, we then get

$$
|\|y\|-\|x\|| \leq\|y-x\| \leq C d(y, x)
$$

So for any $\varepsilon>0$, if $d(y, x)<\varepsilon / C$, then $|\|y\|-\|x\||<\varepsilon$.
7.5. Definition. Let V be a real vector space, $x \mapsto\|x\|_{1}$ and $x \mapsto\|x\|_{2}$ two norms on V (any norms, not necessarily those of Example 7.2.). The two norms are said to be equivalent, if there are $C_{1}, C_{2}>0$ such that

$$
C_{1}\|x\|_{1} \leq\|x\|_{2} \leq C_{2}\|x\|_{1} \quad \text { for all } x \in V
$$

7.6. Theorem. On a finite-dimensional real vector space, all norms are equivalent.

Proof. Without loss of generality, we can assume that our space is \mathbb{R}^{n}, and we can assume that one of the norms is the euclidean norm $\|\cdot\|_{2}$ defined above. Let $S \subset \mathbb{R}^{n}$ be the unit sphere, i.e., $S=\left\{x \in \mathbb{R}^{n}:\|x\|_{2}=1\right\}$. We know from Analysis that S is compact (it is closed as the zero set of the continuous function $x \mapsto x_{1}^{2}+\cdots+x_{n}^{2}-1$ and bounded). Let $\|\cdot\|$ be another norm on \mathbb{R}^{n}. Then $x \mapsto\|x\|$ is continuous by Lemma 7.4 , hence it attains a maximum C_{2} and a minimum C_{1} on S. Then $C_{2} \geq C_{1}>0$ (since $0 \notin S$). Now let $0 \neq x \in V$, and let $e=\|x\|_{2}^{-1} x$; then $\|e\|_{2}=1$, so $e \in S$. This implies that $C_{1} \leq\|e\| \leq C_{2}$, and therefore

$$
C_{1}\|x\|_{2} \leq\|x\|_{2} \cdot\|e\|=\| \| x\left\|_{2} e\right\|=\|x\| \leq C_{2}\|x\|_{2}
$$

So every norm is equivalent to $\|\cdot\|_{2}$, which implies the claim, since equivalence of norms is an equivalence relation.
7.7. Examples. If V is infinite-dimensional, then the statement of the theorem is no longer true. As a simple example, consider the space of finite sequences $\left(a_{n}\right)_{n \geq 0}$ (such that $a_{n}=0$ for n sufficiently large). Then we can define norms $\|\cdot\|_{1},\|\cdot\|_{2}$, $\|\cdot\|_{\infty}$ as in Examples 7.2, but they are pairwise inequivalent now - consider the sequences $s_{n}=(1, \ldots, 1,0,0, \ldots)$ with n ones, then $\left\|s_{n}\right\|_{1}=n,\left\|s_{n}\right\|_{2}=\sqrt{n}$ and $\left\|s_{n}\right\|_{\infty}=1$.
Here is a perhaps more natural example. Let V be the vector space $\mathcal{C}([0,1])$ of real-valued continuous functions on the unit interval. We can define norms

$$
\|f\|_{1}=\int_{0}^{1}|f(x)| d x, \quad\|f\|_{2}=\sqrt{\int_{0}^{1} f(x)^{2} d x}, \quad\|f\|_{\infty}=\max \{|f(x)|: x \in[0,1]\}
$$

in a similar way as in Examples 7.2, and again they are pairwise inequivalent. Taking $f(x)=x^{n}$, we have

$$
\|f\|_{1}=\frac{1}{n+1}, \quad\|f\|_{2}=\frac{1}{\sqrt{2 n+1}}, \quad\|f\|_{\infty}=1
$$

8. Bilinear Forms

We have already seen multilinear maps when we were discussing the determinant in Linear Algebra I. Let us remind ourselves of the definition in the special case when we have two arguments.
8.1. Definition. Let V_{1}, V_{2} and W be F-vector spaces. A map $\phi: V_{1} \times V_{2} \rightarrow W$ is bilinear if it is linear in both arguments, i.e.

$$
\begin{aligned}
& \forall \lambda, \lambda^{\prime} \in F, x, x^{\prime} \in V_{1}, y \in V_{2}: \phi\left(\lambda x+\lambda^{\prime} x^{\prime}, y\right)=\lambda \phi(x, y)+\lambda^{\prime} \phi\left(x^{\prime}, y\right) \quad \text { and } \\
& \forall \lambda, \lambda^{\prime} \in F, x \in V_{1}, y, y^{\prime} \in V_{2}: \phi\left(x, \lambda y+\lambda^{\prime} y^{\prime}\right)=\lambda \phi(x, y)+\lambda^{\prime} \phi\left(x, y^{\prime}\right) .
\end{aligned}
$$

When $W=F$ is the field of scalars, ϕ is called a bilinear form.
If $V_{1}=V_{2}=V$ and $W=F$, then ϕ is a bilinear form on V. It is symmetric if $\phi(x, y)=\phi(y, x)$ for all $x, y \in V$, and alternating if $\phi(x, x)=0$ for all $x \in V$. The latter property implies that ϕ is skew-symmetric, i.e. $\phi(x, y)=-\phi(y, x)$ for all $x, y \in V$. To see this, consider

$$
0=\phi(x+y, x+y)=\phi(x, x)+\phi(x, y)+\phi(y, x)+\phi(y, y)=\phi(x, y)+\phi(y, x)
$$

The converse holds if $\operatorname{char}(F) \neq 2$, since (taking $x=y$)

$$
0=\phi(x, x)+\phi(x, x)=2 \phi(x, x) .
$$

We denote by $\operatorname{Bil}(V, W)$ the set of all bilinear forms on $V \times W$, and by $\operatorname{Bil}(V)$ the set of all bilinear forms on V. These sets are F-vector spaces in the usual way, by defining addition and scalar multiplication point-wise.
8.2. Examples. The standard 'dot product' on \mathbb{R}^{n} is a symmetric bilinear form on \mathbb{R}^{n}.

The map that sends $\left(\binom{a}{b},\binom{c}{d}\right) \in \mathbb{R}^{2} \times \mathbb{R}^{2}$ to $\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|=a d-b c$ is an alternating bilinear form on \mathbb{R}^{2}.
The map $(A, B) \mapsto \operatorname{Tr}\left(A^{\top} B\right)$ is a symmetric bilinear form on $\operatorname{Mat}(m \times n, F)$.

If $K:[0,1]^{2} \rightarrow \mathbb{R}$ is continuous, then the following defines a bilinear form on the space of continuous real-valued functions on $[0,1]$:

$$
(f, g) \longmapsto \int_{0}^{1} \int_{0}^{1} K(x, y) f(x) g(y) d x d y
$$

Evaluation defines a bilinear form on $V \times V^{*}:(v, \phi) \longmapsto \phi(v)$.
8.3. Lemma and Definition. A bilinear form $\phi: V \times W \rightarrow F$ induces linear maps
$\phi_{L}: V \longrightarrow W^{*}, v \mapsto(w \mapsto \phi(v, w)) \quad$ and $\quad \phi_{R}: W \longrightarrow V^{*}, w \mapsto(v \mapsto \phi(v, w))$.

The subspace $\operatorname{ker}\left(\phi_{L}\right) \subset V$ is called the left kernel of ϕ; it is the set of all $v \in V$ such that $\phi(v, w)=0$ for all $w \in W$. Similarly, the subspace $\operatorname{ker}\left(\phi_{R}\right) \subset W$ is called the right kernel of ϕ.

The bilinear form ϕ is said to be non-degenerate if ϕ_{L} and ϕ_{R} are isomorphisms. In this case V and W have the same finite dimension (Exercise, cf. Remark 6.6). If V and W are finite-dimensional, then ϕ is non-degenerate if and only if both its left and right kernels are trivial.

Proof. First, by the definition of bilinear forms, the maps $w \mapsto \phi(v, w)$ (for any fixed $v \in V$) and $v \mapsto \phi(v, w)$ (for any fixed $w \in W$) are linear, so ϕ_{L} and ϕ_{R} are well-defined as maps into W^{*} and V^{*}, respectively. Then using the definition of bilinearity again, we see that ϕ_{L} and ϕ_{R} are themselves linear maps.
To prove the last statement, first observe that the left and right kernels are certainly trivial when ϕ_{L} and ϕ_{R} are isomorphisms. For the converse statement, assume that the left and right kernels are trivial, so ϕ_{L} and ϕ_{R} are both injective. Now note that $\phi_{R}^{\top} \circ \alpha_{V}=\phi_{L}$ (Exercise). Since V is finite-dimensional, α_{V} is an isomorphism, hence ϕ_{R}^{\top} is injective, since ϕ_{L} is. This implies that ϕ_{R} is surjective (by Thm. 6.20), so ϕ_{R} (and in the same way, ϕ_{L}) is an isomorphism.
8.4. Example. For the 'evaluation pairing' ev : $V \times V^{*} \rightarrow F$, we find that the map ev ${ }_{L}: V \rightarrow V^{* *}$ is α_{V}, and $\operatorname{ev}_{R}: V^{*} \rightarrow V^{*}$ is the identity. So this bilinar form ev is non-degenerate if and only if α_{V} is an isomorphism, which is the case if and only if V is finite-dimensional (see Remark 6.6).
8.5. Example. The standard dot product on F^{n} is a non-degenerate symmetric bilinear form. In fact, here ϕ_{L} sends the standard basis vector e_{j} to the j th coordinate map in $\left(F^{n}\right)^{*}$, so it maps a basis to a basis and is therefore an isomorphism.

8.6. Remarks.

(1) The bilinear form $\phi: V \times V \rightarrow F$ is symmetric if and only if $\phi_{R}=\phi_{L}$.
(2) If ϕ is a bilinear form on the finite-dimensional vector space V, then ϕ is non-degenerate if and only if its left kernel is trivial (if and only if its right kernel is trivial).
Indeed, in this case, $\operatorname{dim} V^{*}=\operatorname{dim} V$, so if ϕ_{L} is injective, it is also surjective, hence an isomorphism. But then $\phi_{R}=\phi_{L}^{\top} \circ \alpha_{V}$ is an isomorphism as well.

In fact, we can say a little bit more.
8.7. Proposition. Let V and W be F-vector spaces. There is an isomorphism

$$
\beta_{V, W}: \operatorname{Bil}(V, W) \longrightarrow \operatorname{Hom}\left(V, W^{*}\right), \quad \phi \longmapsto \phi_{L}
$$

with inverse given by

$$
f \longmapsto((v, w) \mapsto(f(v))(w)) .
$$

Proof. We leave the (by now standard) proof that the given maps are linear as an exercise. It remains to check that they are inverses of each other. Call the second map $\gamma_{V, W}$. So let $\phi: V \times W \rightarrow F$ be a bilinear form. Then $\gamma_{V, W}\left(\phi_{L}\right)$ sends (v, w) to $\left(\phi_{L}(v)\right)(w)=\phi(v, w)$, so $\gamma_{V, W} \circ \beta_{V, W}$ is the identity. Conversely, let $f \in \operatorname{Hom}\left(V, W^{*}\right)$, and let $\phi=\gamma_{V, W}(f)$. Then for $v \in V, \phi(v)$ sends w to $\left(\phi_{L}(v)\right)(w)=\phi(v, w)=(f(v))(w)$, so $\phi_{L}(v)=f(v)$ for all $v \in V$, hence $\phi_{L}=f$. This shows that $\beta_{V, W} \circ \gamma_{V, W}$ is also the identity map.

If $V=W$, we write $\beta_{V}: \operatorname{Bil}(V) \rightarrow \operatorname{Hom}\left(V, V^{*}\right)$ for this isomorphism.
8.8. Example. Let V now be finite-dimensional. We see that a non-degenerate bilinear form ϕ on V allows us to identify V with V^{*} via the isomorphism ϕ_{L}. On the other hand, if we fix a basis $\left(v_{1}, \ldots, v_{n}\right)$, we also obtain an isomorphism $\iota: V \rightarrow V^{*}$ by sending v_{j} to v_{j}^{*}, where $\left(v_{1}^{*}, \ldots, v_{n}^{*}\right)$ is the dual basis of V^{*}. What is the bilinear form corresponding to this map? We have, for $v=\sum_{j=1}^{n} \lambda_{j} v_{j}$, $w=\sum_{j=1}^{n} \mu_{j} v_{j}$,

$$
\begin{aligned}
\phi(v, w) & =(\iota(v))(w)=\left(\iota\left(\sum_{j=1}^{n} \lambda_{j} v_{j}\right)\right)\left(\sum_{k=1}^{n} \mu_{k} v_{k}\right) \\
& =\left(\sum_{j=1}^{n} \lambda_{j} v_{j}^{*}\right)\left(\sum_{k=1}^{n} \mu_{k} v_{k}\right)=\sum_{j, k=1}^{n} \lambda_{i} \mu_{k} v_{j}^{*}\left(v_{k}\right)=\sum_{j, k=1}^{n} \lambda_{i} \mu_{k} \delta_{j k}=\sum_{j=1}^{n} \lambda_{j} \mu_{j} .
\end{aligned}
$$

This is just the standard dot product if we identify V with F^{n} using the given basis; it is a symmetric bilinear form on V.
8.9. Corollary. Let V be a finite-dimensional vector space, and let ϕ be a nondegenerate bilinear form on V. Then every linear form $\psi \in V^{*}$ is represented as $\psi(w)=\phi(v, w)$ for a unique $v \in V$.

Proof. The equality $\psi=\phi(v, \cdot)$ means that $\psi=\phi_{L}(v)$. The claim now follows from the fact that ϕ_{L} is an isomorphism.

Note that the assumption that V is finite-dimensional is redundant as this is implied by ϕ being non-degenerate (see the comment in Lemma 8.3).
8.10. Example. Let V be the real vector space of polynomials of degree at most 2 . Then

$$
\phi:(p, q) \longmapsto \int_{0}^{1} p(x) q(x) d x
$$

is a bilinear form on V. It is non-degenerate since for $p \neq 0$, we have $\phi(p, p)>0$. Evaluation at zero $p \mapsto p(0)$ defines a linear form on V, which by Cor. 8.9 must
be representable in the form $p(0)=\phi(q, p)$ for some $q \in V$. To find q, we have to solve a linear system:

$$
\begin{aligned}
\phi\left(a_{0}\right. & \left.+a_{1} x+a_{2} x^{2}, b_{0}+b_{1} x+b_{2} x^{2}\right) \\
& =a_{0} b_{0}+\frac{1}{2}\left(a_{0} b_{1}+a_{1} b_{0}\right)+\frac{1}{3}\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right)+\frac{1}{4}\left(a_{1} b_{2}+a_{2} b_{2}\right)+\frac{1}{5} a_{2} b_{2},
\end{aligned}
$$

and we want to find a_{0}, a_{1}, a_{2} such that this is always equal to b_{0}. This leads to

$$
a_{0}+\frac{1}{2} a_{1}+\frac{1}{3} a_{2}=1, \quad \frac{1}{2} a_{0}+\frac{1}{3} a_{1}+\frac{1}{4} a_{2}=0, \quad \frac{1}{3} a_{0}+\frac{1}{4} a_{1}+\frac{1}{5} a_{2}=0
$$

so $q(x)=9-36 x+30 x^{2}$, and

$$
p(0)=\int_{0}^{1}\left(9-36 x+30 x^{2}\right) p(x) d x .
$$

8.11. Representation by Matrices. Let $\phi: F^{n} \times F^{m} \rightarrow F$ be a bilinear form. Then we can represent ϕ by a matrix $A=\left(a_{i j}\right) \in \operatorname{Mat}(m \times n, F)$, with entries $a_{i j}=\phi\left(e_{j}, e_{i}\right)$. In terms of column vectors $x \in F^{n}$ and $y \in F^{m}$, we have

$$
\phi(x, y)=y^{\top} A x .
$$

Similarly, if V and W are finite-dimensional F-vector spaces, and we fix bases $B=\left(v_{1}, \ldots, v_{n}\right)$ and $C=\left(w_{1}, \ldots, w_{m}\right)$ of V and W, respectively, then any bilinear form $\phi: V \times W \rightarrow F$ is given by a matrix relative to these bases, by identifying V and W with F^{n} and F^{m} in the usual way, that is, through the isomorphisms $\varphi_{B}: F^{n} \rightarrow V$ and $\varphi_{C}: F^{m} \rightarrow W$. If $A=\left(a_{i j}\right)$ is the matrix as above, then $a_{i j}=\phi\left(v_{j}, w_{i}\right)$. If $v=x_{1} v_{1}+\cdots+x_{n} v_{n}$ and $w=y_{1} w_{1}+\cdots+y_{m} w_{m}$, then

$$
\phi(v, w)=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} x_{j} y_{i}
$$

8.12. Proposition. Let V and W be finite-dimensional F-vector spaces. Pick two bases $B=\left(v_{1}, \ldots, v_{n}\right)$ and $B^{\prime}=\left(v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right)$ of V and two bases $C=\left(w_{1}, \ldots, w_{m}\right)$ and $C^{\prime}=\left(w_{1}^{\prime}, \ldots, w_{m}^{\prime}\right)$ of W. Let A be the matrix representing the bilinear form $\phi: V \times W \rightarrow F$ with respect to B and C, and let A^{\prime} be the matrix representing ϕ with respect to B^{\prime} and C^{\prime}. If $P=\left[\mathrm{id}_{V}\right]_{B}^{B^{\prime}}$ is the basis change matrix associated to changing the basis of V from B to B^{\prime}, and $Q=\left[\mathrm{id}_{W}\right]_{C}^{C^{\prime}}$ is the basis change matrix associated to changing the basis of W from C to C^{\prime}, then we have

$$
A^{\prime}=Q^{\top} A P
$$

Proof. Let $x^{\prime} \in F^{n}$ be the coefficients of $v \in V$ w.r.t. the new basis B^{\prime}. Then $x=P x^{\prime}$, where x represents v w.r.t. the old basis B. Similary for $y^{\prime}, y \in F^{m}$ representing $w \in W$ w.r.t. the two bases, we have $y=Q y^{\prime}$. So

$$
y^{\prime^{\top}} A^{\prime} x^{\prime}=\phi(v, w)=y^{\top} A x=y^{\prime \top} Q^{\top} A P x^{\prime},
$$

which implies the claim.

In particular, if ϕ is a bilinear form on the n-dimensional vector space V, then ϕ is represented (w.r.t. any given basis) by a square matrix $A \in \operatorname{Mat}(n, F)$. If we change the basis, then the new matrix will be $B=P^{\top} A P$, with $P \in \operatorname{Mat}(n, F)$ invertible. Matrices A and B such that there is an invertible matrix $P \in \operatorname{Mat}(n, F)$ such that $B=P^{\top} A P$ are called congruent.
8.13. Remark. Let A be an $m \times n$ matrix over F. Then the associated bilinear form

$$
F^{n} \times F^{m} \rightarrow F, \quad(x, y) \mapsto y^{\top} A x
$$

can also be expressed using the standard dot products on F^{m} and F^{n}, both denoted by $\left\langle,, _\right\rangle$, as we have

$$
\langle y, A x\rangle=y^{\top} A x=\left(A^{\top} y\right)^{\top} x=\left\langle x, A^{\top} y\right\rangle .
$$

8.14. Example. Let V be the real vector space of polynomials of degree less than n, and consider again the symmetric bilinear form

$$
\phi(p, q)=\int_{0}^{1} p(x) q(x) d x .
$$

With respect to the standard basis $\left(1, x, \ldots, x^{n-1}\right)$, it is represented by the "Hilbert matrix" $H_{n}=\left(\frac{1}{i+j-1}\right)_{1 \leq i, j \leq n}$.
8.15. Lemma. Let ϕ be a bilinear form on the finite-dimensional vector space V, represented (w.r.t. some basis) by the matrix A. Then
(1) ϕ is symmetric if and only if $A^{\top}=A$;
(2) ϕ is skew-symmetric if and only if $A^{\top}+A=0$;
(3) ϕ is alternating if and only if $A^{\top}+A=0$ and all diagonal entries of A are zero.
(4) ϕ is non-degenerate if and only if $\operatorname{det} A \neq 0$.

Proof. Let $\left(v_{1}, \ldots, v_{n}\right)$ be the basis of V. Since $a_{i j}=\phi\left(v_{j}, v_{i}\right)$, the implications " \Rightarrow " in the first three statements are clear. On the other hand, assume that $A^{\top}= \pm A$. Then

$$
x^{\top} A y=\left(x^{\top} A y\right)^{\top}=y^{\top} A^{\top} x= \pm y^{\top} A x,
$$

which implies " \Leftarrow " in the first two statements. For the third statement, we compute $\phi(v, v)$ for $v=x_{1} v_{1}+\cdots+x_{n} v_{n}$:

$$
\phi(v, v)=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}=\sum_{i=1}^{n} a_{i i} x_{i}^{2}+\sum_{1 \leq i<j \leq n}\left(a_{i j}+a_{j i}\right) x_{i} x_{j}=0,
$$

since the assumption implies that both $a_{i i}$ and $a_{i j}+a_{j i}$ vanish.

The last statement follows by observing that the left kernel of ϕ corresponds to the kernel of A, which is trivial if and only if $\operatorname{det} A \neq 0$, i.e., A is invertible.

As with endomorphisms, we can also split bilinear forms into direct sums in some cases.
8.16. Definition. If $V=U \oplus U^{\prime}, \phi$ is a bilinear form on V, ψ and ψ^{\prime} are bilinear forms on U and U^{\prime}, respectively, and for $u_{1}, u_{2} \in U, u_{1}^{\prime}, u_{2}^{\prime} \in U^{\prime}$, we have

$$
\phi\left(u_{1}+u_{1}^{\prime}, u_{2}+u_{2}^{\prime}\right)=\psi\left(u_{1}, u_{2}\right)+\psi^{\prime}\left(u_{1}^{\prime}, u_{2}^{\prime}\right),
$$

then ϕ is the orthogonal direct sum of ψ and ψ^{\prime}.
Given $V=U \oplus U^{\prime}$ and ϕ, this is the case if and only if $\phi\left(u, u^{\prime}\right)=0$ and $\phi\left(u^{\prime}, u\right)=0$ for all $u \in U, u^{\prime} \in U^{\prime}$ (and then $\psi=\left.\phi\right|_{U \times U}, \psi^{\prime}=\left.\phi\right|_{U^{\prime} \times U^{\prime}}$).
This can be generalized to an arbitrary number of summands.
If V is finite-dimensional and we represent ϕ by a matrix with respect to a basis that is compatible with the splitting, then the matrix will be block diagonal.
8.17. Definition. Let ϕ be a symmetric bilinear form on V, and let $U \subset V$ be a linear subspace. Then

$$
U^{\perp}=\{v \in V: \phi(v, u)=0 \text { for all } u \in U\}
$$

is the subspace orthogonal to U (with respect to ϕ).
8.18. Proposition. Let ϕ be a symmetric bilinear form on V, and let $U \subset V$ be a linear subspace such that $\left.\phi\right|_{U \times U}$ is non-degenerate. Then $V=U \oplus U^{\perp}$, and ϕ splits accordingly as an orthogonal direct sum.
In this case, we also call U^{\perp} the orthogonal complement of U.
Proof. We have to check a number of things. First, $U \cap U^{\perp}=\{0\}$ since $v \in U \cap U^{\perp}$ implies $\phi(v, u)=0$ for all $u \in U$, but ϕ is non-degenerate on U, so v must be zero. Second, $U+U^{\perp}=V$: let $v \in V$, then $U \ni u \mapsto \phi(v, u)$ is a linear form on U, and since ϕ is non-degenerate on U, by Cor. 8.9 there must be $u^{\prime} \in U$ such that $\phi(v, u)=\phi\left(u^{\prime}, u\right)$ for all $u \in U$. (Recal that the non-degeneracy of ϕ on U implies that U is finite-dimensional, so we may indeed apply Cor. 8.9.) This means that $\phi\left(v-u^{\prime}, u\right)=0$ for all $u \in U$, hence $v-u^{\prime} \in U^{\perp}$, and we see that $v=u^{\prime}+\left(v-u^{\prime}\right) \in U+U^{\perp}$ as desired. So we have $V=U \oplus U^{\perp}$. The last statement is clear, since by definition, ϕ is zero on $U \times U^{\perp}$.

Here is a first and quite general classification result for symmetric bilinear forms: they can always be diagonalized.
8.19. Lemma. Assume that $\operatorname{char}(F) \neq 2$, let V be an F-vector space and ϕ a symmetric bilinear form on V. If $\phi \neq 0$, then there is $v \in V$ such that $\phi(v, v) \neq 0$.

Proof. If $\phi \neq 0$, then there are $v, w \in V$ such that $\phi(v, w) \neq 0$. Note that we have

$$
0 \neq 2 \phi(v, w)=\phi(v, w)+\phi(w, v)=\phi(v+w, v+w)-\phi(v, v)-\phi(w, w)
$$

so at least one of $\phi(v, v), \phi(w, w)$ and $\phi(v+w, v+w)$ must be nonzero.
8.20. Theorem. Assume that $\operatorname{char}(F) \neq 2$, let V be a finite-dimensional F-vector space and ϕ a symmetric bilinear form on V. Then there is a basis v_{1}, \ldots, v_{n} of V such that ϕ is represented by a diagonal matrix with respect to this basis.
Equivalently, every symmetric matrix $A \in \operatorname{Mat}(n, F)$ is congruent to a diagonal matrix.

Proof. If $\phi=0$, there is nothing to prove. Otherwise, we proceed by induction on the dimension n. Since $\phi \neq 0$, by Lemma 8.19, there is $v_{1} \in V$ such that $\phi\left(v_{1}, v_{1}\right) \neq 0$ (in particular, $n \geq 1$). Let $U=L\left(v_{1}\right)$, then ϕ is non-degenerate on U. By Prop. 8.18, we have an orthogonal splitting $V=L\left(v_{1}\right) \oplus U^{\perp}$. By induction $\left(\operatorname{dim} U^{\perp}=n-1\right), U^{\perp}$ has a basis v_{2}, \ldots, v_{n} such that $\left.\phi\right|_{U^{\perp} \times U^{\perp}}$ is represented by a diagonal matrix. But then ϕ is also represented by a diagonal matrix with respect to the basis $v_{1}, v_{2}, \ldots, v_{n}$.
8.21. Remark. The entries of the diagonal matrix are not uniquely determined. For example, we can always scale the basis elements; this will multiply the entries by arbitrary nonzero squares in F. But this is not the only ambiguity. For example, we have

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) .
$$

On the other hand, the number of nonzero entries is uniquely determined, since it is the rank of the matrix, which does not change when we multiply on the left or right by an invertible matrix.
8.22. Example. Let us see how we can find a diagonalizing basis in practice. Consider the bilinear form on F^{3} (with $\operatorname{char}(F) \neq 2$) given by the matrix

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Following the proof above, we first have to find an element $v_{1} \in F^{3}$ such that $v_{1}^{\top} A v_{1} \neq 0$. Since the diagonal entries of A are zero, we cannot take one of the standard basis vectors. However, the proof of Lemma 8.19 tells us that (for example) $v_{1}=(1,1,0)^{\top}$ will do. So we make a first change of basis to obtain

$$
A^{\prime}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) A\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 1 & 2 \\
1 & 0 & 1 \\
2 & 1 & 0
\end{array}\right) .
$$

Now we have to find a basis of the orthogonal complement $L\left(v_{1}\right)^{\perp}$. This can be done by adding suitable multiples of v_{1} to the other basis elements, in order to make the off-diagonal entries in the first row and column of the matrix zero. Here we have to add $-1 / 2$ times the first basis vector to the second, and add -1 times the first basis vector to the third. This gives

$$
A^{\prime \prime}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
-1 & 0 & 0
\end{array}\right) A^{\prime}\left(\begin{array}{ccc}
1 & -\frac{1}{2} & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -\frac{1}{2} & 0 \\
0 & 0 & -2
\end{array}\right) .
$$

We are lucky: this matrix is already diagonal. (Otherwise, we would have to continue in the same way with the 2×2 matrix in the lower right.) The total
change of basis is indicated by the product of the two P 's that we have used:

$$
P=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & -\frac{1}{2} & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & -\frac{1}{2} & -1 \\
1 & \frac{1}{2} & -1 \\
0 & 0 & 1
\end{array}\right)
$$

so the desired basis is $v_{1}=(1,1,0)^{\top}, v_{2}=\left(-\frac{1}{2}, \frac{1}{2}, 0\right)^{\top}, v_{3}=(-1,-1,1)^{\top}$.
For algebraically closed fields like \mathbb{C}, we get a very nice result.
8.23. Theorem (Classification of Symmetric Bilinear Forms Over \mathbb{C}). Let F be algebraically closed, for example $F=\mathbb{C}$. Then every symmetric matrix $A \in \operatorname{Mat}(n, F)$ is congruent to a matrix

$$
\left(\begin{array}{c|c}
I_{r} & 0 \\
\hline 0 & 0
\end{array}\right),
$$

and the rank $0 \leq r \leq n$ is uniquely determined.
Proof. By Thm. 8.20, A is congruent to a diagonal matrix, and we can assume that all zero diagonal entries come at the end. Let $a_{j j}$ be a non-zero diagonal entry. Then we can scale the corresponding basis vector by $1 / \sqrt{a_{j j}}$ (which exists in F, since F is algebraically closed); in the new matrix we get, this entry is then 1.

The uniqueness statement follows from the fact that $n-r$ is the dimension of the (left or right) kernel of the associated bilinear form.

If $F=\mathbb{R}$, we have a similar statement. Let us first make a definition.
8.24. Definition. Let V be a real vector space, ϕ a symmetric bilinear form on V. Then ϕ is positive definite if

$$
\phi(v, v)>0 \quad \text { for all } v \in V \backslash\{0\}
$$

8.25. Remark. A positive definite symmetric bilinear form is non-degenerate: if $v \neq 0$, then $\phi(v, v)>0$, so $\neq 0$, hence v is not in the (left or right) kernel of v. For example, this implies that the Hilbert matrix from Example 8.14 is invertible.
8.26. Theorem (Classification of Symmetric Bilinear Forms Over \mathbb{R}). Every symmetric matrix $A \in \operatorname{Mat}(n, \mathbb{R})$ is congruent to a unique matrix of the form

$$
\left(\begin{array}{c|c|c}
I_{r} & 0 & 0 \\
\hline 0 & -I_{s} & 0 \\
\hline 0 & 0 & 0
\end{array}\right) .
$$

The number $r+s$ is the rank of A or of the corresponding bilinear form, the number $r-s$ is called the signature of A or of the corresponding bilinear form.

Proof. By Thm. 8.20, A is congruent to a diagonal matrix, and we can assume that the diagonal entries are ordered in such a way that we first have positive, then negative and then zero entries. If $a_{i i}$ is a non-zero diagonal entry, we scale the corresponding basis vector by $1 / \sqrt{\left|a_{i i}\right|}$. Then the new diagonal matrix we get has positive entries 1 and negative entries -1 , so it is of the form given in the statement.

The number $r+s$ is the rank of the form as before, and the number r is the maximal dimension of a subspace on which the bilinear form is positive definite, therefore r and s only depend on the bilinear form, hence are uniquely determined.
8.27. Example. Let V be again the real vector space of polynomials of degree ≤ 2. Consider the symmetric bilinear form on V given by

$$
\phi(p, q)=\int_{0}^{1}(2 x-1) p(x) q(x) d x
$$

What are the rank and signature of ϕ ?
We first find the matrix representing ϕ with respect to the standard basis $1, x, x^{2}$. Using $\int_{0}^{1}(2 x-1) x^{n} d x=\frac{2}{n+2}-\frac{1}{n+1}=\frac{n}{(n+1)(n+2)}$, we obtain

$$
A=\left(\begin{array}{ccc}
0 & \frac{1}{6} & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{6} & \frac{3}{20} \\
\frac{1}{6} & \frac{3}{20} & \frac{2}{15}
\end{array}\right)=\frac{1}{60}\left(\begin{array}{ccc}
0 & 10 & 10 \\
10 & 10 & 9 \\
10 & 9 & 8
\end{array}\right) .
$$

The rank of this matrix is 2 (the kernel is generated by $10 x^{2}-10 x+1$). We have that $\phi(x, x)=\frac{1}{6}>0$ and $\phi(x-1, x-1)=\frac{1}{6}-2 \frac{1}{6}+0=-\frac{1}{6}<0$, so r and s must both be at least 1 . The only possibility is then $r=s=1$, so the rank is 2 and the signature is 0 . In fact, we have $\phi(x, x-1)=0$, so

$$
\sqrt{6} x, \quad \sqrt{6}(x-1), \quad 10 x^{2}-10 x+1
$$

is a basis such that the matrix representing ϕ is

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

8.28. Theorem (Criterion for Positive Definiteness). Let $A \in \operatorname{Mat}(n, \mathbb{R})$ be symmetric. Let A_{j} be the submatrix of A consisting of the upper left $j \times j$ block. Then (the bilinear form given by) A is positive definite if and only if $\operatorname{det} A_{j}>0$ for all $1 \leq j \leq n$.

Proof. First observe that if a matrix B represents a positive definite symmetric bilinear form, then $\operatorname{det} B>0$: by Thm. 8.26, there is an invertible matrix P such that $P^{\top} B P$ is diagonal with entries $1,-1$, or 0 , and the bilinear form is positive definite if and only if all diagonal entries are 1, i.e., $P^{\top} B P=I$. But this implies $1=\operatorname{det}\left(P^{\top} B P\right)=\operatorname{det} B(\operatorname{det} P)^{2}$, and since $(\operatorname{det} P)^{2}>0$, this implies $\operatorname{det} B>0$.
Now if A is positive definite, then all A_{j} are positive definite, since they represent the restriction of the bilinear form to subspaces. So $\operatorname{det} A_{j}>0$ for all j.
Conversely, assume that $\operatorname{det} A_{j}>0$ for all j. We use induction on n. For $n=1$ (or $n=0$), the statement is clear. For $n \geq 2$, we apply the induction hypothesis to A_{n-1} and obtain that A_{n-1} is positive definite. Then there is an invertible matrix $P \in \operatorname{Mat}(n-1, \mathbb{R})$ such that

$$
\left(\begin{array}{c|c}
P^{\top} & 0 \\
\hline 0 & 1
\end{array}\right) A\left(\begin{array}{c|c}
P & 0 \\
\hline 0 & 1
\end{array}\right)=\left(\begin{array}{c|c}
I & b \\
\hline b^{\top} & \alpha
\end{array}\right)=: B,
$$

with some vector $b \in \mathbb{R}^{n-1}$ and $\alpha \in \mathbb{R}$. Setting

$$
Q=\left(\begin{array}{c|c}
I & -b \\
\hline 0 & 1
\end{array}\right),
$$

we get

$$
Q^{\top} B Q=\left(\begin{array}{c|c}
I & 0 \\
\hline 0 & \beta
\end{array}\right)
$$

and so A is positive definite if and only if $\beta>0$. But we have (note $\operatorname{det} Q=1$)

$$
\beta=\operatorname{det}\left(Q^{\top} B Q\right)=\operatorname{det} B=\operatorname{det}\left(P^{\top}\right) \operatorname{det} A \operatorname{det} P=(\operatorname{det} P)^{2} \operatorname{det} A,
$$

so $\beta>0$, since $\operatorname{det} A=\operatorname{det} A_{n}>0$, and A is positive definite.

9. Inner Product Spaces

In many applications, we want to measure distances and angles in a real vector space. For this, we need an additional structure, a so-called inner product.
9.1. Definition. Let V be a real vector space. An inner product on V is a positive definite symmetric bilinear form on V. It is usually written in the form $(x, y) \mapsto$ $\langle x, y\rangle \in \mathbb{R}$. Recall the defining properties:
(1) $\left\langle\lambda x+\lambda^{\prime} x^{\prime}, y\right\rangle=\lambda\langle x, y\rangle+\lambda^{\prime}\left\langle x^{\prime}, y\right\rangle$;
(2) $\langle y, x\rangle=\langle x, y\rangle$;
(3) $\langle x, x\rangle>0$ for $x \neq 0$.

A real vector space together with an inner product on it is called a real inner product space.

Recall that an inner product on V induces an injective homomorphism $V \rightarrow V^{*}$, given by sending $x \in V$ to the linear form $y \mapsto\langle x, y\rangle$; this homomorphism is an isomorphism when V is finite-dimensional.

Frequently, it is necessary to work with complex vector spaces. In order to have a similar structure there, we cannot use a bilinear form: if we want to have $\langle x, x\rangle$ to be real and positive, then we would get

$$
\langle i x, i x\rangle=i^{2}\langle x, x\rangle=-\langle x, x\rangle,
$$

which would be negative. The solution to this problem is to consider Hermitian forms instead of symmetric bilinear forms. The difference is that they are conjugate-linear in the second argument.
9.2. Definition. Let V be a complex vector space. A sesquilinear form on V is a map $\phi: V \times V \rightarrow \mathbb{C}$ that is linear in the first and conjugate-linear in the second argument ("sesqui" means $1 \frac{1}{2}$):

$$
\phi\left(\lambda x+\lambda^{\prime} x^{\prime}, y\right)=\lambda \phi(x, y)+\lambda^{\prime} \phi\left(x^{\prime}, y\right), \quad \phi\left(x, \lambda y+\lambda^{\prime} y^{\prime}\right)=\bar{\lambda} \phi(x, y)+\bar{\lambda}^{\prime} \phi\left(x, y^{\prime}\right) .
$$

A Hermitian form on V is a sesquilinear form ϕ on V such that $\phi(y, x)=\overline{\phi(x, y)}$ for all $x, y \in V$. Note that this implies $\phi(x, x) \in \mathbb{R}$. The Hermitian form ϕ is positive definite if $\phi(x, x)>0$ for all $x \in V \backslash\{0\}$. A positive definite Hermitian form on the complex vector space V is also called an inner product on V; in this context, the form is usually again written as $(x, y) \mapsto\langle x, y\rangle \in \mathbb{C}$. We have
(1) $\left\langle\lambda x+\lambda^{\prime} x^{\prime}, y\right\rangle=\lambda\langle x, y\rangle+\lambda^{\prime}\left\langle x^{\prime}, y\right\rangle$;
(2) $\langle y, x\rangle=\overline{\langle x, y\rangle}$;
(3) $\langle x, x\rangle>0$ for $x \neq 0$.

A complex vector space together with an inner product on it is called a complex inner product space. A real or complex vector space with an inner product on it is an inner product space. If V is a complex vector space, we denote by \bar{V} the complex vector space with the same underlying set and addition as V, but with scalar multiplication modified by taking the complex conjugate: $\lambda \cdot v=\bar{\lambda} v$, where on the left, we have scalar multiplication on \bar{V}, and on the right, we have scalar
multiplication on V. We denote by $\bar{V}^{*}=(\bar{V})^{*}$ the dual of this space. If V is a complex inner product space, we get again injective homomorphisms

$$
V \longrightarrow \bar{V}^{*}, \quad x \longmapsto(y \mapsto\langle x, y\rangle)
$$

and

$$
\bar{V} \longrightarrow V^{*}, \quad x \longmapsto(y \mapsto\langle y, x\rangle),
$$

which are isomorphisms when V is finite-dimensional.
9.3. Remark. Note that the dual \bar{V}^{*} of \bar{V} is not the same as $\overline{V^{*}}$, which is the dual of V with the modified scalar multiplication. In fact, the map $\bar{V}^{*} \rightarrow \overline{V^{*}}$ that sends $f \in \bar{V}^{*}$ to the function \bar{f} that sends $x \in V$ to $\overline{f(x)}$ is a homomorphism.
9.4. Examples. We have seen some examples of real inner product spaces already: the space \mathbb{R}^{n} together with the usual dot product is the standard example of a finite-dimensional real inner product space. An example of a different nature, important in analysis, is the space of continuous real-valued functions on an interval $[a, b]$, with the inner product

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

As for complex inner product spaces, the finite-dimensional standard example is \mathbb{C}^{n} with the inner product

$$
\left\langle\left(z_{1}, \ldots, z_{n}\right),\left(w_{1}, \ldots, w_{n}\right)\right\rangle=z_{1} \bar{w}_{1}+\cdots+z_{n} \bar{w}_{n}
$$

so $\langle z, w\rangle=z \cdot \bar{w}$ in terms of the usual inner product. Note that

$$
\langle z, z\rangle=\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2} \geq 0
$$

The complex version of the function space example is the space of complex-valued continuous functions on $[a, b]$, with inner product

$$
\langle f, g\rangle=\int_{a}^{b} f(x) \overline{g(x)} d x
$$

9.5. Definition. Let V be an inner product space.
(1) For $x \in V$, we set $\|x\|=\sqrt{\langle x, x\rangle} \geq 0$. The vector x is a unit vector if $\|x\|=1$.
(2) We say that $x, y \in V$ are orthogonal, $x \perp y$, if $\langle x, y\rangle=0$.
(3) A subset $S \subset V$ is orthogonal if $x \perp y$ for all $x, y \in S$ such that $x \neq y . S$ is an orthonormal set if in addition, $\|x\|=1$ for all $x \in S$.
(4) A sequence $\left(v_{1}, \ldots, v_{k}\right)$ of elements in V is orthogonal if $v_{i} \perp v_{j}$ for all $1 \leq i<j \leq k$. The sequence is orthonormal if in addition, $\left\|v_{i}\right\|=1$ for all $1 \leq i \leq k$.
(5) $v_{1}, \ldots, v_{n} \in V$ form an orthonormal basis or $O N B$ of V if the vectors form a basis that is an orthonormal set.
9.6. Proposition. Let V be an inner product space.
(1) For $x \in V$ and a scalar λ, we have $\|\lambda x\|=|\lambda|\|x\|$.
(2) (Cauchy-Schwarz inequality) For $x, y \in V$, we have $|\langle x, y\rangle| \leq\|x\|\|y\|$, with equality if and only if x and y are linearly dependent.
(3) (Triangle inequality) For $x, y \in V$, we have $\|x+y\| \leq\|x\|+\|y\|$.

Note that these properties imply that $\|\cdot\|$ is a norm on V in the sense of Section 7 . In particular,

$$
d(x, y)=\|x-y\|
$$

defines a metric on V; we call $d(x, y)$ the distance between x and y. If $V=\mathbb{R}^{n}$ with the standard inner product, then this is just the usual Euclidean distance.

Proof.
(1) We have

$$
\|\lambda x\|=\sqrt{\langle\lambda x, \lambda x\rangle}=\sqrt{\lambda \bar{\lambda}\langle x, x\rangle}=\sqrt{|\lambda|^{2}\langle x, x\rangle}=|\lambda| \sqrt{\langle x, x\rangle}=|\lambda|\|x\| .
$$

(2) This is clear when $y=0$, so assume $y \neq 0$. Consider

$$
z=x-\frac{\langle x, y\rangle}{\|y\|^{2}} y
$$

then $\langle z, y\rangle=0$. We find that

$$
0 \leq\langle z, z\rangle=\langle z, x\rangle=\langle x, x\rangle-\frac{\langle x, y\rangle}{\|y\|^{2}}\langle y, x\rangle=\|x\|^{2}-\frac{|\langle x, y\rangle|^{2}}{\|y\|^{2}},
$$

which implies the inequality. If $x=\lambda y$, we have equality by the first part of the proposition. Conversely, if we have equality, we must have $z=0$, hence $x=\lambda y$ (with $\lambda=\langle x, y\rangle /\|y\|^{2}$).
(3) We have

$$
\begin{aligned}
\|x+y\|^{2} & =\langle x+y, x+y\rangle=\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle \\
& =\|x\|^{2}+2 \operatorname{Re}\langle x, y\rangle+\|y\|^{2} \leq\|x\|^{2}+2|\langle x, y\rangle|+\|y\|^{2} \\
& \leq\|x\|^{2}+2\|x\|\|y\|+\|y\|^{2}=(\|x\|+\|y\|)^{2},
\end{aligned}
$$

using the Cauchy-Schwarz inequality.

Next we show that given any basis of a finite-dimensional inner product space, we can modify it in order to obtain an orthonormal basis. In particular, every finite-dimensional inner product space has orthonormal bases.
9.7. Theorem (Gram-Schmidt Orthonormalization Process). Let V be an inner product space. For $0 \neq x \in V$ write $x^{\bullet}=x /\|x\|$. Let $x_{1}, \ldots, x_{k} \in V$ be linearly independent, and define

$$
\begin{aligned}
y_{1} & =x_{1}^{\bullet} \\
y_{2} & =\left(x_{2}-\left\langle x_{2}, y_{1}\right\rangle y_{1}\right)^{\bullet} \\
y_{3} & =\left(x_{3}-\left\langle x_{3}, y_{1}\right\rangle y_{1}-\left\langle x_{3}, y_{2}\right\rangle y_{2}\right)^{\bullet} \\
& \vdots \\
y_{k} & =\left(x_{k}-\left\langle x_{k}, y_{1}\right\rangle y_{1}-\cdots-\left\langle x_{k}, y_{k-1}\right\rangle y_{k-1}\right)^{\bullet} .
\end{aligned}
$$

Then $\left(y_{1}, \ldots, y_{k}\right)$ is an orthonormal basis of $L\left(x_{1}, \ldots, x_{k}\right)$.
Proof. By induction on k. The case $k=1$ (or $k=0$) is clear $-x_{1} \neq 0$, hence $y_{1}=x_{1}^{\bullet}$ is defined, and we have $\left\|y_{1}\right\|=1$.
If $k \geq 2$, we know by the induction hypothesis that y_{1}, \ldots, y_{k-1} is an ONB of $L\left(x_{1}, \ldots, x_{k-1}\right)$. Let

$$
z=x_{k}-\left\langle x_{k}, y_{1}\right\rangle y_{1}-\cdots-\left\langle x_{k}, y_{k-1}\right\rangle y_{k-1} .
$$

Since x_{1}, \ldots, x_{k} are linearly independent, $z \neq 0$. Also, for $1 \leq j \leq k-1$, we have that

$$
\left\langle z, y_{j}\right\rangle=\left\langle x_{k}, y_{j}\right\rangle-\sum_{i=1}^{k-1}\left\langle x_{k}, y_{i}\right\rangle\left\langle y_{j}, y_{i}\right\rangle=\left\langle x_{k}, y_{j}\right\rangle-\left\langle x_{k}, y_{j}\right\rangle=0
$$

since y_{1}, \ldots, y_{k-1} are orthonormal. With $y_{k}=z^{\bullet}$, we then also have $\left\langle y_{k}, y_{j}\right\rangle=$ 0 for $j<k$, and $\left\|y_{k}\right\|=1$. The remaining orthonormality relations hold by the induction hypothesis. That $L\left(y_{1}, \ldots, y_{k}\right)=L\left(x_{1}, \ldots, x_{k}\right)$ is clear from the construction.
9.8. Corollary. Every finite-dimensional inner product space has an ONB.

Proof. Apply Thm. 9.7 to a basis of the space.
9.9. Proposition. Let V be an inner product space and $S \subset V$ an orthogonal set of non-zero vectors. Then S is linearly independent.

Proof. Let $T \subset S$ be finite, and assume we have a linear combination

$$
\sum_{s \in T} \lambda_{s} s=0
$$

Now we take the inner product with a fixed $t \in T$:

$$
0=\left\langle\sum_{s \in T} \lambda_{s} s, t\right\rangle=\sum_{s \in T} \lambda_{s}\langle s, t\rangle=\lambda_{t}\langle t, t\rangle .
$$

Since $t \neq 0$, we have $\langle t, t\rangle \neq 0$, therefore we must have $\lambda_{t}=0$. Since this works for any $t \in T$, the linear combination must have been trivial.
9.10. Proposition. If V is an n-dimensional inner product space, and $\left(e_{1}, \ldots, e_{k}\right)$ an orthogonal sequence of elements in V, then there are $e_{k+1}, \ldots, e_{n} \in V$ such that e_{1}, \ldots, e_{n} is an ONB of V.

Proof. For $1 \leq i<j \leq k$ we have $e_{i} \perp e_{j}$, so $e_{i} \neq e_{j}$. Hence the set $\left\{e_{1}, \ldots, e_{k}\right\}$ consists of k elements. By Proposition 9.9, the elements e_{1}, \ldots, e_{k} are linearly independent. Extend e_{1}, \ldots, e_{k} to a basis of V in some way and apply Thm. 9.7 to this basis. This will not change the first k basis elements, since they are already orthonormal.

Orthonormal bases are rather nice, as we will see.
9.11. Theorem (Bessel's Inequality). Let V be an inner product space, and let $\left\{e_{1}, \ldots, e_{n}\right\} \subset V$ be an orthonormal set. Then for all $x \in V$, we have the inequality

$$
\sum_{j=1}^{n}\left|\left\langle x, e_{j}\right\rangle\right|^{2} \leq\|x\|^{2}
$$

Let $U=L\left(e_{1}, \ldots, e_{n}\right)$ be the subspace spanned by e_{1}, \ldots, e_{n}. Then for $x \in V$, the following statements are equivalent.
(1) $x \in U$;
(2) $\sum_{j=1}^{n}\left|\left\langle x, e_{j}\right\rangle\right|^{2}=\|x\|^{2}$;
(3) $x=\sum_{j=1}^{n}\left\langle x, e_{j}\right\rangle e_{j}$;
(4) for all $y \in V,\langle x, y\rangle=\sum_{j=1}^{n}\left\langle x, e_{j}\right\rangle\left\langle e_{j}, y\right\rangle$.

In particular, statements (2) to (4) hold for all $x \in V$ when e_{1}, \ldots, e_{n} is an ONB of V. When e_{1}, \ldots, e_{n} is an ONB, then (4) (and also (2)) is called Parseval's Identity. The relation in (3) is sometimes called the Fourier expansion of x relative to the given ONB.

Proof. Let $z=x-\sum_{j=1}^{n}\left\langle x, e_{j}\right\rangle e_{j}$. When we expand $\langle z, z\rangle$, we get various mixed terms. Note that

$$
\left.\begin{array}{l}
\left\langle x,\left\langle x, e_{j}\right\rangle e_{j}\right\rangle \\
\left\langle\left\langle x, e_{j}\right\rangle e_{j}, x\right\rangle \\
\left\langle\left\langle x, e_{j}\right\rangle e_{j},\left\langle x, e_{j}\right\rangle e_{j}\right\rangle
\end{array}\right\}=\left\langle x, e_{j}\right\rangle \cdot \overline{\left\langle x, e_{j}\right\rangle}=\left|\left\langle x, e_{j}\right\rangle\right|^{2}
$$

Using this, we find easily that

$$
0 \leq\langle z, z\rangle=\langle x, x\rangle-\sum_{j=1}^{n}\left|\left\langle x, e_{j}\right\rangle\right|^{2}=\|x\|^{2}-\sum_{j=1}^{n}\left|\left\langle x, e_{j}\right\rangle\right|^{2} .
$$

This implies the inequality and also gives the implication (2) \Rightarrow (3). The implication (3) $\Rightarrow(4)$ is a simple calculation, and (4) $\Rightarrow(2)$ follows by taking $y=x$. (3) \Rightarrow (1) is trivial. Finally, to show (1) \Rightarrow (3), let

$$
x=\sum_{j=1}^{n} \lambda_{j} e_{j} .
$$

Then

$$
\left\langle x, e_{k}\right\rangle=\sum_{j=1}^{n} \lambda_{j}\left\langle e_{j}, e_{k}\right\rangle=\lambda_{k}
$$

which gives the relation in (3).
Next, we want to discuss linear maps on inner product spaces.
9.12. Theorem. Let V and W be two inner product spaces over the same field $(\mathbb{R}$ or $\mathbb{C})$, with V finite-dimensional, and let $f: V \rightarrow W$ be linear. Then there is a unique linear map $f^{*}: W \rightarrow V$ such that

$$
\langle f(v), w\rangle=\left\langle v, f^{*}(w)\right\rangle
$$

for all $v \in V, w \in W$.
Proof. For $w \in W$ fixed, the map $V \ni v \mapsto\langle f(v), w\rangle$ is a linear form on V. Since V is finite-dimensional, there is a unique $f^{*}(w) \in V$ satisfying the desired relation for all $v \in V$. Now consider $w+w^{\prime}$. We find that $f^{*}\left(w+w^{\prime}\right)$ and $f^{*}(w)+f^{*}\left(w^{\prime}\right)$ both satisfy the relation, so by uniqueness, f^{*} is additive. Similary, considering λw, we see that $f^{*}(\lambda w)$ and $\lambda f^{*}(w)$ must agree. Hence f^{*} is actually a linear map.
9.13. Definition. Let V and W be inner product spaces over the same field.
(1) Let $f: V \rightarrow W$ be linear. If f^{*} exists with the property given in Thm. 9.12 (which is always the case when $\operatorname{dim} V<\infty$), then f^{*} is called the adjoint of f.
(2) If $f: V \rightarrow V$ has an adjoint f^{*}, and $f=f^{*}$, then f is self-adjoint.
(3) If $f: V \rightarrow V$ has an adjoint f^{*} and $f \circ f^{*}=f^{*} \circ f$, then f is normal.
(4) A linear map $f: V \rightarrow W$ is an isometry if it is an isomorphism and $\langle f(v), f(w)\rangle=\langle v, w\rangle$ for all $v, w \in V$.
9.14. Examples. If $f: V \rightarrow V$ is self-adjoint or an isometry, then f is normal. For the second claim, note that an automorphism f is an isometry if and only if $f^{*}=f^{-1}$. (See also Proposition 9.17 below; its proof includes a proof of this statement that does not require finite-dimensionality.)
9.15. Remark. While the property of the adjoint given in Theorem 9.12 may seem asymmetric, we also have

$$
\langle w, f(v)\rangle=\overline{\langle f(v), w\rangle}=\overline{\left\langle v, f^{*}(w)\right\rangle}=\left\langle f^{*}(w), v\right\rangle
$$

9.16. Proposition (Properties of the Adjoint). Let V_{1}, V_{2}, V_{3} be finite-dimensional inner product spaces over the same field, and let $f, g: V_{1} \rightarrow V_{2}, h: V_{2} \rightarrow V_{3}$ be linear. Then
(1) $(f+g)^{*}=f^{*}+g^{*},(\lambda f)^{*}=\bar{\lambda} f^{*}$;
(2) $(h \circ f)^{*}=f^{*} \circ h^{*}$;
(3) $\left(f^{*}\right)^{*}=f$.

Proof.

(1) We have for $v \in V_{1}, v^{\prime} \in V_{2}$

$$
\begin{aligned}
\left\langle v,(f+g)^{*}\left(v^{\prime}\right)\right\rangle & =\left\langle(f+g)(v), v^{\prime}\right\rangle=\left\langle f(v), v^{\prime}\right\rangle+\left\langle g(v), v^{\prime}\right\rangle \\
& =\left\langle v, f^{*}\left(v^{\prime}\right)\right\rangle+\left\langle v, g^{*}\left(v^{\prime}\right)\right\rangle=\left\langle v,\left(f^{*}+g^{*}\right)\left(v^{\prime}\right)\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle v,(\lambda f)^{*}\left(v^{\prime}\right)\right\rangle & =\left\langle(\lambda f)(v), v^{\prime}\right\rangle=\left\langle\lambda f(v), v^{\prime}\right\rangle=\lambda\left\langle f(v), v^{\prime}\right\rangle \\
& =\lambda\left\langle v, f^{*}\left(v^{\prime}\right)\right\rangle=\left\langle v, \bar{\lambda} f^{*}\left(v^{\prime}\right)\right\rangle=\left\langle v,\left(\bar{\lambda} f^{*}\right)\left(v^{\prime}\right)\right\rangle .
\end{aligned}
$$

The claim follows from the uniqueness of the adjoint.
(2) We argue in a similar way. For $v \in V_{1}, v^{\prime} \in V_{3}$,

$$
\begin{aligned}
\left\langle v,(h \circ f)^{*}\left(v^{\prime}\right)\right\rangle & =\left\langle(h \circ f)(v), v^{\prime}\right\rangle=\left\langle h(f(v)), v^{\prime}\right\rangle \\
& =\left\langle f(v), h^{*}\left(v^{\prime}\right)\right\rangle=\left\langle v, f^{*}\left(h^{*}\left(v^{\prime}\right)\right)\right\rangle=\left\langle v,\left(f^{*} \circ h^{*}\right)\left(v^{\prime}\right)\right\rangle .
\end{aligned}
$$

Again, the claim follows from the uniqueness of the adjoint.
(3) For $v \in V_{1}, v^{\prime} \in V_{2}$,

$$
\left\langle v^{\prime}, f(v)\right\rangle=\overline{\left\langle f(v), v^{\prime}\right\rangle}=\overline{\left\langle v, f^{*}\left(v^{\prime}\right)\right\rangle}=\left\langle f^{*}\left(v^{\prime}\right), v\right\rangle=\left\langle v^{\prime},\left(f^{*}\right)^{*}(v)\right\rangle,
$$

and the claim follows.

Now we characterize isometries.
9.17. Proposition. Let V and W be inner product spaces of the same finite dimension over the same field. Let $f: V \rightarrow W$ be linear. Then the following are equivalent.
(1) f is an isometry;
(2) f is an isomorphism and $f^{-1}=f^{*}$;
(3) $f \circ f^{*}=\mathrm{id}_{W}$;
(4) $f^{*} \circ f=\operatorname{id}_{V}$.

Proof. To show (1) \Rightarrow (2), we observe that for an isometry f and $v \in V, w \in W$,

$$
\left\langle v, f^{*}(w)\right\rangle=\langle f(v), w\rangle=\left\langle f(v), f\left(f^{-1}(w)\right)\right\rangle=\left\langle v, f^{-1}(w)\right\rangle,
$$

which implies $f^{*}=f^{-1}$. The implications $(2) \Rightarrow(3)$ and (2) $\Rightarrow(4)$ are clear. Now assume (say) that (4) holds (the argument for (3) is similar). Then f is injective, hence an isomorphism, and we get (2). Now assume (2), and let $v, v^{\prime} \in V$. Then

$$
\left\langle f(v), f\left(v^{\prime}\right)\right\rangle=\left\langle v, f^{*}\left(f\left(v^{\prime}\right)\right)\right\rangle=\left\langle v, v^{\prime}\right\rangle
$$

so f is an isometry.
9.18. Theorem. Let V be a finite-dimensional inner product space and $f: V \rightarrow V$ a linear map. Then we have

$$
\operatorname{im}\left(f^{*}\right)=(\operatorname{ker}(f))^{\perp} \quad \text { and } \quad \operatorname{ker}\left(f^{*}\right)=(\operatorname{im}(f))^{\perp}
$$

Proof. We first show the inclusions $\operatorname{im}\left(f^{*}\right) \subset(\operatorname{ker}(f))^{\perp}$ and $\operatorname{ker}\left(f^{*}\right) \subset(\operatorname{im}(f))^{\perp}$. So let $z \in \operatorname{im}\left(f^{*}\right)$, say $z=f^{*}(y)$. Let $x \in \operatorname{ker}(f)$, then

$$
\langle x, z\rangle=\left\langle x, f^{*}(y)\right\rangle=\langle f(x), y\rangle=\langle 0, y\rangle=0
$$

so $z \in(\operatorname{ker}(f))^{\perp}$. If $y \in \operatorname{ker}\left(f^{*}\right)$ and $z=f(x) \in \operatorname{im}(f)$, then

$$
\langle z, y\rangle=\langle f(x), y\rangle=\left\langle x, f^{*}(y)\right\rangle=\langle x, 0\rangle=0
$$

so $y \in(\operatorname{im}(f))^{\perp}$. Now we have

$$
\begin{aligned}
\operatorname{dim} \operatorname{im}(f) & =\operatorname{dim} V-\operatorname{dim}(\operatorname{im}(f))^{\perp} \\
& \leq \operatorname{dim} V-\operatorname{dim} \operatorname{ker}\left(f^{*}\right) \\
& =\operatorname{dim} \operatorname{im}\left(f^{*}\right) \\
& \leq \operatorname{dim}(\operatorname{ker}(f))^{\perp} \\
& =\operatorname{dim} V-\operatorname{dim} \operatorname{ker}(f) \\
& =\operatorname{dimim}(f)
\end{aligned}
$$

So we must have equality throughout, which implies the result.
Now we relate the notions of adjoint etc. to matrices representing the linear maps with respect to orthonormal bases.
9.19. Proposition. Let V and W be two inner product spaces over the same field, let $B=\left(v_{1}, \ldots, v_{n}\right)$ and $C=\left(w_{1}, \ldots, w_{m}\right)$ be orthonormal bases of V and W, respectively, and let $f: V \rightarrow W$ be linear. If f is represented by the matrix A relative to the given bases, then the adjoint map f^{*} is represented by the conjugate transpose matrix $A^{*}=\bar{A}^{\top}$ with respect to the same bases, that is

$$
\left[f^{*}\right]_{B}^{C}=\left([f]_{C}^{B}\right)^{*}
$$

Note that when we have real inner product spaces, then $A^{*}=A^{\top}$ is simply the transpose.

Proof. Let $F=\mathbb{R}$ or \mathbb{C} be the field of scalars. First note that if $v, v^{\prime} \in V$ have coordinates $x, x^{\prime} \in F^{n}$ with respect to the ONB v_{1}, \ldots, v_{n}, then

$$
\left\langle v, v^{\prime}\right\rangle=x \cdot \bar{x}^{\prime}=x^{\top} \bar{x}^{\prime}
$$

this follows from Thm. 9.11. A similar statement holds for the inner product of W. So for $x \in F^{n}, y \in F^{m}$ representing $v \in V$ and $w \in W$, we have

$$
\left\langle v, f^{*}(w)\right\rangle=\langle f(v), w\rangle=(A x)^{\top} \bar{y}=x^{\top} A^{\top} \bar{y}=x^{\top}\left(\overline{\bar{A}^{\top} y}\right) .
$$

This shows that $\bar{A}^{\top}=A^{*}$ represents f^{*}.

Warning. If the given bases are not orthonormal, then the statement is wrong in general.
9.20. Corollary. In the situation above, we have the following.
(1) The map f is an isometry if and only if $A^{*}=A^{-1}$.
(2) Suppose $V=W$ and $B=C$. Then f is self-adjoint if and only if $A^{*}=A$.
(3) Suppose $V=W$ and $B=C$. Then f is normal if and only if $A^{*} A=A A^{*}$.

Proof. Exercise.
9.21. Definition. A matrix $A \in \operatorname{Mat}(n, \mathbb{R})$ is
(1) symmetric if $A^{\top}=A$;
(2) normal if $A A^{\top}=A^{\top} A$;
(3) orthogonal if $A A^{\top}=I_{n}$.

A matrix $A \in \operatorname{Mat}(n, \mathbb{C})$ is
(1) Hermitian if $A^{*}=A$;
(2) normal if $A A^{*}=A^{*} A$;
(3) unitary if $A A^{*}=I_{n}$.

These properties correspond to the properties "self-adjoint", "normal", "isometry" of the linear map given by A on the standard inner product space \mathbb{R}^{n} or \mathbb{C}^{n}.
9.22. Example. Suppose V is an n-dimensional inner product space over F with $F=\mathbb{R}$ or $F=\mathbb{C}$, and let $B=\left(v_{1}, \ldots, v_{n}\right)$ be an orthonormal basis. Then the map $\varphi_{B}: F^{n} \rightarrow V$ that sends $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ to $\sum_{i} \lambda_{i} v_{i}$ is an isometry. Indeed, if E denotes the standard (orthonormal) basis for F^{n}, then the associated matrix $A=\left[\varphi_{B}\right]_{B}^{E}$ is the identity, which is unitary.
9.23. Example. Suppose V is an n-dimensional inner product space over F with $F=\mathbb{R}$ or $F=\mathbb{C}$, and let B and B^{\prime} be two orthonormal bases for V. Then the base change matrix $P=\left[\mathrm{id}_{V}\right]_{B}^{B^{\prime}}$ is unitary, because the identity map is an isometry.

10. Orthogonal Diagonalization

In this section, we discuss the following question. Let V be an inner product space and $f: V \rightarrow V$ an endomorphism. When is it true that f has an orthonormal basis of eigenvectors?

Let us first consider the case of complex inner product spaces.
Our goal in the following is to show that f has an orthonormal basis of eigenvectors (so can be orthogonally diagonalized or is orthodiagonalizable - nice word!) if and only if f is normal.
10.1. Lemma. Let V be an inner product space and $f: V \rightarrow V$ an endomorphism. If f is orthodiagonalizable, then f is normal.

Proof. If f is orthodiagonalizable, then there is an orthonormal basis e_{1}, \ldots, e_{n} of V such that f is represented by a diagonal matrix D with respect to this basis. Now D is normal, hence so is f, by Cor. 9.20 .

The proof of the other direction is a little bit more involved. We begin with the following partial result.
10.2. Lemma. Let V be an inner product space, and let $f: V \rightarrow V$ be normal.
(1) $\left\|f^{*}(v)\right\|=\|f(v)\|$.
(2) If $f(v)=\lambda v$ for some $v \in V$, then $f^{*}(v)=\bar{\lambda} v$.
(3) If $f(v)=\lambda v$ and $f(w)=\mu w$ with $\lambda \neq \mu$, then $v \perp w$ (i.e., $\langle v, w\rangle=0$).

Proof. For the first statement, note that

$$
\begin{aligned}
\left\|f^{*}(v)\right\|^{2} & =\left\langle f^{*}(v), f^{*}(v)\right\rangle=\left\langle f\left(f^{*}(v)\right), v\right\rangle \\
& =\left\langle f^{*}(f(v)), v\right\rangle=\langle f(v), f(v)\rangle=\|f(v)\|^{2} .
\end{aligned}
$$

For the second statement, note that

$$
\begin{aligned}
\left\langle f^{*}(v), f^{*}(v)\right\rangle & =\langle f(v), f(v)\rangle=|\lambda|^{2}\langle v, v\rangle \\
\left\langle\bar{\lambda} v, f^{*}(v)\right\rangle & =\bar{\lambda}\langle f(v), v\rangle=\bar{\lambda}\langle\lambda v, v\rangle=|\lambda|^{2}\langle v, v\rangle \\
\left\langle f^{*}(v), \bar{\lambda} v\right\rangle & =\lambda\langle v, f(v)\rangle=\lambda\langle v, \lambda v\rangle=|\lambda|^{2}\langle v, v\rangle \\
\langle\bar{\lambda} v, \bar{\lambda} v\rangle & =|\lambda|^{2}\langle v, v\rangle
\end{aligned}
$$

and so
$\left\langle f^{*}(v)-\bar{\lambda} v, f^{*}(v)-\bar{\lambda} v\right\rangle=\left\langle f^{*}(v), f^{*}(v)\right\rangle-\left\langle\bar{\lambda} v, f^{*}(v)\right\rangle-\left\langle f^{*}(v), \bar{\lambda} v\right\rangle+\langle\bar{\lambda} v, \bar{\lambda} v\rangle=0$.
For the last statement, we compute

$$
\lambda\langle v, w\rangle=\langle f(v), w\rangle=\left\langle v, f^{*}(w)\right\rangle=\langle v, \bar{\mu} w\rangle=\mu\langle v, w\rangle .
$$

Since $\lambda \neq \mu$ by assumption, we must have $\langle v, w\rangle=0$.
This result shows that the various eigenspaces are orthogonal in pairs, and we conclude that when f is a normal endomorphism of a complex inner product space, it is orthodiagonalizable if it is just diagonalizable. It remains to prove that this is the case.
10.3. Lemma. Let V be an inner product space over the field $F=\mathbb{R}$ or \mathbb{C}, let $f: V \rightarrow V$ be normal, and let $p \in F[X]$ be a polynomial. Then $p(f)$ is also normal.

Proof. Let $p(x)=a_{m} x^{m}+\cdots+a_{0}$. Then by Prop. 9.16,
$p(f)^{*}=\left(a_{m} f^{\circ m}+\cdots+a_{1} f+a_{0} \operatorname{id}_{V}\right)^{*}=\bar{a}_{m}\left(f^{*}\right)^{\circ m}+\cdots+\bar{a}_{1} f^{*}+\bar{a}_{0} \mathrm{id}_{V}=\bar{p}\left(f^{*}\right)$, where \bar{p} is the polynomial whose coefficients are the complex conjugates of those of p. (If $F=\mathbb{R}$, then $p(f)^{*}=p\left(f^{*}\right)$.) Now $p(f)$ and $p(f)^{*}=\bar{p}\left(f^{*}\right)$ commute since f and f^{*} do, hence $p(f)$ is normal.
10.4. Lemma. Let V be a finite-dimensional inner product space, and let $f: V \rightarrow$ V be normal. Then $V=\operatorname{ker}(f) \oplus \operatorname{im}(f)$ is an orthogonal direct sum.

Proof. Let $v \in \operatorname{ker}(f)$ and $w \in \operatorname{im}(f)$. We have $f(v)=0$, so $f^{*}(v)=0$ by Lemma 10.2, and $w=f(u)$ for some $u \in V$. Then

$$
\langle v, w\rangle=\langle v, f(u)\rangle=\left\langle f^{*}(v), u\right\rangle=\langle 0, u\rangle=0,
$$

so $v \perp w$. In particular, we have $\operatorname{ker} f \cap \operatorname{im} f=\{0\}$, because the inner product is positive definite. From $\operatorname{dim} \operatorname{ker}(f)+\operatorname{dim} \operatorname{im}(f)=\operatorname{dim} V$, we conclude
$\operatorname{dim}(\operatorname{ker}(f)+\operatorname{im}(f))=\operatorname{dim} \operatorname{ker}(f)+\operatorname{dim} \operatorname{im}(f)-\operatorname{dim}(\operatorname{ker} f \cap \operatorname{im} f)=\operatorname{dim} V$, so $\operatorname{ker}(f)+\operatorname{im}(f)=V$, which finishes the proof.
10.5. Lemma. Let V be a finite-dimensional complex inner product space, and let $f: V \rightarrow V$ be normal. Then f is diagonalizable.

Proof. We give two proofs. In the first proof, we show that the minimal polynomial of f does not have multiple roots. So assume the contrary, namely that

$$
M_{f}(x)=(x-\alpha)^{2} g(x)
$$

for some $\alpha \in \mathbb{C}$ and some polynomial g. We know that $f-\alpha \mathrm{id}_{V}$ is normal. Let $v \in V$ and consider $w=\left(f-\alpha \operatorname{id}_{V}\right)(g(f)(v))$. Obviously $w \in \operatorname{im}\left(f-\alpha \operatorname{id}_{V}\right)$, but also $\left(f-\alpha \operatorname{id}_{V}\right)(w)=M_{f}(f)(v)=0$, so $w \in \operatorname{ker}\left(f-\alpha \operatorname{id}_{V}\right)$. By the previous lemma, $w=0$. Hence, f is already annihilated by the polynomial $(x-\alpha) g(x)$ of degree smaller than $M_{f}(x)$, a contradiction.
The second proof proceeds by induction on $\operatorname{dim} V$. The base case $\operatorname{dim} V=1$ (or $=0$) is trivial. So assume $\operatorname{dim} V \geq 2$. Then f has at least one eigenvector v, say with eigenvalue λ. Let $U=\operatorname{ker}\left(f-\lambda \operatorname{id}_{V}\right) \neq 0$ be the eigenspace and $W=$ $\operatorname{im}\left(f-\lambda \operatorname{id}_{V}\right)$. We know that $V=U \oplus W$ is an orthogonal direct sum, and we have that $f(W) \subset W$, so $\left.f\right|_{W}: W \rightarrow W$ is again a normal map. By induction, $\left.f\right|_{W}$ is diagonalizable. Since $\left.f\right|_{U}=\lambda \operatorname{id}_{U}$ is trivially diagonalizable, f is diagonalizable. (The same proof would also prove directly that f is orthodiagonalizable.)

So we have now proved the following statement, which is often referred to as the Spectral Theorem (though this may also refer to some other related theorems).
10.6. Theorem. Let V be a finite-dimensional complex inner product space, and let $f: V \rightarrow V$ be a linear map. Then f has an orthonormal basis of eigenvectors if and only if f is normal.

Proof. Indeed, Lemma 10.1 states the "only if"-part. For the converse, assume f is normal. Then f is diagonalizable by Lemma 10.5, which means that the concatenation of any bases for the eigenspaces yields a basis for V. Lemma 10.2 shows that if we take the bases of the eigenspaces to be orthonormal, then the concatenation is orthonormal as well, so f has an orthonormal basis of eigenvectors.

This nice result leaves one question open: what is the situation for real inner product spaces? The key to this is the following observation.
10.7. Proposition. Let V be a finite-dimensional complex inner product space, and let $f: V \rightarrow V$ be a linear map. Then f is normal with all eigenvalues real if and only if f is self-adjoint.

Proof. We know that a self-adjoint map is normal. So assume now that f is normal. Then there is an ONB of eigenvectors, and with respect to this basis, f is represented by a diagonal matrix D, so we have $D^{*}=\bar{D}^{\top}=\bar{D}$. Obviously, we have that f is self-adjoint if and only if $D=D^{*}$, which reduces to $D=\bar{D}$, which happens if and only if all entries of D (i.e., the eigenvalues of f) are real.

This implies the following.
10.8. Theorem. Let V be a finite-dimensional real inner product space, and let $f: V \rightarrow V$ be linear. Then f has an orthonormal basis of eigenvectors if and only if f is self-adjoint.

Proof. If f has an ONB of eigenvectors, then its matrix with respect to this basis is diagonal and so symmetric, hence f is self-adjoint.
For the converse, choose any orthonormal basis B for V and suppose that f is self-adjoint. Then the associated real matrix $A=[f]_{B}^{B}$, viewed over \mathbb{C}, is normal and has all its eigenvalues (over \mathbb{C}) real by Proposition 10.7. This implies that A is diagonalizable over \mathbb{C} by Theorem 10.6. By Proposition 2.8 this is means that the minimal polynomial M_{A} of A as a matrix over \mathbb{C} is the product of distinct linear factors, which has the real eigenvalues as roots. Since M_{A} is a real polynomial, it is also the minimal polynomial of A as a matrix over \mathbb{R} (any factor over \mathbb{R} is also a factor over \mathbb{C}) and also splits as a product of distinct linear factors over \mathbb{R}. Applying Proposition 2.8 again shows that A, and thus f, is also diagonalisable over \mathbb{R}. Lemma 10.2, (3) then shows that the eigenspaces are orthogonal in pairs. Hence, concatenating orthonormal bases for the different eigenspaces yields an orthonormal basis of eigenvectors for V.

In terms of matrices, this reads as follows.
10.9. Theorem. Let A be a square matrix with real entries. Then A is orthogonally similar to a diagonal matrix (i.e., there is an orthogonal matrix $P: P P^{\top}=I$, such that $P^{-1} A P$ is a diagonal matrix) if and only if A is symmetric. In this case, we can choose P to be orientation-preserving, i.e., to have $\operatorname{det} P=1$ (and not -1).

Proof. The first statement follows from the previous theorem. To see that we can take P with $\operatorname{det} P=1$, assume that we already have an orthogonal matrix Q such that $Q^{-1} A Q=D$ is diagonal, but with $\operatorname{det} Q=-1$. The diagonal matrix T with diagional entries $(-1,1, \ldots, 1)$ is orthogonal and $\operatorname{det} T=-1$, so $P=Q T$ is also orthogonal, and $\operatorname{det} P=1$. Furthermore,

$$
P^{-1} A P=T^{-1} Q^{-1} A Q T=T D T=D,
$$

so P has the required properties.
This statement has a geometric interpretation. If A is a symmetric 2×2-matrix, then the equation

$$
\begin{equation*}
\mathbf{x}^{\top} A \mathbf{x}=1 \tag{5}
\end{equation*}
$$

defines a conic section in the plane. Our theorem implies that there is a rotation P such that $P^{-1} A P$ is diagonal. This means that in a suitably rotated coordinate system, our conic section has an equation of the form

$$
a x^{2}+b y^{2}=1
$$

where a and b are the eigenvalues of A. We can use their signs to classify the geometric shape of the conic section (ellipse, hyperbola, empty, degenerate).

The directions given by the eigenvectors of A are called the principal axes of the conic section (or of A), and the coordinate change given by P is called the principal axes transformation. Similar statements are true for higher-dimensional quadrics given by equation (5) when A is a larger symmetric matrix.
10.10. Example. Let us consider the conic section given by the equation

$$
5 x^{2}+4 x y+2 y^{2}=1
$$

The matrix is

$$
A=\left(\begin{array}{ll}
5 & 2 \\
2 & 2
\end{array}\right)
$$

We have to find its eigenvalues and eigenvectors. The characteristic polynomial is $(X-5)(X-2)-4=X^{2}-7 X+6=(X-1)(X-6)$, so we have the two eigenvalues 1 and 6 . This already tells us that we have an ellipse. To find the eigenvectors, we have to determine the kernels of $A-I$ and $A-6 I$. We get

$$
A-I=\left(\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right) \quad \text { and } \quad A-6 I=\left(\begin{array}{cc}
-1 & 2 \\
2 & -4
\end{array}\right)
$$

so the eigenvectors are multiples of $(1-2)^{\top}$ and of $(21)^{\top}$. To get an orthonormal basis, we have to scale them appropriately; we also need to check whether we have to change the sign on one of them in order to get an orthogonal matrix with determinant 1. Here, we obtain

$$
P=\left(\begin{array}{cc}
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\
-\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right) \quad \text { and } \quad P^{-1} A P=\left(\begin{array}{ll}
1 & 0 \\
0 & 6
\end{array}\right) .
$$

To sketch the ellipse, note that the principal axes are in the directions of the eigenvectors and that the ellipse meets the first axis (in the direction of $(1,-2)^{\top}$) at a distance of 1 from the origin and the second axis (in the direction of $(2,1)^{\top}$) at a distance of $1 / \sqrt{6}$ from the origin.

The ellipse $5 x^{2}+4 x y+2 y^{2}=1$.

11. External Direct Sums

Earlier in this course, we have discussed direct sums of linear subspaces of a vector space. In this section, we discuss a way to contruct a vector space out of a given family of vector spaces in such a way that the given spaces can be identified with linear subspaces of the new space, which becomes their direct sum.
11.1. Definition. Let F be a field, and let $\left(V_{i}\right)_{i \in I}$ be a family of F-vector spaces. The (external) direct sum of the spaces V_{i} is the vector space

$$
V=\bigoplus_{i \in I} V_{i}=\left\{\left(v_{i}\right) \in \prod_{i \in I} V_{i}: v_{i}=0 \text { for all but finitely many } i \in I\right\} .
$$

Addition and scalar multiplication in V are defined component-wise.
If I is finite, say $I=\{1,2, \ldots, n\}$, then we also write

$$
V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n}
$$

as a set, it is just the cartesian product $V_{1} \times \cdots \times V_{n}$.
11.2. Proposition. Let $\left(V_{i}\right)_{i \in I}$ be a family of F-vector spaces, and $V=\bigoplus_{i \in I} \bigoplus V_{j}$ their direct sum.
(1) There are injective linear maps $\iota_{j}: V_{j} \rightarrow V$ given by

$$
\iota_{j}\left(v_{j}\right)=\left(0, \ldots, 0, v_{j}, 0, \ldots\right) \quad \text { with } v_{j} \text { in the } j \text { th position }
$$

such that with $\tilde{V}_{j}=\iota_{j}\left(V_{j}\right)$, we have $V=\bigoplus_{j \in I} \tilde{V}_{j}$ as a direct sum of subspaces.
(2) If B_{j} is a bais of V_{j}, then $B=\bigcup_{j \in I} \iota_{j}\left(B_{j}\right)$ is a basis of V.
(3) If W is another F-vector space, and $\phi_{j}: V_{j} \rightarrow W$ are linear maps, then there is a unique linear map $\phi: V \rightarrow W$ such that $\phi_{j}=\phi \circ \iota_{j}$ for all $j \in I$.

Proof.
(1) This is clear from the definitions, compare 4.1.
(2) This is again clear from 4.1 .
(3) A linear map is uniquely determined by its values on a basis. Let B be a basis as in (2). The only way to get $\phi_{j}=\phi \circ \iota_{j}$ is to define $\phi\left(\iota_{j}(b)\right)=\phi_{j}(b)$ for all $b \in B_{j}$; this gives a unique linear map $\phi: V \rightarrow W$.

Statement (3) above is called the universal property of the direct sum. It is essentially the only thing we have to know about $\bigoplus_{i \in I} V_{i}$; the explicit construction is not really relevant (except to show that such an object exists).

12. The Tensor Product

As direct sums allow us to "add" vector spaces in a way (which corresponds to "adding" their bases by taking the disjoint union), the tensor product allows us to "multiply" vector spaces ("multiplying" their bases by taking a cartesian product). The main purpose of the tensor product is to "linearize" multilinear maps.

You may have heard of "tensors". They are used in physics (there is, for example, the "stress tensor" or the "moment of inertia tensor") and also in differential geometry (the "curvature tensor" or the "metric tensor"). Basically a tensor is an element of a tensor product (of vector spaces), like a vector is an element of a vector space. You have seen special cases of tensors already. To start with, a scalar (element of the base field F) or a vector or a linear form are trivial examples of tensors. More interesting examples are given by linear maps, endomorphisms, bilinear forms and multilinear maps in general.
The vector space of $m \times n$ matrices over F can be identified in a natural way with the tensor product $\left(F^{n}\right)^{*} \otimes F^{m}$. This identification corresponds to the interpretation of matrices as linear maps from F^{n} to F^{m}. The vector space of $m \times n$ matrices over F can also identified in a (different) natural way with $\left(F^{m}\right)^{*} \otimes\left(F^{n}\right)^{*}$; this corresponds to the interpretation of matrices as bilinear forms on $F^{m} \times F^{n}$.

In these examples, we see that (for example), the set of all bilinear forms has the structure of a vector space. The tensor product generalizes this. Given two vector spaces V_{1} and V_{2}, it produces a new vector space $V_{1} \otimes V_{2}$ such that we have a natural identification

$$
\operatorname{Bil}\left(V_{1} \times V_{2}, W\right) \cong \operatorname{Hom}\left(V_{1} \otimes V_{2}, W\right)
$$

for all vector spaces W. Here $\operatorname{Bil}\left(V_{1} \times V_{2}, W\right)$ denotes the vector space of bilinear maps from $V_{1} \times V_{2}$ to W. The following definition states the property we want more precisely.
12.1. Definition. Let V_{1} and V_{2} be two vector spaces. A tensor product of V_{1} and V_{2} is a vector space V, together with a bilinear map $\phi: V_{1} \times V_{2} \rightarrow V$, satisfying the following "universal property":
For every vector space W and bilinear map $\psi: V_{1} \times V_{2} \rightarrow W$, there is a unique linear map $f: V \rightarrow W$ such that $\psi=f \circ \phi$.

In other words, the canonical linear map

$$
\operatorname{Hom}(V, W) \longrightarrow \operatorname{Bil}\left(V_{1} \times V_{2}, W\right), \quad f \longmapsto f \circ \phi
$$

is an isomorphism.
It is easy to see that there can be at most one tensor product in a very specific sense.
12.2. Lemma. Any two tensor products $(V, \phi),\left(V^{\prime}, \phi^{\prime}\right)$ are uniquely isomorphic in the following sense: There is a unique isomorphism $\iota: V \rightarrow V^{\prime}$ such that $\phi^{\prime}=\iota \circ \phi$.

Proof. Since $\phi^{\prime}: V_{1} \times V_{2} \rightarrow V^{\prime}$ is a bilinear map, there is a unique linear map $\iota: V \rightarrow V^{\prime}$ making the diagram above commute. For the same reason, there is a unique linear map $\iota^{\prime}: V^{\prime} \rightarrow V$ such that $\phi=\iota^{\prime} \circ \phi^{\prime}$. Now $\iota^{\prime} \circ \iota: V \rightarrow V$ is a linear map satisfying $\left(\iota^{\prime} \circ \iota\right) \circ \phi=\phi$, and id_{V} is another such map. But by the universal property, there is a unique such map, hence $\iota^{\prime} \circ \iota=\mathrm{id}_{V}$. In the same way, we see that $\iota \circ \iota^{\prime}=\mathrm{id}_{V^{\prime}}$, therefore ι is an isomorphism.

Beacuse of this uniqueness, it is allowable to simply speak of "the" tensor product of V_{1} and V_{2} (provided it exists! - but see below). The tensor product is denoted $V_{1} \otimes V_{2}$, and the bilinear map ϕ is written $\left(v_{1}, v_{2}\right) \mapsto v_{1} \otimes v_{2}$.

It remains to show existence of the tensor product.
12.3. Proposition. Let V_{1} and V_{2} be two vector spaces; choose bases B_{1} of V_{1} and B_{2} of V_{2}. Let V be the vector space with basis $B=B_{1} \times B_{2}$, and define a bilinear map $\phi: V_{1} \times V_{2} \rightarrow V$ via $\phi\left(b_{1}, b_{2}\right)=\left(b_{1}, b_{2}\right) \in B$ for $b_{1} \in B_{1}, b_{2} \in B_{2}$. Then (V, ϕ) is a tensor product of V_{1} and V_{2}.

Proof. Let $\psi: V_{1} \times V_{2} \rightarrow W$ be a bilinear map. We have to show that there is a unique linear map $f: V \rightarrow W$ such that $\psi=f \circ \phi$. Now if this relation is to be satisfied, we need to have $f\left(\left(b_{1}, b_{2}\right)\right)=f\left(\phi\left(b_{1}, b_{2}\right)\right)=\psi\left(b_{1}, b_{2}\right)$. This fixes the values of f on the basis B, hence there can be at most one such linear map. It remains to show that the linear map thus defined satisfies $f\left(\phi\left(v_{1}, v_{2}\right)\right)=\psi\left(v_{1}, v_{2}\right)$ for all $v_{1} \in V_{1}, v_{2} \in V_{2}$. But this is clear since ψ and $f \circ \phi$ are two bilinear maps that agree on pairs of basis elements.
12.4. Remark. This existence proof does not use that the bases are finite and so also works for infinite-dimensional vector spaces (given the fact that every vector space has a basis).
There is also a different construction that does not require the choice of bases. The price one has to pay is that one first needs to construct a gigantically huge space V (with basis $V_{1} \times V_{2}$), which one then divides by another huge space (incorporating all relations needed to make the map $V_{1} \times V_{2} \rightarrow V$ bilinear) to end up with the relatively small space $V_{1} \otimes V_{2}$. This is a kind of "brute force" approach, but it works.

Note that by the uniqueness lemma above, we always get "the same" tensor product, no matter which bases we choose.
12.5. Elements of $V_{1} \otimes V_{2}$. What do the elements of $V_{1} \otimes V_{2}$ look like? Some of them are values of the bilinear map $\phi: V_{1} \times V_{2} \rightarrow V_{1} \otimes V_{2}$, so are of the form $v_{1} \otimes v_{2}$. But these are not all! However, elements of this form span $V_{1} \otimes V_{2}$, and since

$$
\lambda\left(v_{1} \otimes v_{2}\right)=\left(\lambda v_{1}\right) \otimes v_{2}=v_{1} \otimes\left(\lambda v_{2}\right)
$$

(this comes from the bilinearity of ϕ), every element of $V_{1} \otimes V_{2}$ can be written as a (finite) sum of elements of the form $v_{1} \otimes v_{2}$.
The following result gives a more precise formulation that is sometimes useful.
12.6. Lemma. Let V and W be two vector spaces, and let w_{1}, \ldots, w_{n} be a basis of W. Then every element of $V \otimes W$ can be written uniquely in the form

$$
\sum_{i=1}^{n} v_{i} \otimes w_{i}=v_{1} \otimes w_{1}+\cdots+v_{n} \otimes w_{n}
$$

with $v_{1}, \ldots, v_{n} \in V$.
Proof. Let $x \in V \otimes W$; then by the discussion above, we can write

$$
x=y_{1} \otimes z_{1}+\cdots+y_{m} \otimes z_{m}
$$

for some $y_{1}, \ldots, y_{m} \in V$ and $z_{1}, \ldots, z_{m} \in W$. Since w_{1}, \ldots, w_{n} is a basis of W, we can write

$$
z_{j}=\alpha_{j 1} w_{1}+\cdots+\alpha_{j n} w_{n}
$$

with scalars $\alpha_{j k}$. Using the bilinearity of the map $(y, z) \mapsto y \otimes z$, we find that

$$
\begin{aligned}
x & =y_{1} \otimes\left(\alpha_{11} w_{1}+\cdots+\alpha_{1 n} w_{n}\right)+\cdots+y_{m} \otimes\left(\alpha_{m 1} w_{1}+\cdots+\alpha_{m n} w_{n}\right) \\
& =\left(\alpha_{11} y_{1}+\cdots+\alpha_{m 1} y_{m}\right) \otimes w_{1}+\cdots+\left(\alpha_{1 n} y_{1}+\cdots+\alpha_{m n} y_{m}\right) \otimes w_{n},
\end{aligned}
$$

which is of the required form.
For uniqueness, it suffices to show that

$$
v_{1} \otimes w_{1}+\cdots+v_{n} \otimes w_{n}=0 \quad \Longrightarrow \quad v_{1}=\cdots=v_{n}=0 .
$$

Assume that $v_{j} \neq 0$. There is a bilinear form ψ on $V \times W$ such that $\psi\left(v_{j}, w_{j}\right)=1$ and $\psi\left(v, w_{i}\right)=0$ for all $v \in V$ and $i \neq j$. By the universal property of the tensor product, there is a linear form f on $V \otimes W$ such that $f(v \otimes w)=\psi(v, w)$. Applying f to both sides of the equation, we find that

$$
0=f(0)=f\left(v_{1} \otimes w_{1}+\cdots+v_{n} \otimes w_{n}\right)=\psi\left(v_{1}, w_{1}\right)+\cdots+\psi\left(v_{n}, w_{n}\right)=1
$$

a contradiction.
In this context, one can think of $V \otimes W$ as being "the vector space W with scalars replaced by elements of V." This point of view will be useful when we want to enlarge the base field, e.g., in order to turn a real vector space into a complex vector space of the same dimension.
12.7. Basic Properties of the Tensor Product. Recall the axioms satisfied by a commutative "semiring" like the natural numbers:

$$
\begin{aligned}
a+(b+c) & =(a+b)+c \\
a+b & =b+a \\
a+0 & =a \\
a \cdot(b \cdot c) & =(a \cdot b) \cdot c \\
a \cdot b & =b \cdot a \\
a \cdot 1 & =a \\
a \cdot(b+c) & =a \cdot b+a \cdot c
\end{aligned}
$$

(The name "semi" ring refers to the fact that we do not require the existence of additive inverses.)
All of these properties have their analogues for vector spaces, replacing addition by direct sum, zero by the zero space, multiplication by tensor product, one by the one-dimensional space F, and equality by natural isomorphism:

$$
\begin{aligned}
& U \oplus(V \oplus W) \cong(U \oplus V) \oplus W \\
& U \oplus V \cong V \oplus U \\
& U \oplus 0 \cong U \\
& U \otimes(V \otimes W) \cong(U \otimes V) \otimes W \\
& U \otimes V \cong V \otimes U \\
& U \otimes F \cong U \\
& U \otimes(V \oplus W) \cong U \otimes V \oplus U \otimes W
\end{aligned}
$$

There is a kind of "commutative diagram":

(Finite-dim. Vector Spaces, \oplus, \otimes, \cong)
Let us prove some of the properties listed above.
Proof. We show that $U \otimes V \cong V \otimes U$. We have to exhibit an isomorphism, or equivalently, linear maps going both ways that are inverses of each other. By the universal property, a linear map from $U \otimes V$ into any other vector space W is "the same" as a bilinear map from $U \times V$ into W. So we get a linear map
$f: U \otimes V \rightarrow V \otimes U$ from the bilinear map $U \times V \rightarrow V \otimes U$ that sends (u, v) to $v \otimes u$. So we have $f(u \otimes v)=v \otimes u$. Similarly, there is a linear map $g: V \otimes U \rightarrow U \otimes V$ that satisfies $g(v \otimes u)=u \otimes v$. Since f and g are visibly inverses of each other, they are isomorphisms.

Before we go on to the next statement, let us make a note of the principle we have used.
12.8. Note. To give a linear map $f: U \otimes V \rightarrow W$, it is enough to specify $f(u \otimes v)$ for $u \in U, v \in V$. The map $U \times V \rightarrow W,(u, v) \mapsto f(u \otimes v)$ must be bilinear.

Proof. We now show that $U \otimes(V \otimes W) \cong(U \otimes V) \otimes W$. First fix $u \in U$. Then by the principle above, there is a linear map $f_{u}: V \otimes W \rightarrow(U \otimes V) \otimes W$ such that $f_{u}(v \otimes w)=(u \otimes v) \otimes w$. Now the map $U \times(V \otimes W) \rightarrow(U \otimes V) \otimes W$ that sends (u, x) to $f_{u}(x)$ is bilinear (check!), so we get a linear map $f: U \otimes(V \otimes W) \rightarrow(U \otimes V) \otimes W$ such that $f(u \otimes(v \otimes w))=(u \otimes v) \otimes w$. Similarly, there is a linear map g in the other direction such that $g((u \otimes v) \otimes w)=u \otimes(v \otimes w)$. Since f and g are inverses of each other (this needs only be checked on elements of the form $u \otimes(v \otimes w)$ or $(u \otimes v) \otimes w$, since these span the spaces), they are isomorphisms.

We leave the remaining two statements involving tensor products for the exercises. Now let us look into the interplay of tensor products with linear maps.
12.9. Definition. Let $f: V \rightarrow W$ and $f^{\prime}: V^{\prime} \rightarrow W^{\prime}$ be linear maps. Then $V \times V^{\prime} \rightarrow W \otimes W^{\prime},\left(v, v^{\prime}\right) \mapsto f(v) \otimes f^{\prime}\left(v^{\prime}\right)$ is bilinear and therefore corresponds to a linear map $V \otimes V^{\prime} \rightarrow W \otimes W^{\prime}$, which we denote by $f \otimes f^{\prime}$. I.e., we have

$$
\left(f \otimes f^{\prime}\right)\left(v \otimes v^{\prime}\right)=f(v) \otimes f^{\prime}\left(v^{\prime}\right) .
$$

12.10. Lemma. $\mathrm{id}_{V} \otimes \mathrm{id}_{W}=\mathrm{id}_{V \otimes W}$.

Proof. Obvious (check equality on elements $v \otimes w$).
12.11. Lemma. Let $U \xrightarrow{f} V \xrightarrow{g} W$ and $U^{\prime} \xrightarrow{f^{\prime}} V^{\prime} \xrightarrow{g^{\prime}} W^{\prime}$ be linear maps. Then

$$
\left(g \otimes g^{\prime}\right) \circ\left(f \otimes f^{\prime}\right)=(g \circ f) \otimes\left(g^{\prime} \circ f^{\prime}\right)
$$

Proof. Easy - check equality on $u \otimes u^{\prime}$.
12.12. Lemma. $\operatorname{Hom}(U, \operatorname{Hom}(V, W)) \cong \operatorname{Hom}(U \otimes V, W)$.

Proof. Let $f \in \operatorname{Hom}(U, \operatorname{Hom}(V, W))$ and define $\tilde{f}(u \otimes v)=(f(u))(v)$ (note that $f(u) \in \operatorname{Hom}(V, W)$ is a linear map from V to $W)$. Since $(f(u))(v)$ is bilinear in u and v, this defines a linear map $\tilde{f} \in \operatorname{Hom}(U \otimes V, W)$. Conversely, given $\varphi \in \operatorname{Hom}(U \otimes V, W)$, define $\hat{\varphi}(u) \in \operatorname{Hom}(V, W)$ by $(\hat{\varphi}(u))(v)=\varphi(u \otimes v)$. Then $\hat{\varphi}$ is a linear map from U to $\operatorname{Hom}(V, W)$, and the two linear(!) maps $f \mapsto \tilde{f}$ and $\varphi \mapsto \hat{\varphi}$ are inverses of each other.

In the special case $W=F$, the statement of the lemma reads

$$
\operatorname{Hom}\left(U, V^{*}\right) \cong \operatorname{Hom}(U \otimes V, F)=(U \otimes V)^{*}
$$

The following result is important, as it allows us to replace Hom spaces by tensor products (at least when the vector spaces involved are finite-dimensional).
12.13. Proposition. Let V and W be two vector spaces. There is a natural linear map

$$
\phi: V^{*} \otimes W \longrightarrow \operatorname{Hom}(V, W), \quad l \otimes w \longmapsto(v \mapsto l(v) w),
$$

which is an isomorphism when V or W is finite-dimensional.

Proof. We will give the proof here for the case that W is finite-dimensional, and leave the case " V finite-dimensional" for the exercises.

First we should check that ϕ is a well-defined linear map. By the general principle on maps from tensor products, we only need to check that $(l, w) \mapsto(v \mapsto l(v) w)$ is bilinear. Linearity in w is clear; linearity in l follows from the definition of the vector space structure on V^{*} :

$$
\left(\alpha_{1} l_{1}+\alpha_{2} l_{2}, w\right) \longmapsto\left(v \mapsto\left(\alpha_{1} l_{1}+\alpha_{2} l_{2}\right)(v) w=\alpha_{1} l_{1}(v) w+\alpha_{2} l_{2}(v) w\right)
$$

To show that ϕ is bijective when W is finite-dimensional, we choose a basis w_{1}, \ldots, w_{n} of W. Let $w_{1}^{*}, \ldots, w_{n}^{*}$ be the basis of W^{*} dual to w_{1}, \ldots, w_{n}. Define a map

$$
\phi^{\prime}: \operatorname{Hom}(V, W) \longrightarrow V^{*} \otimes W, \quad f \longmapsto \sum_{i=1}^{n}\left(w_{i}^{*} \circ f\right) \otimes w_{i}
$$

It is easy to see that ϕ^{\prime} is linear. Let us check that ϕ and ϕ^{\prime} are inverses. Recall that for all $w \in W$, we have

$$
w=\sum_{i=1}^{n} w_{i}^{*}(w) w_{i} .
$$

Now,

$$
\begin{aligned}
\phi^{\prime}(\phi(l \otimes w)) & =\sum_{i=1}^{n}\left(w_{i}^{*} \circ(v \mapsto l(v) w)\right) \otimes w_{i} \\
& =\sum_{i=1}^{n}\left(v \mapsto l(v) w_{i}^{*}(w)\right) \otimes w_{i}=\sum_{i=1}^{n} w_{i}^{*}(w) l \otimes w_{i} \\
& =l \otimes \sum_{i=1}^{n} w_{i}^{*}(w) w_{i}=l \otimes w .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\phi\left(\phi^{\prime}(f)\right) & =\phi\left(\sum_{i=1}^{n}\left(w_{i}^{*} \circ f\right) \otimes w_{i}\right)=\sum_{i=1}^{n}\left(v \mapsto w_{i}^{*}(f(v)) w_{i}\right) \\
& =\left(v \mapsto \sum_{i=1}^{n} w_{i}^{*}(f(v)) w_{i}\right)=(v \mapsto f(v))=f .
\end{aligned}
$$

Now assume that $V=W$ is finite-dimensional. Then by the above,

$$
\operatorname{Hom}(V, V) \cong V^{*} \otimes V
$$

in a natural way. But $\operatorname{Hom}(V, V)$ contains a special element, namely id ${ }_{V}$. What is the element of $V^{*} \otimes V$ that corresponds to it?
12.14. Remark. Let v_{1}, \ldots, v_{n} be a basis of V, and let $v_{1}^{*}, \ldots, v_{n}^{*}$ be the basis of V^{*} dual to $i t$. Then, with ϕ the canonical map from above, we have

$$
\phi\left(\sum_{i=1}^{n} v_{i}^{*} \otimes v_{i}\right)=\operatorname{id}_{V}
$$

Proof. Apply ϕ^{\prime} as defined above to id_{V}.
On the other hand, there is a natural bilinear form on $V^{*} \times V$, given by evaluation: $(l, v) \mapsto l(v)$. This gives the following.
12.15. Lemma. Let V be a finite-dimensional vector space. There is a linear form $T: V^{*} \otimes V \rightarrow F$ given by $T(l \otimes v)=l(v)$. It makes the following diagram commutative.

Proof. That T is well-defined is clear by the usual princpiple. (The vector space structure on V^{*} is defined in order to make evaluation bilinear!) We have to check that the diagram commutes. Fix a basis v_{1}, \ldots, v_{n}, with dual basis $v_{1}^{*}, \ldots, v_{n}^{*}$, and let $f \in \operatorname{Hom}(V, V)$. Then $\phi^{-1}(f)=\sum_{i}\left(v_{i}^{*} \circ f\right) \otimes v_{i}$, hence $T\left(\phi^{-1}(f)\right)=$ $\sum_{i} v_{i}^{*}\left(f\left(v_{i}\right)\right)$. The terms in the sum are exactly the diagonal entries of the matrix A representing f with respect to v_{1}, \ldots, v_{n}, so $T\left(\phi^{-1}(f)\right)=\operatorname{Tr}(A)=\operatorname{Tr}(f)$.

The preceding operation is called "contraction". More generally, it leads to linear maps

$$
U_{1} \otimes \cdots \otimes U_{m} \otimes V^{*} \otimes V \otimes W_{1} \otimes \cdots \otimes W_{n} \longrightarrow U_{1} \otimes \cdots \otimes U_{m} \otimes W_{1} \cdots \otimes W_{n}
$$

This in turn is used to define "inner multiplication"

$$
\left(U_{1} \otimes \cdots \otimes U_{m} \otimes V^{*}\right) \times\left(V \otimes W_{1} \otimes \cdots \otimes W_{n}\right) \longrightarrow U_{1} \otimes \cdots \otimes U_{m} \otimes W_{1} \cdots \otimes W_{n}
$$

(by first going to the tensor product). The roles of V and V^{*} can also be reversed. This is opposed to "outer multiplication", which is just the canonical bilinear map

$$
\left(U_{1} \otimes \cdots \otimes U_{m}\right) \times\left(W_{1} \otimes \cdots \otimes W_{n}\right) \longrightarrow U_{1} \otimes \cdots \otimes U_{m} \otimes W_{1} \cdots \otimes W_{n}
$$

An important example of inner multiplication is composition of linear maps.
12.16. Lemma. Let U, V, W be vector spaces. Then the following diagram commutes.

Proof. We have

$$
\begin{aligned}
\phi\left(l^{\prime} \otimes w\right) \circ \phi(l \otimes v) & =\left(v^{\prime} \mapsto l^{\prime}\left(v^{\prime}\right) w\right) \circ(u \mapsto l(u) v) \\
& =\left(u \mapsto l^{\prime}(l(u) v) w=l^{\prime}(v) l(u) w\right) \\
& =\phi\left(l^{\prime}(v) l \otimes w\right) .
\end{aligned}
$$

12.17. Remark. Identifying $\operatorname{Hom}\left(F^{m}, F^{n}\right)$ with the space $\operatorname{Mat}(n \times m, F)$ of $n \times$ m-matrices over F, we see that matrix multiplication is a special case of inner multiplication of tensors.
12.18. Remark. Another example of inner multiplication is given by evaluation of linear maps: the following diagram commutes.

Complexification of Vector Spaces. Now let us turn to another use of the tensor product. There are situations when one has a real vector space, which one would like to turn into a complex vector space with "the same" basis. For example, suppose that $V_{\mathbb{R}}$ is a real vector space and $W_{\mathbb{C}}$ is a complex vector space (writing the field as a subscript to make it clear what scalars we are considering), then W can also be considered as a real vector space (just by restricting the scalar multiplication to $\mathbb{R} \subset \mathbb{C}$). We write $W_{\mathbb{R}}$ for this space. Note that $\operatorname{dim}_{\mathbb{R}} W_{\mathbb{R}}=$ $2 \operatorname{dim}_{\mathbb{C}} W_{\mathbb{C}}$ - if b_{1}, \ldots, b_{n} is a \mathbb{C}-basis of W, then $b_{1}, i b_{1}, \ldots, b_{n}, i b_{n}$ is an \mathbb{R}-basis. Now we can consider an \mathbb{R}-linear map $f: V_{\mathbb{R}} \rightarrow W_{\mathbb{R}}$. Can we construct a \mathbb{C}-vector space $\tilde{V}_{\mathbb{C}}$ out of V in such a way that f extends to a \mathbb{C}-linear map $\tilde{f}: \tilde{V}_{\mathbb{C}} \rightarrow W_{\mathbb{C}}$? (Of course, for this to make sense, $V_{\mathbb{R}}$ has to sit in $\tilde{V}_{\mathbb{R}}$ as a subspace.)
It turns out that we can use the tensor product to do this.
12.19. Lemma and Definition. Let V be a real vector space. The real vector space $\tilde{V}=\mathbb{C} \otimes_{\mathbb{R}} V$ can be given the structure of a complex vector space by defining scalar multiplication as follows.

$$
\lambda(\alpha \otimes v)=(\lambda \alpha) \otimes v
$$

V is embedded into \tilde{V} as a real subspace via $\iota: v \mapsto 1 \otimes v$.
This \mathbb{C}-vector space \tilde{V} is called the complexification of V.
Proof. We first have to check that the equation above leads to a well-defined \mathbb{R} bilinear map $\mathbb{C} \times \tilde{V} \rightarrow \tilde{V}$. But this map is just

$$
\mathbb{C} \times\left(\mathbb{C} \otimes_{\mathbb{R}} V\right) \longrightarrow \mathbb{C} \otimes_{\mathbb{R}}\left(\mathbb{C} \otimes_{\mathbb{R}} V\right) \cong\left(\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}\right) \otimes_{\mathbb{R}} V \xrightarrow{m \otimes \text { id } V} \mathbb{C} \otimes_{\mathbb{R}} V
$$

where $m: \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \rightarrow \mathbb{C}$ is induced from multiplication on \mathbb{C} (which is certainly an \mathbb{R}-bilinear map). Since the map is in particular linear in the second argument, we also have the "distributive laws"

$$
\lambda(x+y)=\lambda x+\lambda y, \quad(\lambda+\mu) x=\lambda x+\mu x
$$

for $\lambda, \mu \in \mathbb{C}, x, y \in \tilde{V}$. The "associative law"

$$
\lambda(\mu x)=(\lambda \mu) x
$$

(for $\lambda, \mu \in \mathbb{C}, x \in \tilde{V}$) then needs only to be checked for $x=\alpha \otimes v$, in which case we have

$$
\lambda(\mu(\alpha \otimes v))=\lambda((\mu \alpha) \otimes v)=(\lambda \mu \alpha) \otimes v=(\lambda \mu)(\alpha \otimes v)
$$

The last statement is clear.
If we apply the representation of elements in a tensor product given in Lemma 12.6 to \tilde{V}, we obtain the following.
Suppose V has a basis v_{1}, \ldots, v_{n}. Then every element of \tilde{V} can be written uniquely in the form

$$
\alpha_{1} \otimes v_{1}+\cdots+\alpha_{n} \otimes v_{n} \quad \text { for some } \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}
$$

In this sense, we can consider \tilde{V} to have "the same" basis as V, but we allow complex coordinates instead of real ones.
On the other hand, we can consider the basis $1, i$ of \mathbb{C} as a real vector space, then we see that every element of \tilde{V} can be written uniquely as

$$
1 \otimes v+i \otimes v^{\prime}=\iota(v)+i \cdot \iota\left(v^{\prime}\right) \quad \text { for some } v, v^{\prime} \in V .
$$

In this sense, elements of \tilde{V} have a real and an imaginary part, which live in V (identifying V with its image under ι in \tilde{V}).
12.20. Proposition. Let V be a real vector space and W a complex vector space. Then for every \mathbb{R}-linear map $f: V_{\mathbb{R}} \rightarrow W_{\mathbb{R}}$, there is a unique \mathbb{C}-linear map $\tilde{f}: \tilde{V}_{\mathbb{C}} \rightarrow W_{\mathbb{C}}$ such that $\tilde{f} \circ \iota=f$ (where $\iota: V_{\mathbb{R}} \rightarrow \tilde{V}_{\mathbb{R}}$ is the map defined above).

Proof. The map $\mathbb{C} \times V \rightarrow W,(\alpha, v) \mapsto \alpha f(v)$ is \mathbb{R}-bilinear. By the universal property of the tensor product $\tilde{V}=\mathbb{C} \otimes_{\mathbb{R}} V$, there is a unique \mathbb{R}-linear map $\tilde{f}: \tilde{V} \rightarrow W$ such that $\tilde{f}(\alpha \otimes v)=\alpha f(v)$. Then we have

$$
\tilde{f}(\iota(v))=\tilde{f}(1 \otimes v)=f(v) .
$$

We have to check that \tilde{f} is in fact \mathbb{C}-linear. It is certainly additive (being \mathbb{R}-linear), and for $\lambda \in \mathbb{C}, \alpha \otimes v \in \tilde{V}$,

$$
\tilde{f}(\lambda(\alpha \otimes v))=\tilde{f}((\lambda \alpha) \otimes v)=\lambda \alpha f(v)=\lambda \tilde{f}(\alpha \otimes v)
$$

Since any \mathbb{C}-linear map \tilde{f} having the required property must be \mathbb{R}-linear and satisfy

$$
\tilde{f}(\alpha \otimes v)=\tilde{f}(\alpha(1 \otimes v))=\alpha \tilde{f}(1 \otimes v)=\alpha f(v),
$$

and since there is only one such map, \tilde{f} is uniquely determined.
12.21. Remark. The proposition can be stated in the form that

$$
\operatorname{Hom}_{\mathbb{R}}(V, W) \xrightarrow{\cong} \operatorname{Hom}_{\mathbb{C}}(\tilde{V}, W), \quad f \longmapsto \tilde{f},
$$

is an isomorphism. (The inverse is $F \mapsto F \circ \iota$.)
We also get that \mathbb{R}-linear maps between \mathbb{R}-vector spaces give rise to \mathbb{C}-linear maps between their complexifications.
12.22. Lemma. Let $f: V \rightarrow W$ be an \mathbb{R}-linear map between two \mathbb{R}-vector spaces. Then $\operatorname{id}_{\mathbb{C}} \otimes f: \tilde{V} \rightarrow \tilde{W}$ is \mathbb{C}-linear, extends f, and is the only such map.

Proof. Consider the following diagram.

Here, $F=\iota_{W} \circ f$ is an \mathbb{R}-linar map from V into the \mathbb{C}-vector space \tilde{W}, hence there is a unique \mathbb{C}-linear map $\tilde{F}: \tilde{V} \rightarrow \tilde{W}$ such that the diagram is commutative. We only have to verify that $\tilde{F}=\operatorname{id}_{\mathbb{C}} \otimes f$. But

$$
\left(\operatorname{id}_{\mathbb{C}} \otimes f\right)(\alpha \otimes v)=\alpha \otimes f(v)=\alpha(1 \otimes f(v))=\alpha\left(\iota_{W} \circ f\right)(v)=\alpha F(v)=\tilde{F}(\alpha \otimes v) .
$$

13. Symmetric and Alternating Products

Note. The material in this section is not required for the final exam.
Now we want to generalize the tensor product construction (in a sense) in order to obtain similar results for symmetric and skew-symmetric (or alternating) biand multilinear maps.
13.1. Reminder. Let V and W be vector spaces. A bilinear map $f: V \times V \rightarrow W$ is called symmetric if $f\left(v, v^{\prime}\right)=f\left(v^{\prime}, v\right)$ for all $v, v^{\prime} \in V . f$ is called alternating if $f(v, v)=0$ for all $v \in V$; this imples that f is skew-symmetric, i.e., $f\left(v, v^{\prime}\right)=$ $-f\left(v^{\prime}, v\right)$ for all $v, v^{\prime} \in V$. The converse is true if the field of scalars is not of characteristic 2 .

Let us generalize these notions to multilinear maps.
13.2. Definition. Let V and W be vector spaces, and let $f: V^{n} \rightarrow W$ be a multilinear map.
(1) f is called symmetric if

$$
f\left(v_{\sigma(1)}, v_{\sigma(2)}, \ldots, v_{\sigma(n)}\right)=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

for all $v_{1}, \ldots, v_{n} \in V$ and all $\sigma \in S_{n}$.
The symmetric multilinear maps form a linear subspace of the space of all multilinear maps $V^{n} \rightarrow W$, denoted $\operatorname{Sym}\left(V^{n}, W\right)$.
(2) f is called alternating if

$$
f\left(v_{1}, v_{2}, \ldots, v_{n}\right)=0
$$

for all $v_{1}, \ldots, v_{n} \in V$ such that $v_{i}=v_{j}$ for some $1 \leq i<j \leq n$.
The alternating multilinear maps form a linear subspace of the space of all multilinear maps $V^{n} \rightarrow W$, denoted $\operatorname{Alt}\left(V^{n}, W\right)$.
13.3. Remark. Since transpositions generate the symmetric group S_{n}, we have the following.
(1) f is symmetric if and only if it is a symmetric bilinear map in all pairs of variables, the other variables being fixed.
(2) f is alternating if and only if it is an alternating bilinear map in all pairs of variables, the other variables being fixed.
(3) Assume that the field of scalars has characteristic $\neq 2$. Then f is alternating if and only if

$$
f\left(v_{\sigma(1)}, v_{\sigma(2)}, \ldots, v_{\sigma(n)}\right)=\varepsilon(\sigma) f\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

for all $v_{1}, \ldots, v_{n} \in V$ and all $\sigma \in S_{n}$, where $\varepsilon(\sigma)$ is the sign of the permutation σ.
13.4. Example. We know from earlier that the determinant can be interpreted as an alternating multilinear map $V^{n} \rightarrow F$, where V is an n-dimensional vector space - consider the n vectors in V as the n columns in a matrix. Moreover, we had seen that up to scaling, the determinant is the only such map. This means that

$$
\operatorname{Alt}\left(V^{n}, F\right)=F \operatorname{det} .
$$

13.5. We have seen that we can express multilinear maps as elements of suitable tensor products: Assuming V and W to be finite-dimensional, a multilinear map $f: V^{n} \rightarrow W$ lives in

$$
\operatorname{Hom}\left(V^{\otimes n}, W\right) \cong\left(V^{*}\right)^{\otimes n} \otimes W
$$

Fixing a basis v_{1}, \ldots, v_{m} of V and its dual basis $v_{1}^{*}, \ldots, v_{n}^{*}$, any element of this tensor product can be written uniquely in the form

$$
f=\sum_{i_{1}, \ldots, i_{n}=1}^{m} v_{i_{1}}^{*} \otimes \cdots \otimes v_{i_{n}}^{*} \otimes w_{i_{1}, \ldots, i_{n}}
$$

with suitable $w_{i_{1} \ldots i_{n}} \in W$. How can we read off whether f is symmetric or alternating?
13.6. Definition. Let $x \in V^{\otimes n}$.
(1) x is called symmetric if $s_{\sigma}(x)=x$ for all $\sigma \in S_{n}$, where $s_{\sigma}: V^{\otimes n} \rightarrow V^{\otimes n}$ is the automorphism given by

$$
s_{\sigma}\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)=v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} .
$$

We will write $\operatorname{Sym}\left(V^{\otimes n}\right)$ for the subspace of symmetric tensors.
(2) x is called skew-symmetric if $s_{\sigma}(x)=\varepsilon(\sigma) x$ for all $\sigma \in S_{n}$.

We will write $\operatorname{Alt}\left(V^{\otimes n}\right)$ for the subspace of skew-symmetric tensors.
13.7. Proposition. Let $f: V^{n} \rightarrow W$ be a multilinear map, indentified with its image in $\left(V^{*}\right)^{\otimes n} \otimes W$. The following statements are equivalent.
(1) f is a symmetric multilinear map.
(2) $f \in\left(V^{*}\right)^{\otimes n} \otimes W$ lies in the subspace $\operatorname{Sym}\left(\left(V^{*}\right)^{\otimes n}\right) \otimes W$.
(3) Fixing a basis as above in 13.5, in the representation of f as given there, we have

$$
w_{i_{\sigma(1), \ldots, i_{\sigma(n)}}}=w_{i_{1}, \ldots, i_{n}}
$$

for all $\sigma \in S_{n}$.
Note that in the case $W=F$ and $n=2$, the equivalence of (1) and (3) is just the well-known fact that symmetric matrices encode symmetric bilinear forms.

Proof. Looking at (3), we have that $w_{i_{1}, \ldots, i_{n}}=f\left(v_{i_{1}}, \ldots, v_{i_{n}}\right)$. So symmetry of f (statement (1)) certainly implies (3). Assuming (3), we see that f is a linear combination of terms of the form

$$
\left(\sum_{\sigma \in \mathfrak{G}_{n}} v_{i_{\sigma}(1)}^{d} \otimes \cdots \otimes v_{i_{\sigma}(n)}^{d}\right) \otimes w
$$

(with $w=w_{i_{1}, \ldots, i_{n}}$), all of which are in the indicated subspace $\operatorname{Sym}\left(\left(V^{*}\right)^{\otimes n}\right) \otimes W$ of $\left(V^{*}\right)^{\otimes n} \otimes W$, proving (2). Finally, assuming (2), we can assume $f=x \otimes w$ with $x \in \operatorname{Sym}\left(\left(V^{*}\right)^{\otimes n}\right)$ and $w \in W$. For $y \in V^{\otimes n}$ and $z \in\left(V^{*}\right)^{\otimes n} \cong\left(V^{\otimes n}\right)^{*}$, we have $\left(s_{\sigma}(z)\right)\left(s_{\sigma}(y)\right)=z(y)$. Since $s_{\sigma}(x)=x$, we get $x\left(s_{\sigma}(y)\right)=x(y)$ for all $\sigma \in S_{n}$, which implies that $f\left(s_{\sigma}(y)\right)=x\left(s_{\sigma}(y)\right) \otimes w=x(y) \otimes w=f(y)$. So f is symmetric.
13.8. Proposition. Let $f: V^{n} \rightarrow W$ be a multilinear map, indentified with its image in $\left(V^{*}\right)^{\otimes n} \otimes W$. The following statements are equivalent.
(1) f is an alternating multilinear map.
(2) $f \in\left(V^{*}\right)^{\otimes n} \otimes W$ lies in the subspace $\operatorname{Alt}\left(\left(V^{*}\right)^{\otimes n}\right) \otimes W$.
(3) Fixing a basis as above in 13.5, in the representation of f as given there, we have

$$
w_{i_{\sigma(1)}, \ldots, i_{\sigma(n)}}=\varepsilon(\sigma) w_{i_{1}, \ldots, i_{n}}
$$

for all $\sigma \in S_{n}$.
The proof is similar to the preceding one.
The equivalence of (2) and (3) in the propositions above, in the special case $W=F$ and replacing V^{*} by V, gives the following. (We assume that F is of characteristic zero, i.e., that $\mathbb{Q} \subset F$.)
13.9. Proposition. Let V be an m-dimensional vector space with basis v_{1}, \ldots, v_{m}.
(1) The elements

$$
\sum_{\sigma \in S_{n}} v_{i_{\sigma(1)}} \otimes \cdots \otimes v_{i_{\sigma(n)}}
$$

for $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{n} \leq m$ form a basis of $\operatorname{Sym}\left(V^{\otimes n}\right)$. In particular,

$$
\operatorname{dim} \operatorname{Sym}\left(V^{\otimes n}\right)=\binom{m+n-1}{n}
$$

(2) The elements

$$
\sum_{\sigma \in S_{n}} \varepsilon(\sigma) v_{i_{\sigma(1)}} \otimes \cdots \otimes v_{i_{\sigma(n)}}
$$

for $1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq m$ form a basis of $\operatorname{Alt}\left(V^{\otimes n}\right)$. In particular,

$$
\operatorname{dim} \operatorname{Alt}\left(V^{\otimes n}\right)=\binom{m}{n} .
$$

Proof. It is clear that the given elements span the spaces. They are linearly independent since no two of them involve the same basis elements of $V^{\otimes n}$. (In the alternating case, note that the element given above vanishes if two of the i_{j} are equal.)

The upshot of this is that (taking $W=F$ for simplicity) we have identified

$$
\operatorname{Sym}\left(V^{n}, F\right)=\operatorname{Sym}\left(\left(V^{*}\right)^{\otimes n}\right) \subset\left(V^{*}\right)^{\otimes n}=\left(V^{\otimes n}\right)^{*}
$$

and

$$
\operatorname{Alt}\left(V^{n}, F\right)=\operatorname{Alt}\left(\left(V^{*}\right)^{\otimes n}\right) \subset\left(V^{*}\right)^{\otimes n}=\left(V^{\otimes n}\right)^{*}
$$

as subspaces of $\left(V^{\otimes n}\right)^{*}$. But what we would like to have are spaces $\operatorname{Sym}^{n}(V)$ and $\operatorname{Alt}^{n}(V)$ such that we get identifications

$$
\operatorname{Sym}\left(V^{n}, F\right)=\operatorname{Hom}\left(\operatorname{Sym}^{n}(V), F\right)=\left(\operatorname{Sym}^{n}(V)\right)^{*}
$$

and

$$
\operatorname{Alt}\left(V^{n}, F\right)=\operatorname{Hom}\left(\operatorname{Alt}^{n}(V), F\right)=\left(\operatorname{Alt}^{n}(V)\right)^{*}
$$

Now there is a general principle that says that subspaces are "dual" to quotient spaces: If W is a subspace of V, then W^{*} is a quotient space of V^{*} in a natural way, and if W is a quotient of V, then W^{*} is a subspace of V^{*} in a natural way. So in order to translate the subspace $\operatorname{Sym}\left(V^{n}, F\right)$ (or $\operatorname{Alt}\left(V^{n}, F\right)$) of the dual space of $V^{\otimes n}$ into the dual space of something, we should look for a suitable quotient of $V^{\otimes n}$!
13.10. Definition. Let V be a vector space, $n>0$ an integer.
(1) Let $W \subset V^{\otimes n}$ be the subspace spanned by all elements of the form

$$
v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}-v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)}
$$

for $v_{1}, v_{2}, \ldots, v_{n} \in V$ and $\sigma \in S_{n}$. Then the quotient space

$$
\operatorname{Sym}^{n}(V)=S^{n}(V)=V^{\otimes n} / W
$$

is called the nth symmetric tensor power of V. The image of $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}$ in $S^{n}(V)$ is denoted $v_{1} \cdot v_{2} \cdots v_{n}$.
(2) Let $W \subset V^{\otimes n}$ be the subspace spanned by all elements of the form

$$
v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}
$$

for $v_{1}, v_{2}, \ldots, v_{n} \in V$ such that $v_{i}=v_{j}$ for some $1 \leq i<j \leq n$. Then the quotient space

$$
\operatorname{Alt}^{n}(V)=\bigwedge^{n}(V)=V^{\otimes n} / W
$$

is called the nth alternating tensor power of V. The image of $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}$ in $\Lambda^{n}(V)$ is denoted $v_{1} \wedge v_{2} \wedge \cdots \wedge v_{n}$.

13.11. Theorem.

(1) The map

$$
\varphi: V^{n} \longrightarrow S^{n}(V), \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \longmapsto v_{1} \cdot v_{2} \cdots v_{n}
$$

is multilinear and symmetric. For every multilinear and symmetric map $f: V^{n} \rightarrow U$, there is a unique linear map $g: S^{n}(V) \rightarrow U$ such that $f=g \circ \varphi$.
(2) The map

$$
\psi: V^{n} \longrightarrow \wedge^{n}(V), \quad\left(v_{1}, v_{2}, \ldots, v_{n}\right) \longmapsto v_{1} \wedge v_{2} \wedge \cdots \wedge v_{n}
$$

is multilinear and alternating. For every multilinear and alternating map $f: V^{n} \rightarrow U$, there is a unique linear map $g: \bigwedge^{n}(V) \rightarrow U$ such that $f=g \circ \psi$.
These statements tell us that the spaces we have defined do what we want: We get identifications

$$
\operatorname{Sym}\left(V^{n}, U\right)=\operatorname{Hom}\left(S^{n}(V), U\right) \quad \text { and } \quad \operatorname{Alt}\left(V^{n}, U\right)=\operatorname{Hom}\left(\bigwedge^{n}(V), U\right)
$$

Proof. We prove the first part; the proof of the second part is analogous. First, it is clear that φ is multilinear: it is the composition of the multilinear map $\left(v_{1}, \ldots, v_{n}\right) \mapsto v_{1} \otimes \cdots \otimes v_{n}$ and the linear projection map from $V^{\otimes n}$ to $S^{n}(V)$. We have to check that φ is symmetric. But

$$
\varphi\left(v_{\sigma(1)}, \ldots, v_{\sigma(n)}\right)-\varphi\left(v_{1}, \ldots, v_{n}\right)=v_{\sigma(1)} \cdots v_{\sigma(n)}-v_{1} \cdots v_{n}=0
$$

since it is the image in $S^{n}(V)$ of $v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}-v_{1} \otimes \cdots \otimes v_{n} \in W$. Now let $f: V^{n} \rightarrow U$ be multilinear and symmetric. Then there is a unique linear map $f^{\prime}: V^{\otimes n} \rightarrow U$ corresponding to f, and by symmetry of f, we have

$$
f^{\prime}\left(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}-v_{1} \otimes \cdots \otimes v_{n}\right)=0
$$

So f^{\prime} vanishes on all the elements of a spanning set of W. Hence it vanishes on W and therefore induces a unique linear map $g: S^{n}(V)=V^{\otimes n} / W \rightarrow U$.

The two spaces $\operatorname{Sym}\left(V^{\otimes n}\right)$ and $S^{n}(V)$ (resp., $\operatorname{Alt}\left(V^{\otimes n}\right)$ and $\left.\bigwedge^{n}(V)\right)$ are closely related. We assume that F is of characteristic zero.

13.12. Proposition.

(1) The maps $\operatorname{Sym}\left(V^{\otimes n}\right) \subset V^{\otimes n} \rightarrow S^{n}(V)$ and

$$
S^{n}(V) \longrightarrow \operatorname{Sym}\left(V^{\otimes n}\right), \quad v_{1} \cdot v_{2} \cdots v_{n} \longmapsto \frac{1}{n!} \sum_{\sigma \in S_{n}} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)}
$$

are inverse isomorphisms. In particular, if b_{1}, \ldots, b_{m} is a basis of V, then the elements

$$
b_{i_{1}} \cdot b_{i_{2}} \cdots b_{i_{n}} \quad \text { with } 1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{n} \leq m
$$

form a basis of $S^{n}(V)$, and $\operatorname{dim} S^{n}(V)=\binom{m+n-1}{n}$.
(2) The maps $\operatorname{Alt}\left(V^{\otimes n}\right) \subset V^{\otimes n} \rightarrow \bigwedge^{n}(V)$ and

$$
\bigwedge^{n}(V) \longrightarrow \operatorname{Alt}\left(V^{\otimes n}\right), \quad v_{1} \wedge v_{2} \wedge \cdots \wedge v_{n} \longmapsto \frac{1}{n!} \sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)}
$$

are inverse isomorphisms. In particular, if b_{1}, \ldots, b_{m} is a basis of V, then the elements

$$
b_{i_{1}} \wedge b_{i_{2}} \wedge \cdots \wedge b_{i_{n}} \quad \text { with } 1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq m
$$

form a basis of $\bigwedge^{n}(V)$, and $\operatorname{dim} \bigwedge^{n}(V)=\binom{m}{n}$.
Proof. It is easy to check that the specified maps are well-defined linear maps and inverses of each other, so they are isomorphisms. The other statements then follow from the description in Prop. 13.9.

Note that if $\operatorname{dim} V=n$, then we have

$$
\bigwedge^{n}(V)=F\left(v_{1} \wedge \cdots \wedge v_{n}\right)
$$

for any basis v_{1}, \ldots, v_{n} of V.
13.13. Corollary. Let $v_{1}, \ldots, v_{n} \in V$. Then v_{1}, \ldots, v_{n} are linearly independent if and only if $v_{1} \wedge \cdots \wedge v_{n} \neq 0$.

Proof. If v_{1}, \ldots, v_{n} are linearly dependent, then we can express one of them, say v_{n}, as a linear combination of the others:

$$
v_{n}=\lambda_{1} v_{1}+\cdots+\lambda_{n-1} v_{n-1}
$$

Then

$$
\begin{aligned}
v_{1} \wedge \cdots \wedge v_{n-1} \wedge v_{n} & =v_{1} \wedge \cdots \wedge v_{n-1} \wedge\left(\lambda_{1} v_{1}+\cdots+\lambda_{n-1} v_{n-1}\right) \\
& =\lambda_{1}\left(v_{1} \wedge \cdots \wedge v_{n-1} \wedge v_{1}\right)+\cdots+\lambda_{n-1}\left(v_{1} \wedge \cdots \wedge v_{n-1} \wedge v_{n-1}\right) \\
& =0+\cdots+0=0
\end{aligned}
$$

On the other hand, when v_{1}, \ldots, v_{n} are linearly independent, they form part of a basis $v_{1}, \ldots, v_{n}, \ldots, v_{m}$, and by Prop. 13.12, $v_{1} \wedge \cdots \wedge v_{n}$ is a basis element of $\bigwedge^{n}(V)$, hence nonzero.
13.14. Lemma and Definition. Let $f: V \rightarrow W$ be linear. Then f induces linear maps $S^{n}(f): S^{n}(V) \rightarrow S^{n}(W)$ and $\bigwedge^{n}(f): \bigwedge^{n}(V) \rightarrow \bigwedge^{n}(W)$ satisfying
$S^{n}(f)\left(v_{1} \cdots v_{n}\right)=f\left(v_{1}\right) \cdots f\left(v_{n}\right), \quad \bigwedge^{n}(f)\left(v_{1} \wedge \cdots \wedge v_{n}\right)=f\left(v_{1}\right) \wedge \cdots \wedge f\left(v_{n}\right)$.

Proof. The map $V^{n} \rightarrow S^{n}(W),\left(v_{1}, \ldots, v_{n}\right) \mapsto f\left(v_{1}\right) \cdots f\left(v_{n}\right)$, is a symmetric multilinear map and therefore determines a unique linear map $S^{n}(f): S^{n}(V) \rightarrow$ $S^{n}(W)$ with the given property. Similarly for $\bigwedge^{n}(f)$.
13.15. Proposition. Let $f: V \rightarrow V$ be a linear map, with V an n-dimensional vector space. Then $\bigwedge^{n}(f): \bigwedge^{n}(V) \rightarrow \bigwedge^{n}(V)$ is multiplication by $\operatorname{det}(f)$.

Proof. Since $\bigwedge^{n}(V)$ is a one-dimensional vector space, $\bigwedge^{n}(f)$ must be multiplication by a scalar. We pick a basis v_{1}, \ldots, v_{n} of V and represent f by a matrix A with respect to this basis. The scalar in question is the element $\delta \in F$ such that

$$
f\left(v_{1}\right) \wedge f\left(v_{2}\right) \wedge \cdots \wedge f\left(v_{n}\right)=\delta\left(v_{1} \wedge v_{2} \wedge \cdots \wedge v_{n}\right) .
$$

The vectors $f\left(v_{1}\right), \ldots, f\left(v_{n}\right)$ correspond to the columns of the matrix A, and δ is an alternating multilinear form on them. Hence δ must be $\operatorname{det}(A)$, up to a scalar factor. Taking f to be id_{V}, we see that the scalar factor is 1 .
13.16. Corollary. Let V be a finite-dimensional vector space, $f, g: V \rightarrow V$ two endomorphisms. Then $\operatorname{det}(g \circ f)=\operatorname{deg}(g) \operatorname{det}(f)$.

Proof. Let $n=\operatorname{dim} V$. We have $\bigwedge^{n}(g \circ f)=\bigwedge^{n} g \circ \bigwedge^{n} f$, and the map on the left is multiplication by $\operatorname{det}(g \circ f)$, whereas the map on the right is multiplication by $\operatorname{det}(g) \operatorname{det}(f)$.

We see that, similarly to the trace $\operatorname{Hom}(V, V) \cong V^{*} \otimes V \rightarrow F$, our constructions give us a natural (coordinate-free) definition of the determinant of an endomorphism.

References

[BR1] T.S. Blyth and E.F. Robertson: Basic Linear Algebra. Springer Undergraduate Mathematics Series, 2002.
[BR2] T.S. Blyth and E.F. Robertson: Further Linear Algebra. Springer Undergraduate Mathematics Series, 2002.
[J] K. JÄnich: Linear Algebra. Springer Undergraduate Texts in Mathematics, 1994
[KM] A. Kostrykin and Y. Manin: Linear Algebra and Geometry. Gordan and Breach, 1988.
$E_{\lambda}(f), 2$
$P_{f}, 2$
diag, 2
$M_{f}, 4$
${ }_{\bigoplus_{j}, 9}{ }_{i \in I} U_{i}, 11$
$\oplus, 11$
$\bigoplus_{i \in I} f_{i}, 12$
$B(\lambda, m), 15$
exp, 16
$B^{\prime}(\lambda, \mu, m), 17$
$V^{*}, 18$
$\left(v_{1}^{*}, \ldots, v_{n}^{*}\right), 19$
$\alpha_{V}, 20$
$V^{* *}, 20$
$\mathrm{ev}_{v}, 20$
$\mathrm{ev}_{\alpha}, 21$
$f^{\top}, 21$
$P^{-\top}, 22$
S°, 23
$\|\cdot\|, 25$
$\|\cdot\|_{\infty}, 25$
$\|\cdot\|_{2}, 25$
$\|\cdot\|_{1}, 25$
$d(\cdot, \cdot), 26$
$\operatorname{Bil}(V, W), 27$
$\operatorname{Bil}(V), 27$
$\phi_{L}, 28$
$\phi_{R}, 28$
$\beta_{V, W}, 29$
$\langle\cdot, \cdot\rangle, 36$
$\bar{V}, 36$
$\|\cdot\|, 37$
$\perp, 37$
$d(\cdot, \cdot), 38$
$f^{*}, 40$
$A^{*}, 43$
$\bigoplus_{i \in I} V_{i}, 49$
$\oplus, 49$
$\iota, 50$
$\iota, 51$
$V_{1} \otimes V_{2}, 52$
$v_{1} \otimes v_{2}, 52$
$f \otimes f^{\prime}, 54$
$\tilde{V}, 57$
$\tilde{f}, 58$
$\operatorname{Sym}\left(V^{n}, W\right), 59$
$\operatorname{Alt}\left(V^{n}, W\right), 60$
$\operatorname{Sym}\left(V^{\otimes n}\right), 60$
$\operatorname{Alt}\left(V^{\otimes n}\right), 60$
$S^{n}, 62$
$v_{1} \cdot v_{2}, 62$
$\bigwedge^{n}, 62$
$v_{1} \wedge v_{2}, 62$
$S^{n}(f), 64$
$\Lambda^{n}(f), 64$

InDEX

adjoint, 41
image, 42
kernel, 42
matrix representation, 43
properties, 41
algebraic multiplicity, 2
algebraically closed, 5
alternating bilinear form, 27, 31
alternating bilinear map, 59
alternating multilinear map, 59
equivalent statements, 61
alternating tensor power, 62
basis, 63
dimension, 63
linear map, 64
nth alternating tensor power, 62
annihilator, 23
dimension formula, 23
Axiom of Choice, 12
basis
dual, 19
basis change bilinear form, 30
dual, 22
Bessel's inequality, 39
bidual, 20
relation to $\alpha_{V}, 22$
bilinear form, 27
alternating, 27, 31
basis change, 30
isomorphism $\operatorname{Bil}(V, W) \rightarrow \operatorname{Hom}\left(V, W^{*}\right)$, 28
matrix representation, 30
non-degenerate, 28,31
rank, 34
represents linear form, 29
signature, 34
skew-symmetric, 27, 31
symmetric, 27, 31
can be diagonalized, 32
classification, 32
classification over $\mathbb{C}, 34$
classification over $\mathbb{R}, 34$
bilinear map, 27
alternating, 59
skew-symmetric, 59
symmetric, 59
block diagonal matrix, 9
canonical map α_{V}
relation to $f^{\top \top}, 22$
canonical map $\alpha_{v}, 20$
Cauchy-Schwarz inequality, 37
Cayley-Hamilton Theorem, 3
characteristic polynomial, 2
classification of symmetric bilinear forms, 32
classification of symmetric bilinear forms over \mathbb{C}, 34
classification of symmetric bilinear forms over $\mathbb{R}, 34$
complex inner product space, 36
complexification, 57
linear map, 58
congruent matrices, 31
conic section, 47
conjugate-linear, 36
contraction, 56
coordinate map, 19
coprime polynomials, 12
criterion for positive definiteness, 35
determinant
is multiplicative, 65
diagonal part endomorphism, 15
uniqueness, 18
diagonalizable, 2
minimal polynomial, 5
nilpotent matrix/endomorphism is zero, 7
simultaneously, 17
diagonalize a matrix, 33
differential equations
linear, first-order with constant
coefficients, 16
direct sum
external,49
of endomorphisms, 12
relation to characteristic polynomial, 12
relation to minimal polynomial, 12
of subspaces, 11
orthogonal, 32
universal property, 50
distance, 38
division of polynomials, 4
dual
basis, 19
uniqueness, 19
basis change, 22
image, 24
kernel, 24
linear map, 21
inverse, 22
matrix representation, 22
of canonical map $\alpha_{V}, 23$
vector space, 18
dimension, 19
eigenspace, 2
generalized, 14
λ-eigenspace, 2
eigenvalue, 2
eigenvector, 2
endomorphism ring
is isomorphic to $V^{*} \otimes V, 55$
equivalent norms, 26
euclidean norm, 25
evaluation map, 21
evaluation paring, 28
exponential
matrix, 16
external direct sum,49
filtration, 10
Fourier expansion, 40
generalized eigenspace, 14
geometric multiplicity, 2
Gram-Schmidt Orthonormalization Process, 38

Hermitian matrix, 43
Hilbert matrix, 31
ideal, 5
inner multiplication, 56
composition, 56
evaluation, 57
inner product, 36
inner product space, 36
complex, 36
real, 36
invariant subspace, 12
f-invariant subspace, 12
isometry, 41
characterization, 42
Jordan Normal Form, 14
general version, 16
real, 16
kernel matrix, 25
Lagrange interpolation polynomials, 21
left kernel, 28
linear form, 18
linear functional, 18
matrix exponential, 16
matrix representation
adjoint, 43
dual linear map, 22
of bilinear forms, 30
maximum norm, 25
metric, 26
minimal polynomial, 4 of diagonalizable matrix/endomorphism, 5
of nilpotent matrix/endomorphism, 7
uniqueness, 4
minimum polynomial, see also minimal polynomial, 4
multilinear map
alternating, 59
equivalent statements, 61
symmetric, 59
equivalent statements, 60
multiplicity
algebraic, 2,
geometric, 2
nilpotent, 7
nilpotent matrix/endomorphism characteristic polynomial, 9
diagonalizable iff zero, 7
minimal polynomial, 7
structure of, 7, 9
nilpotent part endomorphism, 15
uniqueness, 18
non-degenerate bilinear form, 28, 31
norm, 25,38
equivalent, 26
is continuous, 26
normal, 41
normal endomorphism
complex inner product space
is orthodiagonalizable, 46
is self-adjoint iff all eigenvalues are real, 46
properties, 44
normal matrix, 43
ONB, 37
orientation preserving, 47
orthodiagonalizable, 44
criterion complex inner product space, 46
criterion real inner product space, 46
orthogonal, 37
subspace, 32
orthogonal complement, 32
orthogonal direct sum, 32, 45
orthogonal matrix, 43
orthogonal set, 37
is linearly independent, 39
orthogonally diagonalized, 44
orthogonally similar, 47
orthonormal, 37
orthonormal basis, 37
equivalent statements, 39
orthonormal set, 37
orthonormalization, 38
outer multiplication, 56
Parseval's identity, 40
polynomial
characteristic, 2
coprime, 12
division (algorithm), 4
minimal, 4
positive definite, 34
positive definiteness
criterion, 35
principal axes, 47
transformation, 47
principal ideal domain, 5
quadric, 47
rank of a bilinear form, 34
real inner product space, 36
Real Jordan Normal Form, 16
right kernel, 28
self-adjoint, 41
self-adjoint endomorphism
real inner product space is orthodiagonalizable, 46
semi-simple, 16
semiring, 53
semiring of vector spaces, 53
sesquilinear form, 36
signature of a bilinear form, 34
simultaneously diagonalizable, 17
skew-symmetric bilinear form, 27,31
skew-symmetric bilinear map, 59
skew-symmetric tensor, 60
Spectral Theorem, 46
subspace of alternating tensors
dimension, 61
subspace of symmetric tensors dimension, 61
sum norm, 25
symmetric bilinear form, 27, 31
can be diagonalized, 32
classification, 32
classification over $\mathbb{C}, 34$
classification over $\mathbb{R}, 34$
symmetric bilinear map, 59
symmetric matrix, 43
is diagonalizable, 47
symmetric multilinear map, 59
equivalent statements, 60
symmetric tensor, 60
symmetric tensor power, 62
basis, 63
dimension, 63
linear map, 64
nth symmetric tensor power, 62
tensor product, 51
elements, 52
existence, 51
linear map, 54
of finite dimensional vector spaces
is isomorphic to $\operatorname{Hom}(V, W), 54$
uniqueness, 51
transpose linear map, see also dual linear map
triangle inequality, 25, 37
unit vector, 37
unitary matrix, 43
Vandermonde Matrix, 21
Zorn's Lemma, 12, 20

