Linear algebra 2: exercises for Section 5

Ex. 5.1. In each of the following cases indicate whether there exists a real 4×4 -matrix A with the given properties. Here I denotes the 4×4 identity matrix.

- 1. $A^2 = 0$ and A has rank 1;
- 2. $A^2 = 0$ and A has rank 2;
- 3. $A^2 = 0$ and A has rank 3;
- 4. A has rank 2, and A I has rank 1;
- 5. A has rank 2, and A I has rank 2;
- 6. A has rank 2, and A I has rank 3.

(HW) Ex. 5.2. For the following matrices A, B give their Jordan normal forms, and decide if they are similar.

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 1 & 1 & 2 & -1 \\ 0 & 0 & 2 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 0 & 0 & -2 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Ex. 5.3. Give the Jordan normal form of the matrix

$$\left(\begin{array}{cccc}
2 & 2 & 0 & -1 \\
0 & 0 & 0 & 1 \\
1 & 5 & 2 & -2 \\
0 & -4 & 0 & 4
\end{array}\right)$$

Ex. 5.4. Give the Jordan normal form of the matrix

$$\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)$$

1

(HW) Ex. 5.5. Let A be the 3×3 matrix

$$A = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{array}\right).$$

Compute A^{100} .

Ex. 5.6. Consider the matrix $A = \begin{pmatrix} 1 & 4 \\ -1 & 5 \end{pmatrix}$.

- 1. Give the eigenvalues and eigenspaces of A.
- 2. Give a diagonal matrix D and a nilpotent matrix N for which D + N = A and DN = ND.
- 3. Give a formula for A^n when n = 1, 2, 3, ...

(HW) Ex. 5.7. For the matrix

$$A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

give a diagonalizable matrix D and a nilpotent matrix N so that A = D + N and ND = DN.

Ex. 5.8. For $A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 4 & -2 \\ 0 & 2 & 0 \end{pmatrix}$ compute the matrix e^A .