Linear algebra 2: exercises for Chapter 3 (Cayley-Hamilton)

Ex. 2.1. What is the remainder when one divides the polynomial $x^5 + x$ by $x^2 + 1$?

Ex. 2.2. Give the minimal polynomial and the characteristic polynomial of the matrices

Ex. 2.3. Suppose that a 2×2 matrix A has two distinct eigenvalues λ and μ . Show that the image of the matrix $A - \lambda$ is the eigenspace with eigenvalue μ .

Ex. 2.4. Is the matrix $\begin{pmatrix} 0 & 0 & -3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ diagonalizable over \mathbb{R} ? And over \mathbb{C} ?

Ex. 2.5. If $f: \mathbb{R}^3 \to \mathbb{R}^3$ is the projection on a plane, what is the minimum polynomial of f? What is the minimum polynomial of relection in a plane?

Ex. 2.6. Compute the characteristic polynomial of the matrix

$$A = \left(\begin{array}{rrr} 1 & -9 & 4 \\ 1 & -4 & 1 \\ 1 & -7 & 3 \end{array}\right).$$

Compute A^3 (use Cayley-Hamilton!)

Ex. 2.7. Let V be the 4 dimensional vector space of polynomial functions $\mathbb{R} \to \mathbb{R}$ of degree at most 3. Let $T: V \to V$ be the map that sends a polynomial p to its derivative T(p) = p'. Show that T is a linear map. Is T diagonalizable?

Ex. 2.8. For each $\alpha \in \mathbb{R}$, determine the characteristic and minimal polynomials of

$$A_{\alpha} = \left(\begin{array}{ccc} 1 - \alpha & \alpha & 0\\ 2 - \alpha & \alpha - 1 & \alpha\\ 0 & 0 & -1 \end{array}\right) \ .$$

For which values of α is A_{α} diagonalizable?