Linear algebra 2: exercises for Chapter 7 and first part of Chapter 8

Let V and W be normed vector spaces over \mathbb{R} . For a linear map $f: V \to W$ let

$$||f|| = \sup_{x \in V, \ ||x||=1} ||f(x)||$$

Ex. 7.1. Consider $V = \mathbb{R}^n$ with the standard inner product and the norm $|| \cdot ||_2$. Suppose that $f: V \to V$ is a diagonalizable map whose eigenspaces are orthogonal (i.e., V has an orthogonal basis consisting of eigenvectors of f). Show that ||f|| as defined above is equal to the largest absolute value of an eigenvalue of f.

Ex. 7.2.

- 1. Show that $B(V, W) = \{f \in \text{Hom}(V, W): ||f|| < \infty\}$ is a subspace of Hom(V, W), and that $|| \cdot ||$ is a norm on B(V, W).
- 2. Show that B(V, W) = Hom(V, W) if V is finite-dimensional.
- 3. Taking V = W above, we obtain a norm on B(V, V). Show that $||f \circ g|| \le ||f|| \cdot ||g||$ for all $f, g \in B(V, V)$.

Ex. 7.3. Consider the rotation map $f: \mathbb{R}^2 \to \mathbb{R}^2$ which rotates the plane by 45 degrees. For any norm on \mathbb{R}^2 the previous exercise defines a norm ||f||. Show that ||f|| = 1 when we take the standard euclidean norm $|| \cdot ||_2$ on \mathbb{R}^2 . What is ||f|| when we take the maximum norm $|| \cdot ||_{\infty}$ on \mathbb{R}^2 ?

Ex. 7.4. Consider the vector space V of polynomial functions $[0,1] \to \mathbb{R}$ with the supnorm: $||f|| = \sup_{0 \le x \le 1} |f(x)|$. Consider the functional $\phi \in V^*$ defined by $\phi(f) = f'(0)$. Show that $\phi \notin B(V, \mathbb{R})$. [Hint: consider the polynomials $(1-x)^n$ for n = 1, 2, ...]

Ex. 7.5. What is the sine of the matrix $\begin{pmatrix} \pi & \pi \\ 0 & \pi \end{pmatrix}$?

Ex. 8.1. Let V_1, V_2, U, W be vector spaces over a field F, and let $b: V_1 \times V_2 \to U$ be a bilinear map. Show that for each linear map $f: U \to W$ the composition $f \circ b$ is bilinear.

Ex. 8.2. Let V, W be vector spaces over a field F. If $b: V \times V \to W$ is both bilinear and linear, show that b is the zero map.

Ex. 8.3. Give an example of two vector spaces V, W over a field F and a bilinear map $b: V \times V \to W$ for which the image of b is not a subspace of W.

Ex. 8.4. Let V, W be two 2-dimensional subspaces of the standard \mathbb{R} -vector space \mathbb{R}^3 . The restriction of the standard inner product $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ to $\mathbb{R}^3 \times W$ is a bilinear map $b: \mathbb{R}^3 \times W \to \mathbb{R}$.

- 1. What is the left kernel of b? And the right kernel?
- 2. Let $b': V \times W \to \mathbb{R}$ be the restriction of b to $V \times W$. Show that b' is degenerate if and only if the angle between V and W is 90°.

Ex. 8.5. Let V be a vector space over \mathbb{R} , and let $b: V \times V \to \mathbb{R}$ be a symmetric bilinear map. Let the "quadratic form" associated to b be the map $q: V \to \mathbb{R}$ that sends $x \in V$ to b(x, x). Show that b is uniquely determined by q.

Ex. 8.6. Let V be a vector space over \mathbb{R} , and let $b: V \times V \to \mathbb{R}$ be a bilinear map. Show that b can be uniquely written as a sum of a symmetric and a skew-symmetric bilinear form.