488 CHAPTER 9 COMPLEX SCALARS
Left-multiplication by J yields .

|

Jes = Aes + ey, Je, = e, + e, Je; = Ae; + e.. ' ‘

Je, = Ae, + ¢, Je, = 0. : ‘

|

The matrix J in Example 2 is an example of a Jordan block ma:~ ‘ |'

An m X m matrix is a Jordan block if it is structured as follows

1. All diagonal entries are equal.
2. Each entry immediately above a diagonal entry is 1.

3. All other entries are zero. |

Thus, the matrix J in Example 2 is a Jordan block. However, the mz:-
Example 1 is not a Jordan block, since the entry 5 at the bottom of the dizz |
does not have a 1 just above it. A Jordan block has the properties descr ==t |
the next theorem. These properties were illustrated in Example 2, and wz =2
a formal proof to you if you desire one. Notice that, for an m X m Jordan =

A 10 --- 0 0]
0Al <+ 00 1
|

J = bl
000 Al
000 0 A
we have just one string:
J = AL e >, = 7 —e¢—>e—0.

Let J be an m X m Jordan block with diagonal entries all equal to A. ,
Then the following properties hold:

1. (J/ —Al)e;=e,_, for 1l <i=m,and (J— Ae, = 0.
2. (J =AD"= 0,but (J — Al) # O fori < m.

3. Je; = Ae; + e, for 1 < i = m, whereas Je, = Xe,.

We have seen that not every n X n matrix is diagonalizable. It is our purpose ir
this section to show that every n X n matrix is similar to a matrix having al’
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entries 0 except for those on the diagonal and entries | immediately
above some diagonal entries; each 1 above a diagonal entry must have
the same number on its left as below it on the diagonal. An example of such
a matrix is

sqmmemgs 0 0 0 O 0
0-i 1.0 0 0 0 0
05000 0 0
0 0 OESEE 0 0 0
J=10o 0 06 = 0 0 © “
0000 0 2 0 0
0000 0 0 5 1
000000 0 5

As the shading indicates, this matrix J is comprised of four Jordan blocks,
placed corner-to-corner along the diagonal.

DEFINITION 9.7 Jordan Canonical Form

An n X n matrix J is a Jordan canonical form if it consists of Jordan

blocks, placed corner-to-corner along the main diagonal, as in matrix
(4), with only zero entries outside these Jordan blocks.

Every diagonal matrix is a Jordan canonical form, because each diagonal
entry can be viewed as being the sole entryina 1 X 1 Jordan block. Notice that
matrix (4) contains the 1 X 1 Jordan block [2]. Notice, too, that the breaks
between the Jordan blocks in matrix (4) occur where some diagonal entry has a
0 rather than | immediately above it.

Is the matrix

OO
O N =
N O

a Jordan canonical form? Why?

This matrix is not a Jordan canonical form. Because not all diagonal entries
are equal, there should be at least two Jordan blocks present in order for the
matrix to be a Jordan canonical form, and [7] should be a 1 X 1 Jordan block.
However, the entry immediately above 7 is not 0. Consequently, this matrix is
not a Jordan canonical form. =

Describe the effect of matrix J in Eq. (4) on each of the standard basis vectors
in C!. Then give the eigenvalues and eigenspaces of J. Finally, find the
dimension of the nullspace of (/ — Al)* for each eigenvalue A of J and for each
positive integer k.
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We find that
Je, = —ie; + e, Je, = —ie, + e, Je, = —ie,,
Jes = —les + ey, Je, = —ie,,
Je, = 2e,,

Je; = Seg + e, Je, = Se,.

The eigenvalues of J are —i, 2, and 5, which have algebraic multiplicities of 5,
1, and 2, respectively. The eigenspaces of J are E_; = sp(e,, e,), £, = sp(e,), and
E; = sp(e,), as you can easily check.

The effect of J — (—i)I on the first five standard basis vectors is given by the

two strings
e,—e —e —>0,
e;—>e,— 0.

J + il

The 3 X 3 lower right-hand corner of J + il describes the action of J + il on e,
e,, and e;. Because this 3 X 3 matrix has a nonzero determinant, it causes J + i/
to carry these three vectors into three independent vectors, and the same is
true of all powers of J + il. Thus we can determine the dimension of the
nullspace of J + il by diagram (5), and we find that

J + il has nullspace sp(e,, e,;) of dimension 2,

(J + iI)* has nullspace sp(e,, e,, e,, e;) of dimension 4,

(J + il)* has nullspace sp(e,, e,, e;, e,, es) of dimension 5,

(J + iI)* has the same nullspace as that of (J + iI)’ for k > 3.

By a similar argument, we find that

(J — 2D has nullspace sp(e) of dimension 1 for k = 1,
J — 5I has nullspace sp(e;) of dimension 1,
(J — 50)* has nullspace sp(e,, e5) of dimension 2 for k> 1. =

HISTORICAL NOTE THE JORDAN CANONICAL FORM appears in the Treatise on Substitutions and
Algebraic Equations, the chief work of the French algebraist Camille Jordan (1838-1921). This
text, which appeared in 1870, incorporated the author’s group-theory work over the preceding
decade and became the bible of the field for the remainder of the nineteenth century. The theorem
containing the canonical form actually deals not with matrices over the real numbers, but with
matrices with entries from the finite field of order p. And as the title of the book indicates, Jordan
was not considering matrices as such, but the linear substitutions that they represented.

Camille Jordan, a brilliant student, entered the Ecole Polytechnique in Paris at the age of 17
and practiced engineering from the time of his graduation until 1885. He thus had ample time for
mathematical research. From 1873 until 1912, he taught at both the Ecole Polytechnique and the
College de France. Besides doing seminal work on group theory, he is known for important
discoveries in modern analysis and topology.
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Suppose a 9 X 9 Jordan canonical form J has the following properties:

1. (J — 3iD*hasrank 7 for k = 1, rank 5 for k = 2, and rank 4 for k = 3,
2. (J + Iy has rank 6 for j = 1 and rank 5 for j = 2.

Find the Jordan blocks that appear in J.

Because the rank of J — 3i/is 7, the dimension of its nullspace is 9 — 7 = 2, so
3i is an eigenvalue of geometric multiplicity 2. It must give rise to two Jordan
blocks. In addition, J — 3i/ must annihilate two eigenvectors e, and e, in the
standard basis. Because the rank of (J — 3il) is 5, its nullspace must have
dimension 4, so in a diagram of the effect of J — 3il on the standard basis, we
must have (J — 3il)e,., = e,and (J — 3il)e,., = e,. Because (J — 3il)* has rank 4
for k = 3, its nullity is 5, and we have just one more standard basis
vector—either e,,, or e ,—that is annihilated by (J/ — 3iI)’. Thus, the two
Jordan blocks in J that have 3i on the diagonal are

3i 10 i
J,=103i 1| and J, = [0 3}.
0 0 3i :

Because J + 17 has rank 6, its nullspace has dimension 9 — 6 = 3, s0 —1 is an
eigenvalue of geometric multiplicity 3 and gives rise to three Jordan blocks.
Because (J + 7) has rank 5 for j = 2, its nullspace has dimension 4, so (J + I)?
annihilates a total of four standard basis vectors. Thus, just one of these
Jordan blocks is 2 X 2, and the other two are 1 X 1. The Jordan blocks arising
from the eigenvalue —1 are then

A=réi]mdﬁ=g=pu

The matrix J might have these blocks in any order down its diagonal.
Symbolically, we might have

J; Jy
J, J;
J= E . J= J, ,
O ) O J
Js J;

or any other order. =

Jordan Bases

If an n X n matrix A4 is similar to a Jordan canonical form J, we call J a Jordan
canonical form of 4. When this is the case, there exists an invertible matrix C
such that C7'AC = J. We know that similar matrices represent the same linear
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transformation, but with respect to different bases. Thus, if 4 is similar to J, SOL

there must exist a basis {b;, b,, . . ., b,} of C" with the same schematic string
properties relative to 4 that the standard ordered basis has relative to the
matrix J. We proceed to define such a Jordan basis.

DEFINITION 9.8 Jordan Basis

Let A be an n X n matrix. An ordered basis B = (b, b,, . . . , b,) of C"is
a Jordan basis for A4 if, for 1 = j < n, we have either Ab, = Ab, or Ab, =
Ab; + b,_,, where A is an eigenvalue of 4 that we say is associated with
b, If Ab, = Ab, + b,_,, we require that the eigenvalue associated with b;_,
also be A.

If an n X nmatrix A has a Jordan basis B, then the matrix representation of
the linear transformation 7(z) = Az relative to B must be a Jordan canonical
form. We know then that J = C~'AC, where C is the n X n matrix whose jth
column vector is the jth vector b; in B. In a moment we will prove that, for
every square matrix, there is an associated Jordan basis, and consequently that
every square matrix is similar to a Jordan canonical form. First, though,
we outline a method for the computation of a Jordan canonical form of A.

Finding a Jordan Canonical Form of A

1. Find the eigenvalues of A.

2. For each eigenvalue A, compute the rank of (4 — ADF for consecu-
tive values of k, starting with k& = 1, until the same rank is obtained ‘
for two consecutive values of k. ‘

3. From the data generated, find a Jordan canonical form for 4, as in |
Example 5.

We now illustrate this technique.

EXAMPLE 6 Find a Jordan canonical form of the matrix

25 0 0 1 |

02 0 0 0 |
A=[0 0-1 0 0 i!

0 0 0-1 0

0 0 0 0-—1
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Because A is an upper-triangular matrix, we see that the eigenvalues of 4 are
A =A=2and A; =2, = A, = —1. Now

0 5 0 0 1
0 0 0 0 O
A-A2I=4-2I=]0 0-3 0 O
0 0 0-3 0
0 0 0 0 -3
has rank 4 and consequently has a nullspace of dimension 1. We find that
0 0 0 0 -3
0 0 0 0 O
AA-2=|0 0 9 O Of
0 0 0 9 O
0 0 0 0 9

which has rank 3 and therefore has a nullspace of dimension 2. Furthermore,

00 0 0 9
00 0 0 0
A-20p=[0 0-27 0 0
0 0 0-27 0
00 0 0-27

has the same rank and nullity as (4 — 27)>. Thus we have 4b, = 2b, and
Ab, = 2b, + b, for some Jordan basis B = (b,, b,, by, b,, bs) for 4. There is just
one Jordan block associated with A, = 2—namely,

21
J,_[Oz}.
For the eigenvalue A; = —1, we find that

35001
03000
A-=MN[=A+1=|0000 0,
00000O0
00000

which has rank 2 and therefore has a nullspace of dimension 3. Because —1 is
an eigenvalue of both algebraic multiplicity and geometric multiplicity 3, we
realize that J, = J; = J, = [—1] are the remaining Jordan blocks. This is
confirmed by the fact that

930003
0 9000
A+I=0 0000
0 0000
0 0000
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again has rank 2 and nullity 3. Thus, a Jordan canonical form for A4 is

21 0 0 O
02 0 0 O
J=10 0 -1 0O 0.
00 O0-1 0
00 0 0-1 @

Find a Jordan basis for matrix 4 in Example 6.

For the part of a Jordan basis associated with the eigenvalue 2, we need to find
a vector b, in the nullspace of (4 — 27)? that is not in the nullspace of 4 — 21,
then we may take b, = (4 — 2I)b,. From the computation of 4 — 27 and
(4 — 2I)* in Example 6, we see that we can take

S

0
1

b, = (0], and then b, = (4 — 2I)b, = |0].
0

oS

0

For b, b,, and bs, we need only take a basis for the nullspace of 4 + 1. We see
that we can take

0 0 -1
0 0 0
b, =|1|, b,=|0|, and bs;=]| 0.
0 1 0
0 0 3 u

In Example 7, it was easy to find vectors in a Jordan basis corresponding to
the eigenvalue 2 whose geometric multiplicity is less than its algebraic
multiplicity, because only one Jordan block corresponds to the eigenvalue 2.
We now indicate how a Jordan basis can be constructed when more than one
such block corresponds to a single eigenvalue A. Let N, be the nullspace of
(A4 — Ay for r = 1, and suppose (for example) that dim(V,) = 4, dim(N,) = 7,
and dim(%,) = 8 for r = 3. Then a Jordan basis for 4 contains four strings
corresponding to A, which we may represent as

b, - b, > b, — 0,
b; — b, — 0,

b, — b, — 0,

b; — 0.

To find the first and longest of these strings, we compute a basis {v,, v,, . . . , v}
for the nullspace N; of (4 — Al)*. The preceding strings show that multiplica-
tion of all of the vectors in N; on the left by (4 — Al)? yields a space of di-
mension 1, so at least one of the vectors v, has the property that (4 — AT)%, # 0.
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Let b; be such a vector, and set b, = (4 — Al)b;and b, = (4 — Al)b,. It is not
difficult to show that b, b,, and b; must be independent. Thus we have found '
the first string.
Now b, and b, lie in »,, and we can expand the independent set {b,, b,}
H to a basis {b,, b,, w,, . . ., wy} of N,. Again, the strings displayed earlier show
" 1 that multiplication of the vectors in N, on the left by 4 — AI must yield
| a space of dimension 3, so there exist two vectors w, and w; such that the
| vectors by, (4 — Al)w, and (4 — Al)w, are independent. Let b; = w, and b, =
(4 = Al)bs, while b; = w; and b, = (4 — Al)b,. It can be shown that the vec-
ed 1o find ! tors b.l’ b,, . .., b; are independent. Finally, we §xpand the set {b,, b4,.b6} to
of 4 — 27 a basis {bl, by, bg, bs} for N, to complete the portion of the Jordan basis cor-
E 27 and responding to A. . _

Although we know the techniques for finding bases for the nullspaces N,
and for expanding a given set of independent vectors to a basis, significant
pencil-and-paper illustrations of this construction would be cumbersome, so
we do not include them here. Any Jordan bases requested in the exercises can
be found as in Example 7.

An application of the Jordan canonical form to differential equations is
\ indicated in Exercise 32. We mention that computer-aided computation of a
I We see ‘ Jordan canonical fc_)rm for a square matrix is not a stable process. Consider, for
) i example, the matrix

2 ¢
a=15s)

If ¢ = 107, then the Jordan canonical form of 4 has 1 as its entry in the upper
right-hand corner; but if ¢ = 0, that entry is 0.

-
|
ding to |
gebraic
value 2. To demonstrate the existence of a Jordan canonical form similar to an # X n
1an one 1 matrix 4, we need only show that we have a Jordan basis B for 4. Let us
pace of j formalize the concept of a string in a Jordan basis B = (b, b,, . . . ,b,). Let A be
V,) =17, ‘ an eigenvalue of 4. If Ab, = Ab, and 4b, = Ab, + b,_, for i < k < j, while
strings ‘ Ab; # Ab, + b,_,, we refer to the sequence b, b, . . ., b;_, as a string of basis
‘ vectors starting at b,_,, ending at b, and associated with A. This string is
} represented by the diagram
| A=A b

=1

Existence of a Jordan Form for a Square Matrix

> =>by, = b—0

THEOREM 9.9 Jordan Canonical Form of

| Let 4 be a square matrix. There exists an invertible matrix C such that
Vs} | the matrix J = C'4C is a Jordan canonical form. This Jordan

canonical form is unique, except for the order of the Jordan blocks of
‘ which it is composed.
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PROOF We use a proof due to Filippov. First we note that it suffices to prove
the theorem for matrices 4 having 0 as an eigenvalue. Observe that, if A is an
eigenvalue of 4, then 0 is an eigenvalue of 4 — AJ. Now if we can find C such
that C~'(4 — AI)C = Jis a Jordan canonical form, then C™'AC = J + Al is also
a Jordan canonical form. Thus, we restrict ourselves to the case where 4 has an
eigenvalue of 0.

In order to find a Jordan canonical form for A, it is useful to consider also
the linear transformation 7: C" — C*, where 7(z) = Az; a Jordan basis for 4 is
considered to be a Jordan basis for 7. We will prove the existence of a Jordan
basis for any such linear transformation by induction on the dimension of the
domain of the transformation.

If T is a linear transformation of a one-dimensional vector space sp(z).
then 7(z) = Az for some A € C, and {z} is the required Jordan basis. (The matrix
of T'with respect to this ordered basis is the 1 X 1 matrix [A], which is already a
Jordan canonical form.) \

Now suppose that there exist Jordan bases for linear transformations on
subspaces of C" of dimension less than n, and let 7(z) = Az for z € C" and an
n X nmatrix A. As noted, we can assume that zero is an eigenvalue of 4. Then
rank(A4) < n; let r = rank(4). Now 7 maps C" onto the column space of 4 that is
of dimension r < n. Let 7" be the induced linear transformation of the column
space of 4 into itself, defined by 7"'(v) = T{(v) for v in the column space of 4. By
our induction hypothesis, there is a Jordan basis

BI =(ul5u29~--sur)

for this column space of A.

Let S be the intersection of the column space and the nullspace of 4. We
wish to separate the vectors in B’ that are in .S from those that are not. The \
nonzero vectors in S are precisely the eigenvectors in the column space of 4
with corresponding eigenvalue 0; that is, they are the eigenvectors of 7" with ‘
eigenvalue 0. In other words, S is the nullspace of 7". Let J' be the matrix \
representation of 7" relative to B'. Because J' is a Jordan canonical form, we
see that the nullity of 7' (and of J') is precisely the number of zero rows in J'.
This is true because J' is an upper-triangular square matrix; it can be brought
to echelon form by means of row exchanges that place the zero rows at the
bottom while sliding the nonzero rows up. Thus, if dim(S) = s, there are s zero
rows in J'. Now in J' we have exactly one zero row for each Jordan block
corresponding to the eigenvalue 0—namely, the row containing the bottom
row of the block. Because the number of such blocks is equal to the number of
strings in B’ ending in S, we conclude that there are s such strings. Some of
these strings may be of length 1 whereas others may be longer.

Figure 9.11 shows one possible situation when s = 2, where two vectors in
S—namely, u, and u,—are ending points of strings

uu—>u—>u—>0 and uy—>u,—0

lying in the column space of A. These s strings of B’ that end in S start at s
vectors in the column space of 4; these are the vectors u, and us in Figure 9.11.
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Because the vector at the beginning of the jth string is in the column space of 4,
it must have the form Aw, for some vector w;, in C". Thus we obtain the vectors
W, W,, . .., W, illustrated in Figure 9.11 for s = 2.

Finally, the nullspace of 4 has dimension # — r, and we can expand the set
of s independent vectors in S to a basis for this nullspace. This gives rise to
n — r — s more vectors v, v,, . . ., v,_, . Of course, each v, is an eigenvector
with corresponding eigenvalue 0.

We claim that

(U, oo W W, WY LY, )

can be reordered to become a Jordan basis B for 4 (and of course for 7'). We
reorder it by moving the vectors w,, tucking each one in so that it starts the
appropriate string in B’ that was used to define it. For the situation in Figure
9.11, we obtain

(g, wy, W3, Wy, Wy, Us, Wy, U, - oo, Wy Vi, o ey Vyyos)

as Jordan basis. From our construction, we see that B is a Jordan basis for A4 if
it is a basis for C". Because there are r + s + (n — r — §5) = n vectors in all, we
need only show that they are independent.

Suppose that

r 5y r
2 au; + E oW, + 2 dy, = 0. (6)

Because the vectors v, lie in the nullspace of A4, if we apply 4 to both sides of
this equation, we obtain

g S
E a;Au; + E c;Aw; = 0. (7)
i=1 j=1

Because each Au, is either of the form Au; or of the form Au, + u,_,, we see
that the first sum is a linear combination of vectors u.. Moreover, these vectors

Column space of A

Nullspace of A e

Cn

FIGURE 9.11
Construction of a Jordan basis for A (s = 2).
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Au; do not begin any string in B'. Now the vectors Aw; in the second sum
are vectors u; that appear at the start of the s strings in B’ that end in S. Thus
they do not appear in the first sum. Because B’ is an independent set,
all the coefficients ¢; in Eq. (7) must be zero. Equation (6) can then be
written as

gia,u[= kgl —dyy,. 8)

Now the vector on the left-hand side of this equation lies in the column
space of 4, whereas the vector on the right-hand side is in the nullspace of 4.
Consequently, this vector lies in S and is a linear combination of the s basis
vectors u; in S. Because the v, were obtained by extending these s vectors to
a basis for the nullspace of 4, the vector 0 is the only linear combination of
the v, that lies in S. Thus, the vector on both sides of Eq. (8) is 0. Because
the v, are independent, we see that all d, are zero. Because the u, are inde-
pendent, it follows that the g; are all zero. Therefore, B is an independent
set of n vectors and is thus a basis for C". We have seen that, by our construc-
tion, it must be a Jordan basis. This completes the induction part of our
proof, demonstrating the existence of a Jordan canonical form for every
square matrix A.

Our work prior to this theorem makes clear that the Jordan blocks
constituting a Jordan canonical form for 4 are completely determined by the
ranks of the matrices (4 — AI)* for all eigenvalues A of 4 and for all positive
integers k. Thus, a Jordan canonical form J for 4 is unique except as to the
order in which these blocks appear along the diagonal of J. A

7 SUMMARY

1. A Jordan block is a square matrix with all diagonal entries equal, all entries
immediately above diagonal entries equal to 1, and all other entries equal
to 0.

2. Properties of a Jordan block are given in Theorem 9.8.

3. A square matrix is a Jordan canonical form if it consists of Jordan blocks
placed corner to corner along its main diagonal, with entries elsewhere equal
to 0.

4. A Jordan basis (see Definition 9.8) for an n X n matrix A gives rise to a
Jordan canonical form J that is similar to A.

5. A Jordan canonical form similar to an n X n matrix 4 can be computed if
we know the eigenvalues A; of 4 and if we know the rank of (4 — AJ)* for
each A, and for all positive integers k.

6. Every square matrix has a Jordan canonical form; that is, it is similar to a
Jordan canonical form.
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EXERCISES

In Exercises 1-6, determine whether the given
matrix is a Jordan canonical form.

000 300
1. 1000 2.10 31
000 003
3100 1000
0310 0200
3‘0021 4'0030
10002 000 4
(i 1 0 0
0-i 0 0
5'oo 301
0 0 0 3
2 1 0 0
6. 10 2 0 0
100 i 0
0 0 0 -1

In Exercises 7-10:

a) Find the eigenvalues of the given matrix J.

b) Give the rank and nullity of (J — M* for each
eigenvalue A of J and for every positive integer k.
¢) Draw schemata of the strings of vectors in the
standard basis arising from the Jordan blocks in J.
d) For each standard basis vector e,, express Je, as

a linear combination of vectors in the standard
basis.

=2 1 0 O
-2 1 @O
10 0-2 1
L0 0 0 -2
(i 0 0o o0 o
0 i 1 0 0
810 0 i 0 0
0 0 0-2 0
0O 0 0 0 -2
-1 0 0 0 0
0 2 1 0 0
9910 0 2 0 0
0 0 0 2 1
L0 0 0 0 2

10.

S OO . —mOO O
S ONOODOOO
OSN— OO OO O
N— O OO OO

SO OO O OO
COOCOO O o ™
SO OO0 OO
SO OO OO0

In Exercises 11-14, find a Jordan canonical form
Jor A from the given data.

11. Ais 5 x 5, 4 — 37 has nullity 2, (4 — 317
has nullity 3, (4 — 37)* has nullity 4,
(4 — 3I)* has nullity 5 for k = 4.

12. 41is7 X 7, A + I has nullity 3, (4 + I)* has
nullity 5 for k = 2; 4 + il has nullity 1,
(4 + iI')/ has nullity 2 for j = 2.

13. Ais 8 x 8, 4 — I has nullity 2, (4 — I)* has
nullity 4, (4 — I)* has nullity 5 for k = 3;
(4 + 21y has nullity 3 for j = 1.

14. A4is 8 x 8; 4 + il has rank 4, (4 + il)* has
rank 2, (4 + iI)’ has rank 1, (4 + i[)* = O
for k = 4.

In Exercises 15-22, find a Jordan canonical form
and a Jordan basis for the given matrix.

-10 4 5§ —4
15. [_25 10] 16. [9 _7]
(4 0 0 -3 0 1
17. (2 1 3 18. | 2 —2 1
50 4 —~1 =1
2 s 0 0 o
0 2 0 0 0
1910 0 -1 0 -1
0 0 0-1 0
0 0 0 0 —1]
i 0 0 0 0
0 i 0 0 0
200 0 2 0 0
00 0 2 0
2 §=1 © 32




