Linear algebra 2: exercises for Section 5

Ex. 5.1. In each of the following cases indicate whether there exists a real 4×4-matrix A with the given properties. Here I denotes the 4×4 identity matrix.

1. $A^{2}=0$ and A has rank 1 ;
2. $A^{2}=0$ and A has rank 2 ;
3. $A^{2}=0$ and A has rank 3 ;
4. A has rank 2 , and $A-I$ has rank 1 ;
5. A has rank 2 , and $A-I$ has rank 2 ;
6. A has rank 2 , and $A-I$ has rank 3 .

Ex. 5.2. For the following matrices A, B give their Jordan normal forms, and decide if they are similar.

$$
A=\left(\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
0 & 2 & 2 & 0 \\
1 & 1 & 2 & -1 \\
0 & 0 & 2 & 2
\end{array}\right) \quad B=\left(\begin{array}{rrrr}
2 & 0 & 0 & -2 \\
1 & 2 & 1 & 0 \\
0 & 0 & 2 & 2 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

Ex. 5.3. Give the Jordan normal form of the matrix

$$
\left(\begin{array}{rrrr}
2 & 2 & 0 & -1 \\
0 & 0 & 0 & 1 \\
1 & 5 & 2 & -2 \\
0 & -4 & 0 & 4
\end{array}\right)
$$

Ex. 5.4. Give the Jordan normal form of the matrix

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

Ex. 5.5. Let A be the 3×3 matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right)
$$

Compute A^{100}.
Ex. 5.6. Consider the matrix $A=\left(\begin{array}{rr}1 & 4 \\ -1 & 5\end{array}\right)$.

1. Give the eigenvalues and eigenspaces of A.
2. Give a diagonal matrix D and a nilpotent matrix N for which $D+N=A$ and $D N=N D$.
3. Give a formula for A^{n} when $n=1,2,3, \ldots$

Ex. 5.7. For the matrix

$$
A=\left(\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

give a diagonalizable matix D and a nilpotent matrix N so that $A=D+N$ and $N D=D N$.
Ex. 5.8. For $A=\left(\begin{array}{rrr}2 & 1 & -1 \\ 0 & 4 & -2 \\ 0 & 2 & 0\end{array}\right)$ compute the matrix e^{A}.
Ex. 5.9. Let $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map given by $\phi(x)=A x$ where A is the matrix

$$
\left(\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We proved in class that generalized eigenspaces for ϕ are ϕ-invariant. What are these spaces in this case? Give all other ϕ-invariant subspaces of \mathbb{R}^{3}.

Ex. 5.10. Compute the characteristic polynomial of the matrix

$$
A=\left(\begin{array}{rrrr}
1 & -2 & 2 & -2 \\
1 & -1 & 2 & 0 \\
0 & 0 & -1 & 2 \\
0 & 0 & -1 & 1
\end{array}\right)
$$

Does A have a Jordan normal form as 4×4 matrix over \mathbb{R} ? What is the Jordan normal form of A as a 4×4 matrix over \mathbb{C} ?

Ex. 5.11. Suppose that for a 20×20 matrix A the rank of A^{i} for $i=0,1, \ldots 9$ is given by the sequence $20,15,11,7,5,3,1,0,0,0$. What sizes are the Jordan-blocks in the Jordan normal form of A ? Can you prove the formula you use for all matrices whose characteristic polynomial is a product of linear polynomials?

