EXTRA OPGAVEN BILINEAIRE VORMEN

RONALD VAN LUIJK

(1) Let
$$\phi \colon \mathbb{R}^4 \times \mathbb{R}^3 \to \mathbb{R}$$
 be the bilinear form given by $(x, y) \mapsto y^{\top} A x$ with

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{pmatrix} \ .$$

Let $f: \mathbb{R}^4 \to \mathbb{R}^4$ be the isomorphism given by

 $(x_1, x_2, x_3, x_4) \rightarrow (x_1, x_1 + x_2, x_1 + x_2 + x_3, x_1 + x_2 + x_3 + x_4).$

Let $g: \mathbb{R}^3 \to \mathbb{R}^3$ be the isomorphism given by

 $(x_1, x_2, x_3) \to (x_1, x_1 + x_2, x_1 + x_2 + x_3).$

Let $b \colon \mathbb{R}^4 \times \mathbb{R}^3 \to \mathbb{R}$ be the map given by $b(x, y) = \phi(f(x), g(y))$.

- (a) Determine the kernel of ϕ_L and ϕ_R .
- (b) Show that b is bilinear.
- (c) Give the matrix associated to b with respect to the standard bases for \mathbb{R}^4 and \mathbb{R}^3 .
- (2) Let V be a finite-dimensional vector space over F, and ev: $V \times V^* \to F$ the bilinear form that sends (v, φ) to $\varphi(v)$. Let B be a basis for V, and B^* its dual basis for V^* . What is the matrix associated to ev with respect to the bases B and B^* ?
- (3) Verify Example 8.16.