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CHAPTER 1

Euclidean space: lines and hyperplanes

This chapter deals, for any non-negative integer n, with Fuclidean n-space R™,
which is the set of all (ordered) sequences of n real numbers, together with a
distance that we will define. We make it slightly more general, so that we can
also apply our theory to, for example, the rational numbers instead of the real
numbers: instead of just the set R of real numbers, we consider any subfield of R.
At this stage, it suffices to say that a subfield of R is a nonempty subset F' C R
containing 0 and 1, in which we can multiply, add, subtract, and divide (except
by 0); that is, for any z,y € F, also the elements zy,z + y,x —y (and z/y if
y # 0) are contained in F. We refer the interested reader to Appendix [B| for a
more precise definition of a field in general.

Therefore, for this entire chapter (and only this chapter), we let F' denote a sub-
field of R, such as the field R itself or the field Q of rational numbers. Furthermore,
we let n denote a non-negative integer.

1.1. Definition

An n-tuple is an ordered sequence of n objects. We let F™ denote the set of all
n-tuples of elements of F'. For example, the sequence

(—17,0,3,1+ v2,¢")

is an element of R®. The five numbers are separated by commas. In general, if we
have n numbers z1, s, ...,x, € I, then

T = (21,2, ..., Ty)

is an element of F™. Again, the numbers are separated by commas. Such n-tuples
are called vectors; the numbers in a vector are called coordinates. In other words,
the i-th coordinate of the vector x = (xy, 2o, ..., x,) is the number x;.

We define an addition by adding two elements of F™ coordinate-wise:
(X1, T2y xn) ® (Y1, Y2y - -y Yn) = (X1 + Y1, T2 + Y2y ooy Ty + Yn)-

For example, the sequence (12,14, 16, 18,20, 22,24) is an element of R” and we
have

(12,14,16,18,20,22,24) + (11,12,13,14, 13,12, 11) = (23, 26,29, 32, 33, 34, 35).
Unsurprisingly, we also define a coordinate-wise subtraction:

(@1, @2, T0) © (Y1, 92, -+, Yn) = (21 = Y1, T2 = Y2, -+, Ty — Yan).-

Until the end of this section, we denote the sum and the difference of two elements
x,y € F" by x @y and = © y, respectively, in order to distinguish them from the
usual addition and subtraction of two numbers. Similarly, we define a scalar
multiplication: for any element A € F', we set

AO (21,29, ..., xn) = (Az1, ALg, ..., Axy,).
5
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This is called scalar multiplication because the elements of F™ are scaled; the
elements of F', by which we scale, are often called scalars. We abbreviate the
special vector (0,0, ...,0) consisting of only zeros by 0, and for any vector x € F",
we abbreviate the vector 0 © z by —x. In other words, we have

—(z1,29, ..., xy) = (=21, —Ta, ..., —Tp).

Because our new operations are all defined coordinate-wise, they obviously satisfy
the following properties:

(1) for all z,y € F™, we have x @y = y & x;

2) for all z,y,z € F™, we have (x ®y) D z=2® (y ® 2);

) for all z € F™, we have 0 @z =z and 1 © = = x;

) for all x € F™, we have (—1) ®x = —z and z & (—z) = 0;

) for all z,y,z € F", we have x @y = z if and only if y = 2z © x;

) for all z,y € F™, we have 1 ©y = = & (—y);

) forall \,p € Fand x € F", we have A\® (n©x) = (A - p) © x;

) forall \,p € Frand x € F", we have (A +pu) Oz = (A0 z) ® (1O x);
) forall \€ F and z,y € F", we have A\® (D y) = (A0 z) D (A O y).

(
(3
(4
(5
(6
(7
(8
9

(

In fact, in the last two properties, we may also replace + and & by — and ©,
respectively, but the properties that we then obtain follow from the properties
above. All these properties together mean that the operations &, &, and ® really
behave like the usual addition, subtraction, and multiplication, as long as we
remember that the scalar multiplication is a multiplication of a scalar
with a vector, and not of two vectors!.

We therefore will usually leave out the circle in the notation: instead of z @ y and
xr ©y we write x + y and x — y, and instead of A ® x we write A\ - x or even Ax.

As usual, scalar multiplication takes priority over addition and subtraction, so
when we write \x +py with A\, p € F and z,y € F", we mean (Az)+ (uy). Also as
usual, when we have vectors x1, xs,...,x; € F™, the expression x1txotrst- - -+uy
should be read from left to right, so it stands for

(..((zy o) La3)£--+) £y
t—2

If all the signs in the expression are positive (+), then any other way of putting
the parentheses would yield the same by property (2) above.

1.2. Euclidean plane and Euclidean space

For n = 2 or n = 3 we can identify R™ with the pointed plane or three-dimensional
space, respectively. We say pointed because they come with a special point,
namely 0. For instance, for R? we take an orthogonal coordinate system in the
plane, with 0 at the origin, and with equal unit lengths along the two coordinate
axes. Then the vector p = (py, p2) € R?, which is by definition nothing but a pair
of real numbers, corresponds with the point in the plane whose coordinates are p;
and po. In this way, the vectors get a geometric interpretation. We can similarly
identify R3 with three-dimensional space. We will often make these identifications
and talk about points as if they are vectors, and vice versa. By doing so, we can
now add points in the plane, as well as in space! Figure shows the two points
p=(3,1) and ¢ = (1,2) in R?, as well as the points 0, —p, 2p,p + ¢, and ¢ — p.

For n = 2 or n = 3, we may also represent vectors by arrows in the plane or
space, respectively. In the plane, the arrow from the point p = (p1,p2) to the



1.2. EUCLIDEAN PLANE AND EUCLIDEAN SPACE 7

FIGURE 1.1. Two points p and ¢ in R?, as well as 0, —p, 2p,p + ¢, and ¢ — p

point ¢ = (q1, q2) represents the vector v = (q1 — p1,q2 — p2) = ¢ — p. (A careful
reader notes that here we do indeed identify points and vectors.) We say that the
point p is the tail of the arrow and the point ¢ is the head. Note the distinction
we make between an arrow and a vector, the latter of which is by definition just a
sequence of real numbers. Many different arrows may represent the same vector v,
but all these arrows have the same direction and the same length, which together
narrow down the vector. One arrow is special, namely the one with 0 as its tail;
the head of this arrow is precisely the point ¢ — p, which is the point identified
with v! See Figure[I.2] in which the arrows are labeled by the name of the vector v
they represent, and the points are labeled either by their own name (p and g), or
the name of the vector they correspond with (v or 0). Note that besides v = ¢ —p,
we (obviously) also have ¢ = p + v.

toq
v
q—p:U | \

FIGURE 1.2. Two arrows representing the same vector v = (—2,1)

Of course we can do the same for R®. For example, take the points p = (3,1, —4)
and ¢ = (—1,2,1) and set v = ¢ — p. Then we have v = (—4,1,5). The arrow
from p to g has the same direction and length as the arrow from 0 to the point
(—4,1,5). Both these arrows represent the vector v.

Note that we now have three notions: points, vectors, and arrows.

points «=———{ vectors arrows

Vectors and points can be identified with each other, and arrows represent vectors
(and thus points).

We can now interpret negation, scalar multiples, sums, and differences of vectors
(as defined in Section |1.1)) geometrically, namely in terms of points and arrows.
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For points this was already depicted in Figure [l.1] If p is a point in R?, then
—p is obtained from p by rotating it 180 degrees around 0; for any real number
A > 0, the point Ap is on the half line from 0 through p with distance to 0 equal
to () times the distance from p to 0). For any points p and ¢ in R? such that 0, p,
and ¢ are not collinear, the points p 4+ ¢ and ¢ — p are such that the four points 0,
p, p+ q, and q are the vertices of a parallelogram with p and ¢ opposite vertices,
and the four points 0, —p, ¢ — p, q are the vertices of a parallelogram with —p and
q opposite vertices.

In terms of arrows we get the following. If a vector v is represented by a certain
arrow, then —wv is represented by any arrow with the same length but opposite
direction; furthermore, for any positive A € R, the vector Av is represented by the
arrow obtained by scaling the arrow representing v by a factor .

If v and w are represented by two arrows that have common tail p, then these two
arrows are the sides of a unique parallelogram; the vector v + w is represented
by a diagonal in this parallelogram, namely the arrow that also has p as tail and
whose head is the opposite point in the parallelogram. An equivalent description
for v +w is to take two arrows, for which the head of the one representing v equals
the tail of the one representing w; then v + w is represented by the arrow from
the tail of the first to the head of the second. See Figure [I.3]

FIGURE 1.3. Geometric interpretation of addition and subtraction

The description of laying the arrows head-to-tail generalises well to the addition of
more than two vectors. Let vy, v, ..., v, in R? or R? be vectors and pg, p1, ..., s
points such that v; is represented by the arrow from p;_; to p;. Then the sum
U1 + Vg + - -+ + v is represented by the arrow from py to p;. See Figure [I.4]

For the same v and w, still represented by arrows with common tail p and with
heads ¢q and r, respectively, the difference v—w is represented by the other diagonal
in the same parallelogram, namely the arrow from r to g. Another construction

for v —w is to write this difference as the sum v + (—w), which can be constructed
as described above. See Figure [[.3]

Representing vectors by arrows is very convenient in physics. In classical mechan-
ics, for example, we identify forces applied on a body with vectors, which are often
depicted by arrows. The total force applied on a body is then the sum of all the
forces in the sense that we have defined it.

Motivated by the case n = 2 and n = 3, we will sometimes refer to vectors in
R™ as points in general. Just as arrows in R? and R? are uniquely determined by
their head and tail, for general n we define an arrow to be a pair (p,q) of points
p,q € R™ and we say that this arrow represents the vector ¢ —p. The points p and
q are the tail and the head of the arrow (p, q).
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FIGURE 1.4. Adding four vectors

Exercises

1.2.1. Compute the sum of the given vectors v and w in R? and draw a corresponding
picture by identifying the vectors with points or representing them by arrows
(or both) in R2.

(1) v=(-2,5) and w = (7,1),
(2) v=2-(-3,2) and w = (1,3) + (—2,4),
(3) v=(-3,4) and w = (4,3),
(4) v=(-3,4) and w = (8,6),

1.2.2. Let p,q,7, s € R? be the vertices of a parallelogram, with p and 7 opposite
vertices. Show that p+r =q + s.

1.2.3. Let p, ¢ € R? be two points such that 0, p, and ¢ are not collinear. How many
parallelograms are there with 0, p, and g as three of the vertices? For each of
these parallelograms, express the fourth vertex in terms of p and gq.

1.3. The standard scalar product

We now define the (standard) scalar producf]on F™.

.‘IIIIIIIIIIIIIIIIIIIIlllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.
t Definition 1.1. For any two vectors & = (x1, s, ...,2,) and y = (y1, Y2, - - -, Yn)
n F" we define the standard scalar product of x and y as

m]

eWEEEE

(T,y) = 191 + Tayo + -+ + TpYn.

EEEEEEEEEEEE SN SN NN SN EEEEEE NN SN EEE SN EEE SN EEEEEEEEEEEEEEENEEEEEEEEEEER?

We will often leave out the word ‘standard’. The scalar product derives its name
from the fact that (z,y) is a scalar, that is, an element of F. In ITEX | the scalar
product is not written $<x,y>$, but $\langle x,y \rangle$!

IThe scalar product should not be confused with the scalar multiplication; the scalar mul-

tiplication takes a scalar A € F' and a vector x € F™, and yields a vector Az, while the scalar
product takes two vectors z,y € F™ and yields a scalar (z,y).
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’--------------------------------------

I Warning 1.2. While the name scalar product and the notation (z,vy) for it are:

standard, in other pieces of literature, the standard scalar product is also often I

i called the (standard) inner product, or the dot product, in which case it may get 1

I denoted by = - y. Also, in other pieces of literature, the notation (x,y) may bel

I used for other notions. One should therefore always check which meaning of the |

notation (z,y) is used] ’I
Example 1.3. Suppose we have z = (3,4, —2) and y = (2,—1,5) in R3. Then
we get

(r,y) =3-24+4-(-1)+(-2)-5=6+ (—4) + (—10) = -8.

The scalar product satisfies the following useful properties.

Proposition 1.4. Let A € F be an element and let x,y,z € F™ be elements. Then
the following identities hold.

(1) (z,y) = (y, ),
(2) (Az,y) = A (z,y) = (7, \y),
(3) (z,y+2) = (z,9) + (7, 2).

Proof. Write x and y as

r = (T1,%o,...,Ty) and Y= (Y1,Y2, - Yn)-

Then xy, ..., 2, and yy, ..., y, are real numbers, so we obviously have z;y; = y;x;
for all integers ¢ with 1 <+¢ < n. This implies

(T,9) = 2191 + 2ay2 + -+ + TnYn = Y121 + YaT2 + -+ Yo = (Y, T),
which proves identity (1).
For identity (2), note that we have Az = (Axy, Az, ..., Az,), SO
Az, y) = Az + (Ax2)ys + ... + (Axy)yn
= A (T1y1 + Tay2 + -+ TuYn) = A (7, 9),
which proves the first equality of (2). Combining it with (1) gives
A(zy) = A (y,x) = My, z) = (2, M),
which proves the second equality of (2).
For identity (3), we write z as z = (21, 22, ..., 2,). Then we have
(x,y+2) =x1(h +21) F22(y2 + 22) + ... + Tn(Yn + 2n)
= (1 + ...+ xyn) + (x121+ .+ 2pz) = (T, y) + (2, 2),
which proves identity (3). O

Note that the equality (x+y, z) = (x, z) +(y, z) follows from properties (1) and (3).
From the properties above, it also follows that we have (z,y — z) = (x,y) — (x, 2)
for all vectors x,y,z € F™; of course this is also easy to check directly.

Example 1.5. Let L C R? be the line of all points (z,y) € R? that satisfy
3x + by = 7. For the vector a = (3,5) and v = (x,y), we have

(a,v) =3z + 5y,

%In fact, this warning holds for any notation...
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L so we can also write L as the set of all points v € R? that satisfy (a,v) = 7.
[ Example 1.6. Let V C R3 be a plane. Then there are constants p,q,r,b € R,
with p, ¢, not all 0, such that V is given by
V={(z,y,2) €ER® : pr+qy+rz=>}
If we set a = (p,q,r) € R, then we can also write this as
V ={veR: (a,v) = b}.

In examples [I.5] and [1.6] we used the terms line and plane without an exact
definition. Lines in R? and planes in R? are examples of hyperplanes, which we
define now.

Definition 1.7. A hyperplane in F" is a subset of F™ that equals
{veF" : (a,v) =0}

for some nonzero vector a € F™ and some constant b € F. A hyperplane in F*® is
also called a plane; a hyperplane in F? is also called a line.

EEEEEEEE NSNS NN NSNS EE NN NN NSNS SN EEE NN NN SN EEE NN EEEEENEEEEEEEEEEEER?

EEEEEEEEEEEEEn?®

[ Example 1.8. Let H C R® be the subset of all quintuples (xy, o, 23, 24, T5) of
real numbers that satisfy

r1— To +3x3 — 1724 — %l'g) =13.

This can also be written as
H={reR® : (a,2) =13}

where a = (1,-1,3, —17, —%) is the vector of coefficients of the left-hand side

of the equation, so H is a hyperplane.

As in this example, in general a hyperplane in F" is a subset of I that is given by
one linear equation a1z + ...+ a,x, = b, with a4, ...,a,,b € F. For any nonzero
scalar A, the equation (a, z) = b is equivalent with (Aa, z) = A\b, so the hyperplane
defined by a € F™ and b € F is also defined by Aa and Ab.

As mentioned above, a hyperplane in F? is nothing but a line in 2. The following
proposition states that instead of giving an equation for it, we can also describe
the line in a different way: by specifying two vectors v and w. See Figure [1.5]

FIGURE 1.5. Parametrisation of the line L
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Proposition 1.9. For every line L C F?, there are vectors v,w € F?, with v
nonzero, such that we have

L={w+XeF?: NeF}
Conversely, for every vectors v,w € F? with v nonzero, the set
{w+ weF?: ANcF}

1s a line.

Proof. For the first statement, suppose L is a line. Then by definition there are
p,q,b € F, with p, ¢ not both zero, such that L is the set of all points (x,y) € R?
that satisfy px + qy = b. Let w = (x0,y) be a point of L, which exists because
we can fix xo and solve for y, if ¢ is nonzero, or the other way around if p is
nonzero. Set v = (—q,p). We denote the set {w + v € F? : X\ € F} of the
proposition by M.

Since we have pxy + qyo = b, we can write the equation for L as

(1.1) p(z — x0) +q(y — yo) = 0.

To prove the equality L = M, we first prove the inclusion L C M. Let
z = (z,y) € L be any point. We claim that there is a A € F with x —xy = —¢\
and y — yo = pA. Indeed, if p # 0, then we can set A = (y — yo)/p; using
Y — Yo = Ap, equation yields z —xg = —q\. If instead we have p = 0, then
q # 0, and we set A = —(z — 2¢)/q to find y — yo = pA = 0. This proves our
claim, which implies z = (x,y) = (xg — A\q, Yo + A\p) = w + Av € M, so we have
LcCM.

For the opposite inclusion, it is clear that for every scalar A\ € F', the point
w + A = (g — \q, yo + Ap) satisfies ([1.1)) and is therefore contained in L, so
we have M C L. This finishes the proof of the first statement.

For the converse statement, let p,q, zo,yo € F be such that v = (—¢,p) and
w = (79,%). Set a = (p,q) € F? and b = pxy + qyo € F. We denote the
set {w+ Av € F? : X\ € F} of the proposition by M. Let L be the line
{ue F?* : (a,u) =b}. Now the second and third paragraph of this proof can
be repeated as a proof for the second statement of the proposition. OJ

We say that Proposition gives a parametrisation of the line L, because for each
scalar A € I (the parameter) we get a point on L, and this yields a bijection (see
Appendix [A]) between F' and L.

Example 1.10. The points (z,y) € R? that satisfy y = 2z + 1 are exactly the
points of the form (0,1) + A(1,2) with A € R.

Inspired by the description of a line in Proposition we define the notion of a
line in F™ for general n. By Proposition [1.9] the following definition is equivalent
with Definition [L7 for n = 2.

PLAL LR L LR LR RLRLLRLRLLRERLRELRLRLERLRLERERLRLERLRLERLRLRLLRLRLERLRLERLRLRNLLRLRNLYS

* Definition 1.11. A line in F™ is a subset of F" that equals
{w+XI : XeF}

= for some vectors v, w € F™ with v # 0.

.IIIIIIIIIIIlllIlllIlllIlllIlllIllllllllIIIIIIIIIIIIIlllIlllIlllIllllllllllllllllllll’
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Proposition 1.12. Let p,q € F™ be two distinct points. Then there is a unique
line L that contains both. Moreover, every hyperplane that contains p and q also
contains L.

Proof. The existence of such a line is clear, as we can take w =pand v =q—p
in Definition[I.11] The line L determined by these vectors contains p = w+0-v
and ¢ = w + 1 -v. Conversely, suppose v # 0 and w are vectors such that the
line ' = {w+ Av : X € F'} contains p and ¢. Then there are p, v € F with
w+pv = p and w+vv = q. Subtracting these identities yields ¢—p = (v — u)v.
Since p and ¢ are distinct, we have v — p # 0. We write ¢ = (v — pu)~! € F.
Then v = ¢(q — p), and for every A € F' we have

wH+w=p—puw+Iv=p+(A—p)c(¢—p) €L.

This shows L' C L. The opposite inclusion L C L' follows from the fact that
for each A\ € F, we have p + A(q — p) = w+ (u + Ac v € L'. Hence, we find
L = L', which proves the first statement.

Let a € F™ be nonzero and b € F' a constant and suppose that the hy-
perplane H = {v € F" : (a,v) = b} contains p and ¢. Then we have
{(a,q—p) = (a,q)—{a,p) = b—b = 0. Hence, for each A\ € F', and the correspond-
ing point = p+ A(q¢—p) € L, we have (a,z) = (a,p) + A a,q—p) =b+0=10.
This implies * € H and therefore L C H, which proves the second state-
ment. ]

.‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.‘

: Notation 1.13. For every vector a € F™, we let L(a) denote the set {\a : A\ € F} 1
= of all scalar multiples of a. If a is nonzero, then L(a) is the line through 0 and a. s

.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.

Exercises

1.3.1. For each of the pairs (v, w) given in Exercise compute the scalar prod-
uct (v, w).

1.3.2. For each of the following lines in R?, find vectors v, w € R?, such that the line
is given as in Proposition Also find a vector a € R? and a number b € R,
such that the line is given as in Definition

(1) The line {(z,y) € R? : y = —3z + 4}.

(2) The line {(z,y) € R? : 2y =2 — 7}.

(3) The line {(z,y) € R? : z —y =2}

(4) The line {v € R? : (c,v) = 2}, with ¢ = (1,2).
(5) The line through the points (1,1) and (2, 3).

1.3.3. Write the following equations for lines in R? with coordinates z; and zs in
the form (a,x) = ¢, that is, specify a vector a and a constant ¢ in each case,
such that the line equals the set {z € R? : {(a,z) = c}.

(1) Li: 221 4 329 =0,

(2) LQZ T — 3£L‘1 - 1,

(3) Ls: 2(1‘1 +$2) =3,
(4) Ly: x1 — x9 = 229 — 3,
(5) Ls: 1 =4 — 31,

(6) L6:$1—x2:$1+I2,
(7) Ly: 621 — 229 =1T7.

1.3.4. Let V C R? be the subset given by

V = {(:El,wg,wg) T I —3x2+3:w1+x2+x3—2}.
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Show that V' is a plane as defined in Definition
1.3.5. For each pair of points p and ¢ below, determine vectors v, w, such that the
line through p and ¢ equals {w + v : A € F'}.
(1) p=1(1,0) and ¢ = (2,1),
(2) p=(1,1,1) and ¢ = (3,1,—-2),
(3) p=(1,-1,1,-1) and ¢ = (1,2,3,4).
1.3.6. Let a = (1,2,—1) and @’ = (—1,0,1) be vectors in R3. Show that the inter-
section of the hyperplanes

H={veR?: (a,v) =4} and H ={veR®: (d,v) =0}
is a line as defined in Definition [L.11]
1.3.7. Let p,q € R™ be distinct points. Show that the line through p and ¢ (cf.
Proposition equals
{Ap+pg : A\ peRwith A+ p=1}.

1.4. Angles, orthogonality, and normal vectors

As in Section we identify R? and R?® with the Euclidean plane and Euclidean
three-space: vectors correspond with points, and vectors can also be represented
by arrows. In the plane and three-space, we have our usual notions of length, angle,
and orthogonality. (Two intersecting lines are called orthogonal, or perpendicular,
if the angle between them is 7/2, or 90°.) We will generalise these notions to F"
in the remaining sections of this chapterf’|

Because our field F' is a subset of R, we can talk about elements being ‘positive’
or ‘negative’ and ‘smaller’ or ‘bigger’ than other elements. This is used in the
following proposition.

Proposition 1.14. For every element x € F™ we have (x,x) > 0, and equality
holds if and only if x = 0.

Proof. Write = as z = (z1,%9,...,%,). Then (z,z) = 2% + 23 + -+ + 22.
Since squares of real numbers are non-negative, this sum of squares is also non-
negative and it equals 0 if and only if each terms equals 0, so if and only if
z; =0 for all i with 1 <3 <n. O

The vector x = (1, 22,23) € R3 is represented by the arrow from the point
(0,0,0) to the point (21, xe, x3); by Pythagoras’ Theorem, the length of this arrow
is /2% + 23 + 2%, which equals \/(x, x). See Figure which is the only figure in
this chapter where edges and arrows are labeled by their lengths, rather than the
names of the vectors they represent. Any other arrow representing x has the same
length. Similarly, the length of any arrow representing a vector x € R? equals
\/(z,x). We define the length of a vector in F™ for general n > 0 accordingly.

Y AR LR AR RERARRERIERERRIERIERERERRRRRERIERIERIENRIERIERRIERIERERRIERIERRIERIERERRIRIERNIENIERIERNNRIERNDNHN)]

= Definition 1.15. For any element z € F™ we define the length ||z|| of x as

lzl| = v/ (&, 2).

sasnnnnn?®

3Those readers that adhere to the point of view that even for n = 2 and n = 3, we have
not carefully defined these notions, have a good point and may skip the paragraph before Def-
inition [1.15] as well as Proposition [1.19} They may take our definitions for general n > 0 as
definitions for n = 2 and n = 3 as well.
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xr = (xla T2, m?))

T3

FIGURE 1.6. The length of an arrow

Note that by Proposition [I.14] we can indeed take the square root in R, but the
length ||z|| may not be an element of F. For instance, the vector (1,1) € Q? has
length /2, which is not contained in Q. As we have just seen, the length of a
vector in R? or R? equals the length of any arrow representing it.

|: Example 1.16. The vector (1, —2,2,3) in R* has length /1 +4 +4 + 9 = 3v/2.

Lemma 1.17. For all A\ € F' and v € F™ we have |[Az| = |A| - ||z]].

Proof. This follows immediately from the identity (Az, Az) = A* (z,x) and the
fact that vA2 = |\l O

In R? and R?, the distance between two points z,y equals ||z — y||. We will use
the same phrasing in F™.

.‘IIIIIIIIIIIIIIIIIIIIlllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.‘

= Definition 1.18. The distance between two points z,y € F" is defined as ||z —y]|.
= [t is sometimes written as d(x,y).

u
u
u
]
]
u
\4

Proposition 1.19. Suppose n = 2 or n = 3. Let v,w be two nonzero elements

from 0 to w. Then we have
(1.2) cos o = M
[l - [Jw]

The arrows are orthogonal to each other if and only if (v, w) = 0.

in R™ and let o € [0, 7] be the angle between the arrow from 0 to v and the arrow

Proof. Because we have n = 2 or n = 3, the new definition of length coincides
with the usual notion of length and we can use ordinary geometry. The arrows
from 0 to v, from 0 to w, and from v to w form a triangle in which « is the
angle at 0. The arrows represent the vectors v, w, and w — v, respectively. See
Figure [1.7] By the cosine rule, we find that the length |[w — v|| of the side
opposite the angle « satisfies

lw = vlf* = [[ol* + [lw]* = 2 - [Jv] - Jw]| - cos a.




16 1. EUCLIDEAN SPACE: LINES AND HYPERPLANES

We also have

lw = ]|* = (w = v,w —v) = (w,w) = 2(v,w) + (v,0) = [[o]* + [[w]|* = 2(v, w).
Equating the two right-hand sides yields the desired equation. The arrows are
orthogonal if and only if we have cosa = 0, so if and only if (v, w) = 0. OJ

FiGUuRE 1.7. The cosine rule

[ Example 1.20. Let | and m be the lines in the (z,y)-plane R?, given by
y = axr + b and y = cx + d, respectively, for some a,b,c,d € R. Then
their directions are the same as those of the line I’ through 0 and (1,a) and
the line m’ through 0 and (1,c¢), respectively. By Proposition the lines
I and m/, and thus [ and m, are orthogonal to each other if and only if
0={(1,a),(1,¢)) =1+ ac, so if and only if ac = —1. See Figure [1.§

FIGURE 1.8. Orthogonal lines in R?

Inspired by Proposition [1.19, we define orthogonality for vectors in R™.

.‘..I...II..II..II..II.l.I-.II..II..II..II...I...I...II..II..II..II..II-.II..II..II...
= Definition 1.21. We say that two vectors v,w € F™ are orthogonal, or perpen-
E dicular to each other, when (v, w) = 0; we then write v L w.

‘IIlllIlllIlllIlllIllllllllllllIIIIIIIIIIIIIlllIlllIlllIlllIlllIlllllllllllllllllllll'

EEEEEED
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r A R &8 &R _ &R _ R _ N _ N _NR_§N_&R_HN_N_R_N_NR_JN_NR_H§_§R R _§_R_J§_&§R_§_N_§R_J§_§R_ &8 1§ _§_§R_§_J§_ R 1§/
I Warning 1.22. Let v,w € F" be vectors, which by definition are just n—tuples:
I of elements in F'. If we want to think of them geometrically, then we can think of
| them as points or we can represent them by arrows. If we want to interpret thel
I notion orthogonality geometrically, then we should represent v and w by arrows: I
I Proposition [1.19] states for n € {2,3} that the vectors v and w are orthogonal if I
g and only if any two arrows with a common tail that represent them, are orthogonal |

‘to each other. 1

--------------------------------------’

Note that the zero vector is orthogonal to every vector. With Definitions[1.15] and
we immediately have the following analogon of Pythagoras” Theorem.

Proposition 1.23. Two vectors v,w € F™ are orthogonal if and only if they sat-
isfy |[v—wl||? = ||v||*+]||w||?, and if and only if they satisfy ||v+w||* = ||v]]®+ ||w|*.

Proof. We have
lv £ w]* = (v w,vEw) = (v,v) £2(v,w) + (w,w) = [[v]* + [Jw]|* £ 2(v, w).

The right-most side equals ||v|* + ||w||* if and only if (v, w) = 0, so if and only
if v and w are orthogonal. O

‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlllIIIIIIIIIIIIIIIIIII.‘

Definition 1.24. For any subset S C F", we let S+ denote the set of those =
elements of F™ that are orthogonal to all elements of .S, that is,

St={xcF" : (s,z)=0forall sc S}.

4ANEEEEEEEEEEEEEEEEEEEEEEEEE NN NN NSNS NN SN NS NN NN NN NN NN NN NN NN NN EEEEEEEEEER

4EEEEEER

For every element a € F™ we define a* as {a}*. We leave it as an exercise to show
that if a is nonzero, then we have at = L(a)*.

Lemma 1.25. Let S C F™ be any subset. Then the following statements hold.

(1) For every z,y € S*, we have x +y € S*.
(2) For every x € St and every A\ € F, we have Az € S*.

Proof. Suppose z,y € S* and \ € F. Take any element s € S. By definition of
S+ we have (s,7) = (s,y) = 0, so we find (s,z+y) = (s,2) + (s,9) =0+0=10
and (s, A\z) = A\(s,z) = 0. Since this holds for all s € S, we conclude z+y € S+
and Az € S*. O

By definition, every nonzero vector a € F™ is orthogonal to every element in the
hyperplane a*. As mentioned in Warning , in R? and R? we think of this as
the arrow from 0 to (the point identified with) a being orthogonal to every arrow
from 0 to an element of a’. Since a' contains 0, these last arrows have both their
tail and their head contained in the hyperplane a*. Therefore, when we consider
a hyperplane H that does not contain 0, the natural analog is to be orthogonal to
every arrow that has both its tail and its head contained in H. As the arrow from
p € H to g € H represents the vector ¢ — p € F", this motivates the following
definition.

.‘.lll.lll.lll.l.lll.lll.lll.lll.ll-.ll.lll.lll.lll.lll.l.l.l.lll.lll.lll.lll.ll.lll..‘
= Definition 1.26. Let S C F™ be a subset. We say that a vector z € F" is normal =
2 to S when for all p,q € S we have (¢ — p,z) = 0. In this case, we also say that z =
*is a normal of S.

“IIIIIIIIIIIIIIIIIIIIIlllIlllIlllIlllIlllIllllIIIIIIIIIIIIIIIIIlllllllllllllllllllll‘
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F1GURE 1.9. Normal z to a hyperplane H

See Figure , in which S = H C R? is a (hyper-)plane that contains two points
p and ¢, and the vector v = ¢ — p is represented by three arrows: one from p to

q,

one with its tail at the intersection point of H with L(a), and one with its tail

at 0. The first two arrows are contained in H.

Note that the zero vector 0 € F™ is normal to every subset of F™. We leave

it

as an exercise to show that every element of S* is a normal to S, and, if S

contains 0, then a vector z € F™ is normal to S if and only if we have z € S+ (see

Exercise [1.4.6)).

Example 1.27. Let L C R? be the line L = {\- (1,1) : X € R}, consisting
of all points (x,y) satisfying y = . The set L+ consists of all points v = (a, b)
that satisfy 0 = (v, (A, \)) = A(a+0b) for all A € R; this is equivalent to b = —a
and tov =a-(1,-1),s0 L+ = {a-(1,—1) : a € R} is a line. As mentioned
above, since L contains 0, the set L' consists of all elements that are normal
to L.

Example 1.28. Let M C R? be the line M = {(0,1) + - (1,1) : X € R},
consisting of all points (z,y) satisfying y = = + 1. The set M~ consists of all
points v = (a,b) that satisfy 0 = (v, (A, A+ 1)) = A(a + b) + b for all A € R;
this is equivalent to a = b =0 and v = 0, so M+ = {0}. In this case, the line
M does not contain 0. We leave it to the reader to verify that every multiple
of the vector (1,—1) is a normal to M.

|

Proposition 1.29. Let a € F™ be a nonzero vector and b € F' a constant. Then
a is normal to the hyperplane H = {x € F" : (a,z) =0b}.

[

Proof. For every two elements p,q € H we have (p,a) = (q,a) = b, so we find
(g —p,a) = {q,a) — (p,a) = b—b = 0. This implies that a is normal to H. O

Corollary of the next section implies the converse of Proposition for

every nonzero normal a’ of a hyperplane H there is a constant & € F such that

H={zeF" : (dz)y=1V}

Exercises

1.4.1. Let a and b be the lengths of the sides of a parallelogram and ¢ and d the
lengths of its diagonals. Prove that ¢? + d? = 2(a® + b?).
1.4.2.
(1) Show that two vectors v, w € R™ have the same length if and only if v —w
and v + w are orthogonal.
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(2) Prove that the diagonals of a parallelogram are orthogonal to each other
if and only if all sides have the same length.
1.4.3. Let a € F™ be nonzero. Show that we have a* = L(a)*.
1.4.4. Determine the angle between the lines L(a) and L(b) with a = (2,1,3) and
b=(—1,3,2).
1.4.5. True or False? If true, explain why. If false, give a counterexample.
(1) If a € R? is a nonzero vector, then the lines {x € R? : (a,z) = 0} and
{x € R? : (a,z) = 1} in R? are parallel.
(2) If a,b € R? are nonzero vectors and a # b, then the lines
{x €R? : (a,z) =0} and {z € R? : (b,x) = 1} in R? are not parallel.
(3) For each vector v € R? we have (0,v) = 0. (What do the zeros in this
statement refer to?)
1.4.6. Let S C F™ be a subset.
(1) Show that every element in S* is a normal to S.
(2) Assume that S contains the zero element 0. Show that every normal to S
is contained in S*.
1.4.7. What would be a good definition for a line and a hyperplane (neither neces-
sarily containing 0) to be orthogonal?

1.4.8. What would be a good definition for two lines (neither necessarily contain-
ing 0) to be parallel?

1.4.9. What would be a good definition for two hyperplanes (neither necessarily
containing 0) to be parallel?

1.4.10. Let a,v € F™ be nonzero vectors, p € F™ any point, and b € F' a scalar. Let
L C F™ be the line given by

L={p+tv : teF}
and let H C F™ be the hyperplane given by
H={xeF" : (a,x) = b}

(1) Show that L N H consists of exactly one point if v & a*.
(2) Show that LN H =0 ifv € a’ and p & H.
(3) Show that L C H if v € a- and p € H.

1.5. Orthogonal projections and normality

Note that our field F' is still assumed to be a subset of R.

1.5.1. Projecting onto lines and hyperplanes containing zero.

Proposition 1.30. Let a € F™ be a vector. Then every element v € F™ can be
written uniquely as a sum v = vy + vy of an element vi € L(a) and an element
vy € at. Moreover, if a is nonzero, then we have v; = \a with A = {a,v) - ||a|| 2.

Proof. For a = 0 the statement is trivial, as we have 0+ = F™, so we may
assume a is nonzero. Then we have (a,a) # 0. See Figure [1.10] Let v € F™ be
a vector. Let vy € L(a) and vy € F™ be such that v = v; + vy. Then there is a
A € F with v; = Aa and we have (a,v2) = (a,v) — A(a, a); this implies that we
have (a,v2) = 0 if and only if (a,v) = Aa,a) = A||a||?, that is, if and only if
A= ﬁ”;ﬁ;? Hence, this A\ corresponds to unique elements v; € L(a) and vy € at
with v = v; + v,. O
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V1 = A\a

F1GURE 1.10. Decomposing the vector v as the sum of a multiple
vy of the vector a and a vector vy orthogonal to a

‘IIIIIIIll.lll.lll.llllll-llIIIIIIIIl.l.l.l.l.l.lll.lll.lll.llllllllll.lll.lll.lll.l..
= Definition 1.31. Using the same notation as in Proposition [I.30] and assuming a .
= is nonzero, we call vy the orthogonal projection of v onto a or onto L = L(a), and
we call vy the orthogonal projection of v onto the hyperplane H = a*. We let

m: F* — F" and m: B — F"

be the mapsﬂ that send v to these orthogonal projections of v on L and H,
= respectively, so 7(v) = v; and 7y (v) = vo. These maps are also called the
= orthogonal projections onto L and H, respectively.

'.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

We will also write 7, for 7y, and of course 7,1 for my. Note that by Proposi-

tion these maps are well defined and we have

(1.3) (V) = — - a, Tl (V) =v —

(a,v) {a,v)

(a,a) (a,a)

Example 1.32. Take a = (2,1) € R%. Then the hyperplane a' is the line
consisting of all points (z1,75) € R? satisfying 2z, + 25 = 0. To write the
vector v = (3,4) as a sum v = v; + vy with v; a multiple of a and vy € at, we
compute

- a.

(a,v) 10 5

(a,a) 5 7

so we get m,(v) = v; = 2a = (4,2) and thus 7,1 (v) = ve = v —v; = (—1,2).
Indeed, we have v, € at.

A:

Example 1.33. Take a = (1,1,1) € R®. Then the hyperplane H = a is the
set

H={zecR : (a,2) =0} ={ (21, 20,23) €ER® : 2y + 29 +25=0}.

To write the vector v = (2,1,3) as a sum v = vy + vy with v; a multiple of a
and vy € H, we compute

4For a review on maps, see Appendix

‘.llllllllllllllll
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so we get 7,(v) = v = 2a = (2,2,2) and thus
ma(v) =vy=v—v; =(2,1,3) — (2,2,2) = (0,—1,1).
Indeed, we have vy € H.

In fact, we can do the same for every element in R3. We find that we can write
r = (r1,%9,x3) as x = ' + z” with
r I + i) -+ T3

3 ca = Tu(x)
and
2 = (2551 —§2 —373’ —I1 +é£172 —553’ —I _§2 —|—2:c3> _ 7TH(37) c H.

Verify this and derive it yourself!

Example 1.34. Suppose an object T' is moving along an inclined straight path
in R3. Gravity exerts a force f on T', which corresponds to a vector. The force f
can be written uniquely as the sum of two components: a force along the path
and a force perpendicular to the path. The acceleration due to gravity depends
on the component along the path. If we take the zero of Euclidean space to
be at the object T', and the path is decribed by a line L, then the component
along the path is exactly the orthogonal projection 7. (f) of f onto L. See

Figure [L.11]

FIGURE 1.11. Two components of a force: one along the path and
one perpendicular to it

1

We have already seen that for every vector a € F" we have L(a)* = a*, so
the operation S ~» S+ sends the line L(a) to the hyperplane at. The following
proposition shows that the opposite holds as well.

Proposition 1.35. Let a € F™ be a vector. Then we have (at)* = L(a).

Proof. For every A\ € F and every t € a*, we have (\a,t) = X\ a,t) = 0, so we
find L(a) C (a*)*t. For the opposite inclusion, let v € (at)* be arbitrary and
let v; € L(a) and vy € a* be such that v = v; + vy (as in Proposition .
Then by the inclusion above we have v; € (a*)%, so by Lemma we find
Vg =V — U = (aL)L. Hence, the element v is orthogonal to every element in
a’, and in particular to itself, which implies vy, = 0. We conclude v —v; = 0, so

v =v; € L(a). This implies (a*+)* C L(a), which proves the proposition. [
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For generalisations of Proposition [1.35 see Proposition and Exercise
(cf. Proposition [3.33] Remark [3.34). The following corollary shows that every
hyperplane is determined by a nonzero normal to it and a point contained in
it. Despite the name of this subsection, this corollary, and one of the examples
following it, is not restricted to hyperplanes that contain the element 0.

Corollary 1.36. Let a,z € F™ be nonzero vectors. Let b € F' be a scalar and set
H={zeF" : (a,z)=0}.
Let p € H be a point. Then the following statements hold.

(1) The vector z is normal to H if and only if z is a multiple of a.
(2) If z is normal to H, then we have

H={zcF": (z,z)={(z,p)}={z€F" : x—pecz-}

Proof. We first prove the ‘if’-part of (1). Suppose z = Aa for some A\ € F.
Then A is nonzero, and the equation (a,x) = b is equivalent with (z,z) = \b.
Hence, by Proposition [1.29], applied to z = Aa, we find that z is normal to H.
For the ‘only if’-part and part (2), suppose z is normal to H. We translate H
by subtracting p from each point in H, and obtain®
H ={yeF" : y+peH}.
Since p is contained in H, we have (a,p) = b, so we find
H={yeF" : (ay+p)=(ap)}={yeF" : (ay) =0} =a"

On the other hand, for every y € H’', we have y+p € H, so by definition of nor-
mality, 2 is orthogonal to (y+p) —p = y. This implies z € H'* = (a*)* = L(a)
by Proposition [I.35], so z is indeed a multiple of a, which finishes the proof of

(1).
This also implies that H' = a* equals 2+, so we get
H={rxeclF" :z2-pcH})={a2cF" : v—pcz-}
={zeF" : (z,x—p)=0}={xeF" : (z,x)=(z,p) }.
O

Example 1.37. If H C F™ is a hyperplane that contains 0, and a € F™ is a
nonzero normal of H, then we have H = a* by Corollary .
Example 1.38. Suppose V C R3 is a plane that contains the points

pr=(1,0,1),  py=(2,—1,0), and  p3=(1,1,1).

A priori, we do not know if such a plane exists. If a vector a = (ay, as, a3) € R3
is a normal of V', then we have

0= (p2—pi,a) =a1 —as —as and 0= (ps —p1,a) = as,

5The proof of Proposition relies on Proposition which is itself proved by explicitly
computing the scalar A. Therefore, one might qualify both these proofs as computational.
In this book, we try to avoid computational proofs when more enlightening arguments are
available. Proposition which uses the notion of dimension, provides an independent non-
computational proof of a generalisation of Proposition m (see Exercise .

6Make sure you understand why this is what we obtain, including the plus-sign in y + p.
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which is equivalent with a; = a3 and as = 0, and thus with a = a3 - (1,0,1).
Taking a3 = 1, we find that the vector a = (1,0,1) is a normal of V' and as we
have (a,p;) = 2, the plane V' equals

(1.4) {reR® . (a,2) =2}

by Corollary|(1.36], at least if V exists. It follows from (pa—p1,a) = (p3—p1,a) =0

that (pe,a) = (p1,a) = 2 and (p3,a) = (p1,a) = 2, so the plane in (1.4)) contains

p1, P2, and ps. This shows that V' does indeed exist and is uniquely determined
by the fact that it contains py, ps, and ps.

[ Remark 1.39. In a later chapter, we will see that any three points in R? that
are not on one line determine a unique plane containing these points.

[ Remark 1.40. If W C F™ is a line containing 0, and a € W is a nonzero
element, then W = L(a) by Proposition [1.12, If W C F™ is a hyperplane con-
taining 0, and @ € W is a nonzero normal of W, then W = a* by Corollary

Corollary 1.41. Let W C F™ be a line or a hyperplane and assume 0 € W. Then
we have (W)t =W.

Proof. 1f W is a line and a € W is a nonzero element, then we have W = L(a)
by Proposition [1.12} then we get W+ = at, and the equality (W) = W
follows from Proposition [I.35 If W is a hyperplane and a € F™ is a nonzero
normal of W, then W = a* by Corollary [1.36} then we get W+ = (a*)* = L(a)
by Proposition [1.35] so we also find (W) = L(a)* = at = W. O

In the definition of orthogonal projections, the roles of the line L(a) and the hy-
perplane a* seem different. The following proposition characterises the orthogonal
projection completely analogous for lines and hyperplanes containing 0 (cf. Fig-
ure . Proposition generalises this to general lines and hyperplanes, which
allows us to define the orthogonal projection of a point to any line or hyperplane.

Proposition 1.42. Let W C F"™ be a line or a hyperplane, suppose 0 € W, and
let v € F™ be an element. Then there is a unique element z € W such that
v—z € WL, This element 2 equals Ty (v).

Ficure 1.12. Orthogonal projection of v onto a line or hyper-
plane W with 0 € W

Proof. We have two cases. If W is a line, then we take any nonzero a € W, so
that we have W = L(a) and W+ = L(a)* = a*. Then, by Proposition [1.30}
there is a unique element 2z € W such that v — 2 € W+, namely z = m,(v).



24 1. EUCLIDEAN SPACE: LINES AND HYPERPLANES

If W is a hyperplane, then we take any nonzero normal a to W, so that we
have W = at, and then W+ = L(a) by Proposition m Then, again by
Proposition , there is a unique element z € W such that v — z € W+,
namely z = 7,1 (v). O

Exercises

1.5.1. Show that there is a unique plane V C R? containing the points
p1 = (1,0,2), p2 = (—1,2,2), and ps = (1,1,1).
Determine a vector a € R? and a number b € R such that
V={zeR?: (a,z) = b}.

1.5.2. Take a = (2,1) € R? and v = (4,5) € R?. Find v; € L(a) and v € a* such
that v = v + vo.

1.5.3. Take a = (2,1) € R? and v = (x1,72) € R2. Find v; € L(a) and vy € a* such
that v = v1 + vs.

1.5.4. Take a = (—1,2,1) € R? and set V = a* C R>. Find the orthogonal projec-
tions of the element x = (1,72, 73) € R3 onto L(a) and V.

1.5.5. Show that for every subset S C F™ we have SN .S+ c {0}.

1.5.6. Let W C F™ be a line or a hyperplane, and assume 0 € W. Use (|1.3)) to show
that
(1) for every x,y € F™ we have my (x +y) = 7w (z) + mw (y), and
(2) for every x € F™ and every A € F' we have my (A\x) = Amwy ().

1.5.7. Let W C F™ be a line or a hyperplane, and assume 0 € W.
(1) Show that there exists a nonzero a € F™ such that W = L(a) or W = a™.
(2) Show that for every v,w € W we have v+ w € W.

1.5.8. This exercise proves the same as Exercise but without formulas. Let
W C F™ be a line or a hyperplane, and assume 0 € W. Use Exercise [L.5.
Proposition and Lemma to show that

(1) for every x,y € F™ we have my (x +y) = mw (z) + 7w (y), and
(2) for every x € F™ and every A € F we have my (A\x) = Amy ().

1.5.9. Let W C F™ be a line or a hyperplane, and assume 0 € W. Let p € W
and v € F" be points. Prove that we have my (v — p) = mw(v) — p. See
Proposition for a generalisation.

1.5.10. Let a € F™ be nonzero and set L = L(a). Let ¢ € F™ be a point and let
H C F™ be the hyperplane with normal a € F™ and containing the point ¢.
(1) Show that the line L intersects the hyperplane H in a unique point, say p
(see Exercise [L.4.10).
(2) Show that for every point z € H we have 7z (x) = p.
1.5.11. (1) Let p,q,7, s € R? be four distinct points. Show that the line through p
and ¢ is perpendicular to the line through r and s if and only if

(p, ) +{g,8) = (p,s) + (g, 7).

(2) Let p,q,r € R? be three points that are not all on a line. Then the altitudes
of the triangle with vertices p,q, and r are the lines through one of the
three points, orthogonal to the line through the other two points.

Prove that the three altitudes in a triangle go through one point. This
point is called the orthocenter of the triangle. [Hint: let p,q,r be the
vertices of the triangle and let s be the intersection of two of the three al-
titudes. Be careful with the case that s coincides with one of the vertices.]
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1.5.2. Projecting onto arbitrary lines and hyperplanes.

We now generalise Proposition to arbitrary lines and hyperplanes, not neces-
sarily containing 0.

Proposition 1.43. Let W C F™ be a line or a hyperplane, and let v € F™ be an
element. Then there is a unique element z € W such that v — z s normal to W.
Moreover, if p € W is any point, then W' ={x —p : © € W} contains 0 and we
have

z—p=mw(v—Dp).

FiGure 1.13. Orthogonal projection of v onto a general line or
hyperplane W

Proof. We start with the special case that W contains 0 and we have p = 0.
Since W contains 0, a vector x € F™ is contained in W if and only if x is normal
to W (see Exercise[1.4.0)), so this special case is exactly Proposition [1.42] Now
let W be an arbitrary line or hypersurface and let p € W be an element. See
Figure For any vector z € F", each of the two conditions

(i) z € W, and
(ii) v — z is normal to W

is satisfied if and only if it is satisfied after replacing v, z, and W by v/ = v —p,
z/ =z — p, and W', respectively. The hyperplane W’ contains 0, so from the
special case above, we find that there is indeed a unique vector z € F™ satisfying
(i) and (ii), and the elements v' = v — p and 2’ = z — p satisfy 2’ = . (V'),
which implies the final statement of the proposition. OJ

Proposition [I.43] can be used to define the orthogonal projection onto any line or
hyperplane W C F™.
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! Definition 1.44. Let W C F™ be a line or a hyperplane. The orthogonal projec-
= tion Ty : F™ — F™ onto W is the map that sends v € F” to the unique element z
= of Proposition [T.43] that is,

v

mw (v) = p + T (v — p).
When W contains 0, Proposition shows that this new definition of the or-
thogonal projection agrees with Definition because in this case, the vector
v — 2 is normal to W if and only if v — 2 € W (see Exercise [1.4.6)).

It follows from Definition that if we want to project v onto a line or hyperplane
W that does not contain 0, then we may first translate everything so that the

.-Illl
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resulting line or hyperplane does contain 0, then project orthogonally, and finally
translate back.

p 7TL(T>

FIGURE 1.14. Altitude of a triangle

Exercises

1.5.12. Let H C R? be a hyperplane with normal a = (1,2, 1) that contains the point
p=(1,1,1). Find the orthogonal projection of the point ¢ = (0,0,0) onto H.

1.5.13. Let p,q,r € R? be three points that are not all on a line. Show that the
altitude through r intersects the line L through p and ¢ in the point

WL<T)ZP+W.<Q_},),

la
See Figure

1.6. Distances

Lemma 1.45. Let a,v € F™ be elements with a # 0. Set L = L(a) and H = a™.
Let vy = m(v) € L and vy = mg(v) € H be the orthogonal projections of v on L
and H, respectively. Then the lengths of vi and vy satisfy

(@, v)|

loill = == and  Jlwal® = v
el

2

12 2 - {a:v)

lal* -
Moreover, for any x € L we have d(v,z) > d(v,vy) = ||ve| and for any y € H we
have d(U,y) > d(U,’UQ) = HU1||

= [lval|* =l

Proof. By (1.3) we have v; = Aa with A = |<|‘Z“l|1|]2> Lemma [1.17| then yields

a,v
oull = A - laf) = e

lall -

Since v; and vq are orthogonal, and v; + ve = v, we find from Proposition [I.23]
(Pythagoras) that we have

(a,v)?
lal* ~
Suppose © € L. we can write v — x as the sum (v — v1) + (v; — z) of two

orthogonal vectors (see Figure [1.15]), so that, again by Proposition [1.23] we
have

I”

loal[* = lol* = [lua|* = JJol* —

d(v,2)* = [lv — 2| = o — v |* + [lor — @[ > v — v ]|* = [Joz]*.
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WL(U) =1

o
3
By

<
|
<
[\V)

<

F1GURE 1.15. Distance from v to points on L and H

Because distances and lengths are non-negative, this proves the first part of
the last statement. The second part follows similarly by writing v — y as
(v —v2) + (v2 —y). O

Lemma shows that if @ € F™ is a nonzero vector and W is either the line
L(a) or the hyperplane a*, then the distance d(v,z) = |[v — z|| from v to any
point z € W is at least the distance from v to the orthogonal projection of v
on W. This shows that the minimum in the following definition exists, at least if
W contains 0. Of course the same holds when W does not contain 0, as we can
translate W and v, and translation does not affect the distances between points.
So the following definition makes sense.
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: Definition 1.46. Suppose W C F" is either a line or a hyperplane. For any =
20 € F", we define the distance d(v, W) from v to W to be the minimal distance &
= from v to any point in W, that is,

dv, W) = gél%l/d(?],’w) = min lv — wl|.

eNEEEEE

AEEEEEEEEEEEEEEEEEEEEEEEEEEEE NN NN NN NN NSNS NN NN SN EEEEEEEEEEEEEEEEEEEEEEEEERERY

Proposition 1.47. Let a,v € F™ be elements with a # 0. Then we have

d(v,at) = d(v, 7, (v)) = Kﬁ;—ﬁ” and

d(v, L(a)) = d(v, 710 (v)) = 4/ 0] — G-

Proof. Let v; and vy be the orthogonal projections of v onto L(a) and a™,
respectively. Then from Lemma we obtain

[{a, v)]|

and
all

d(v,a”) = d(v, 7,1 (v)) = [ — V2l = ur]| =

a,v)?
d(v, L(a)) = d(v, 71a)(v)) = [[v = o1 ]| = [Joal| = /[[0]|> = 42

a
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Note that L(a) and a' contain 0, so Proposition m states that if a line or
hyperplane W contains 0, then the distance from a point v to W is the distance
from v to the nearest point on W, which is the orthogonal projection my (v) of v
onto W. Exercise shows that the same is true for any line or hyperplane
(see Proposition and the subsequent paragraph for the definition of orthogonal
projection onto general lines and hyperplanes).

In order to find the distance to a line or hyperplane that does not contain 0, it
is usually easiest to first apply an appropriate translation (which does not affect
distances between points) to make sure the line or hyperplane does contain 0

(cf. Examples and [1.51)).

[ Example 1.48. We continue Example|1.33, We find that the distance d(v, L(a))
from v to L(a) equals |lvs]] = v/2 and we find that the distance from v to H

equals d(v, H) = ||v|| = 2v/3. We leave it as an exercise to use the general
description of m,(x) and 7y (z) in Example to find the distances from
x = (x1,72,23) to L(a) and H = a™.

Example 1.49. Consider the point p = (2,1,1) and the plane
V ={(2,79,73) €ER® : 2 — 225 + 303 =0}

in R3. We compute the distance from p to V. The normal vector a = (1, -2, 3)
of V satisfies (a,a) = 14. Since we have V = a', by Proposition , the
distance d(p, V') from p to V equals the length of the orthogonal projection of p
on a. This projection is Aa with A = (a,p) - ||a||~? = 2. Therefore, the distance

we want equals [|Aa|| = 2+v/14.

Example 1.50. Consider the vector a = (1,—2,3), the point p = (2,1, 1) and
the plane

W={2zeR® : (a,z) =1}
in R®. We will compute the distance from p to W. Since W does not contain 0,
it is not a subspace and our results do not apply directly. Note that the point
q = (2,—1,—1) is contained in W. We translate the whole configuration by —¢
and obtain the point p' = p — ¢ = (0,2, 2) and the plane’

W ={zx—-—q: 2eW}

={zecR® : 2+qecW}

={zeR® : (a,x+q)=1}

={2cR®: (ag,2) =0} =a",
which does contain 0 (by construction, of course, because it is the image of
g € W under the translation). By Proposition [1.47, the distance d(p’, W’)
from p’ to W’ equals the length of the orthogonal projection of p’ on a. This
projection is Aa with A = (a,p’) - [la|| ™2 = 1. Therefore, the distance we want
equals d(p, W) = d(p/, W') = ||]Aa = $v/14.

Example 1.51. Let L C R3 be the line through the points p = (1,—1,2)
and ¢ = (2,—2,1). We will find the distance from the point v = (1,1,1)
to L. First we translate the whole configuration by —p to obtain the point
v' =v—p = (0,2, —1) and the line L’ through the points 0 and ¢—p = (1, —1, —1).

"Note the plus sign in the derived equation (a, z+¢) = 1 for W’ and make sure you understand
why it is there!
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If we set a = ¢ — p, then we have L' = L(a) (which is why we translated in the
first place) and the distance d(v, L) = d(v', L') is the length of the orthogonal
projection of v’ onto the hyperplane a*. We can compute this directly with
Proposition [I.47] It satisfies

a,v')? (-1)? 14
dU/,L,2: U/Q_<> —5_ ——
@ L = o = LR
so we have d(v,L) = d(v',L') = /& = $v42. Alternatively, in order to
determine the orthogonal projection of v onto a, it is easiest to first compute
the orthogonal projection of v' onto L(a), which is Aa with A\ = jﬁb—ﬁ; = —%.
Then the orthogonal projection of v’ onto a* equals v' — (—3a) = (3,2, —3) and

the length of this vector is indeed %\/ 42.

Exercises

1.6.1. Take a = (2,1) € R? and p = (4,5) € R%. Find the distances from p to L(a)

and at.

1.6.2. Take a = (2,1) € R? and p = (z,y) € R%. Find the distances from p to L(a)
and at.

1.6.3. Compute the distance from the point (1,1,1,1) € R* to the line L(a) with
a=(1,2,3,4).

1.6.4. Given the vectors p = (1,2,3) and w = (2,1,5), let L be the line consisting
of all points of the form p + Aw for some A € R. Compute the distance d(v, L)
for v=(2,1,3).

1.6.5. Suppose that V C R3 is a plane that contains the points
p1 = (112a_1)a b2 = (1707 1)7 and b3 = (_2737 1)
Determine the distance from the point ¢ = (2,2,1) to V.
1.6.6. Let a1, a2,a3 € R be such that a% + a% + a% =1, and let f: R® — R be the
function that sends x = (z1, z2, z3) to a1x1 + asws + aszs.

(1) Show that the distance from any point p to the plane in R3 given by
f(z) = 0 equals | f(p)|-
(2) Suppose b € R. Show that the distance from any point p to the plane in
R3 given by f(x) = b equals |f(p) — b|.
1.6.7. Finish Example by computing the distances from a general point z € R?
to the line L(a) and to the hyperplane at with a = (1,1,1).

1.6.8. Given a = (a1, as,a3) and b = (b1, ba, b3) in R3, the cross product of a and b
is the vector

a x b = (agbs — azbs, agby — a1bs, a1by — azby).

(1) Show that a x b is perpendicular to a and b.
(2) Show [la x b2 = [lal® 6] — {a, )?.
(3) Show |la x b|| = ||a]| ||b|| sin(8), where 6 is the angle between a and b.
(4) Show that the area of the parallelogram spanned by a and b equals ||a x b||.
(5) Show that the distance from a point ¢ € R3 to the plane containing 0, a,
and b equals
[(a x b, c)|

lax bl

(6) Show that the volume of the parallelepiped spanned by vectors a, b, ¢ € R3
equals [(a x b, c)|.
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1.6.9. Let L C R? be the line through two distinct points p,q € R? and set v = ¢—p.
Show that for every point r € R? the distance d(r, L) from 7 to L equals
[l > (r = p)l
o]
(see Exercise |1.6.8]).

1.6.10. Let H C R?* be the hyperplane with normal a = (1, —1,1, —1) and containing
the point ¢ = (1,2, —1, —3). Determine the distance from the point (2,1, -3, 1)
to H.

d(q, W)

mw (q)
FiGURE 1.16. Distance from ¢ to W

1.6.11. Let W C F™ be a line or a hyperplane, not necessarily containing 0, and
let ¢ € F™ be a point. In Proposition and the subsequent paragraph, we
defined the orthogonal projection my (¢q) of ¢ onto W. Proposition m states
that if W contains 0, then 7y (q) is the nearest point to ¢ on W. Show that
this is true in general, that is, we have

d(q, W) = d(g, 7w (q)) = llg — 7w (q)|
See Figure [I.16]

1.7. Reflections

If H C R?is a plane, and v € R? is a point, then, roughly speaking, the reflection
of v in H is the point © on the other side of H that is just as far from H and for
which the vector ¥ — v is normal to H (see Figure . This is made precise in
Exercise for general hyperplanes in F", but we will use a slightly different
description.

v

FIGURE 1.17. Reflection of a point v in a plane H

Note that in our rough description above, the element v being just as far from H
as v, yet on the other side of H, means that the midpoint %(v + v) between v and
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v is on H. This allows us to formulate an equivalent description of ©, which avoids
the notion of distance. Proposition makes this precise, and also applies to
lines.

1.7.1. Reflecting in lines and hyperplanes containing zero.

In this subsection, we let W denote a line or a hyperplane with 0 € V.

Proposition 1.52. Let v € F™ be a point. Then there is a unique vector v € F"
such that

(1) the vector v — ¥ is normal to W, and
(2) we have (v +10) € W.

This point equals 2my (v) — v.

Proof. Let © € F™ be arbitrary and set z = $(v +0). Then v — z = 3(v — 0)

is normal to W if and only if v — ¢ is. Since W contains 0, this happens if
and only if 2 —v € W+ (see Exercise [1.4.6). Hence, by Proposition [1.42 the

element v satisfies the two conditions if and only if we have z = 7y (v), that is,
0 = 2mw(v) — v. O
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: Definition 1.53. The reflection in W is the map sy : F" — F" that sends a &
= vector v € F™ to the unique element ¥ of Proposition SO
: (1.5) sw(v) = 2w (v) — v.
'..l...l...l...l...l........................l...l...l...l...l...l....................’
Note that the identity ([1.5)) is equivalent to the identity sy (v) —v = 2(mw (v) —v),
so the vectors sy (v) — v and my (v) — v are both normal to W and the former is

the double of the latter. In fact, this last vector equals —my 1 (v) by the identity
v = mw(v) + o (v), so we also have

(1.6) sw(v) =v —2mpyo(v)
and
(1.7) sw(v) = mw(v) — Ty (v).

From this last identity and the uniqueness mentioned in Proposition we find
the orthogonal projections of the point sy (v) onto W and W+. They satisfy

mw (sw(v)) = Tw (v) and T+ (sw(v)) = —ms (v),

so the vector v and its reflection sy (v) in W have the same projection onto W,
and the opposite projection onto W+. This implies the useful properties

(1.8) sw(sw(v)) = v,
(1.9) sw(v) = —sy(v),
(1.10) d(v, W) =d(sw(v), W).

To make it more concrete, let a € R™ be nonzero and set L = L(a) and H = at.
Let v € R™ be a point and let v; = m,(v) and vy = wy(v) be its orthogonal
projections on L and H, respectively. By Proposition [1.30] we have v; = Aa with

A= ﬁiﬁ’;, so we find

(1.11) sp(v) =v—21 :v—2<||a6;|1‘}> -a
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L(a) = H+
) malv) = vy ;
sL(zs —U2 ] V2
= V1 — Vg
= v — 209 U1
—
0 vy =7g(v)  H=L(a)*
—vq || " sg(v) =vy — vy =v —2u;

FIGURE 1.18. Reflection of v in L = L(a) and in H = a*

and sp(v) = —spg(v). See Figure for a schematic depiction of this, with H
drawn as a line (which it would be in R?). Figure shows the same in R3,
this time with the plane H actually drawn as a plane. It is a useful exercise to
identify identity (L.5), which can be rewritten as sy (v) — v = 2(mw (v) — v), and
the equivalent identities and in both figures (for both W = L and
W = H, and for the various points shown)!

We still consider H C R3, as in Figure [1.19} For v € H we have 7y (v) = v and
7r(v) = 0, so sy(v) = v and sp(v) = —v. This means that on H, the reflection
in the line L corresponds to rotation around 0 over 180 degrees. We leave it as an
exercise to show that on the whole of R3, the reflection in the line L is the same
as rotation around the line over 180 degrees.

FIGURE 1.19. An object with its orthogonal projections on L
and H, and its reflections in L and H
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[ Example 1.54. Let H C R3 be the plane through 0 with normal a = (0,0, 1),
and set L = L(a). For any point v = (x,y, z), the orthogonal projection 7 (v)
equals (0,0, 2), so we find sy (v) = (z,y, —2) and s;(v) = (—z, —y, 2).

[ Example 1.55. Let M C R? be the line consisting of all points (z,y) satisfying
y = —2x. Then M = a* for a = (2, 1), that is, a is a normal of M. The reflection
of the point p = (3,4) in M is

10
su(p) =p —2m.(p) :p—QEZ:Zia:p—2'€~a:p—4a: (—5,0).
Draw a picture to verify this.
Exercises

1.7.1. Let L C R? be the line of all points (z1, ) satisfying z2 = 221. Determine
the reflection of the point (5,0) in L.
1.7.2. Let L C R? be the line of all points (z1,r2) satisfying 2 = 22;. Determine
the reflection of the point (21, 22) in L for all 2z, 2z € R.
1.7.3. Let V C R3 be the plane through 0 that has a = (3,0, 4) as normal. Determine
the reflections of the point (1,2, —1) in V and L(a).
1.7.4. Let W C F™ be a line or a hyperplane, and assume 0 € W. Use Exercise|1.5.8
to show that
(1) for every x,y € F™ we have sy (z + y) = sw(z) + sw(y), and
(2) for every x € F™ and every A € F we have sy (A\x) = Asy ().
1.7.5. Let a € F™ be nonzero and set L = L(a). Let p € L be a point, and let
H C F™ be the hyperplane with normal a € F™ and containing the point p.
(1) Show that for every point v € H, we have sp(v) —p = —(v — p) (see

Exercise |1.5.10)).

(2) Conclude that for n = 3 the restriction of the reflection sz, to H coincides
with rotation within H around p over 180 degrees.

(3) Conclude that for n = 3 the reflection sz, in L coincides with rotation
around the line L over 180 degrees (cf. Figure .

1.7.2. Reflecting in arbitrary lines and hyperplanes.

In this subsection, we generalise reflections to arbitrary lines and hyperplanes, not
necessarily containing 0. It relies on orthogonal projections, which for general lines
and hyperplanes are defined in Definition . In this subsection, we no longer
assume that W is a line or a hyperplane containing 0.

Proposition 1.56. Let W C F™ be a line or a hyperplane, and v € F™ a point.
Then there is a unique vector v € F™ such that

(1) the vector v — ¥ is normal to W, and
(2) we have 3(v+9) € W.

Moreover, this point equals 2wy (v) — v.

Proof. Let © € F™ be arbitrary and set z = 1(v+0). Then v —z = 1(v—17) is
normal to W if and only if v — v is. Hence, v satisfies the two conditions if and
only if we have z = my (v), that is, 0 = 2mw (v) — v. O
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: Definition 1.57. Let W C F” be a line or a hyperplane. The reflection
Sw - " — F"
is the map that sends a vector v € F™ to the unique element v of Proposition [1.56},
that is,
sw(v) = 2mw (v) — v.

Clearly, this is consistent with Definition for lines and hyperplanes that con-
tain 0.

'--------------------------------------

I Warning 1.58. The reflection sy in W is defined in terms of the projection my, §

I just as in ([L.5]) for the special case that W contains 0. Note, however, that the I
alternative descriptions ((1.6) and ([1.7)) only hold in this special case. I

¢UEEEEEEEEEEEER
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Proposition 1.59. Let W C F™ be a line or a hyperplane, and p € F™ a point.
Then the hyperplane W' = {x —p : x € W} contains 0 and we have

sw(v) —p = sy (v —p).

FiGURE 1.20. Reflection of v in a line or hyperplane W

Proof. We have sy (v) = 2y (v) — v and sy (v — p) = 2wy (v — p) — (v — p)
by Definition Hence, the proposition follows from the fact that we have
mw (v) = p+ mw (v — p) by Definition [1.44] O]

Proposition [1.59 states that if we want to reflect v in a line or hyperplane that
does not contain 0, then we may first translate everything so that the resulting
line or hyperplane does contain 0, then we reflect, and then we translate back. See

Figure and the end of Subsection [1.5.2]
[ Example 1.60. Consider the vector a = (—1,2,3) € R? and the plane
V={veR® : (a,v) =2}

We will compute the reflection of the point ¢ = (0,3,1) in V. Note that
p=(0,1,0) is contained in V', and set ¢ = ¢ —p = (0,2,1) and

Vi={v—p : veV}
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The vector a is normal to the plane V/ and V' contains 0, so we have V' = a*.

The projection m,(q") of ¢' onto L(a) is Aa with A = % = 1. Hence, we have

syi(q) =2m,(d)—qd =q¢ —2m,(¢) =¢ — 2 a=¢ —a=(1,0,-2).
Hence, we have sy (q) = sy/(¢') +p = (1,1, -2).

Exercises

1.7.6. Let V C R? be the plane that has normal a = (1,2, —1) and that goes through
the point p = (1,1,1). Determine the reflection of the point (1,0,0) in V.
1.7.7. Let p,q € R™ be two different points. Let V' C R™ be the set of all points in

R"” that have the same distance to p as to ¢, that is,

V={veR" : [o-pll=v—aql}
(1) Show that V' is the hyperplane of all v € R™ that satisfy

(o= p0) = 5(lalP ~ 1)

(2) Show g —p is a normal of V' and that the point %(p+ q) is contained in V.
(3) Show that the reflection of p in V is g.

1.7.8. Let H C F™ be a hyperplane and v € F™ a point that is not contained in H.
Show that there is a unique vector © € F™ such that
(1) v#3,
(2) the vector v — ¥ is normal to H, and
(3) we have d(v, H) = d(v, H).
Show that this vector v is the reflection of v in H.
1.7.9. Let p,q € R? be two distinct points, and let L be the line through p and q.
Let H C R? be the plane through p that is orthogonal to L, that is, the vector
a = q — p is normal to H.
1) Show that for every v € H we have v —p € a™.
2) Show that for every v € H we have 7 (v) = p.
3) Show that for every v € H we have sp(v) —p = —(v —p).
4) Conclude that the restriction of the reflection sy to H coincides with
rotation within H around p over 180 degrees.
(5) Conclude that the reflection sz in L coincides with rotation around the
line L over 180 degrees (cf. Figure [1.19).

(
(
(
(

1.8. Cauchy-Schwarz

We would like to define the angle between two vectors in R™ by letting the angle
o € [0,7] between two nonzero vectors v, w be determined by (1.2). However,
before we can do that, we need to know that the value on the right-hand side of
lies in the interval [—1,1]. We will first prove that this is indeed the case.

Proposition 1.61 (Cauchy-Schwarz). For all vectors v,w € F™ we have
(v, w)| < jo] - ]

and equality holds if and only if there are A\, € F, not both zero, such that
v+ pw = 0.

Proof. If v = 0, then we automatically have equality, and for A =1 and u =0
we have \v + pw = 0. Suppose v # 0. Let z be the orthogonal projection of
w onto vt (see Definition [1.31} so our vectors v, w, z correspond to a,v,vs of
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0

FIGURE 1.21. Arrows representing the vectors v, w and v+ w make
a triangle

Proposition [1.30} respectively). Then by Proposition we have

2 2 (v,w)?

1217 = [Jwl e
From ||z]|? > 0 we conclude (v, w)? < ||v||*- ||w]|?, which implies the inequality,
as lengths are non-negative. We have equality if and only if z = 0, so if and only
if w = Av for some A € F, in which case we have A\v+ (—1)-w = 0. Conversely,
if we have \v + pw = 0 with A and g not both zero, then we have p # 0, for
otherwise Av = 0 would imply A = 0; therefore, we have w = —A\p~tv, so w is
a multiple of v and the inequality is an equality. [

The triangle inequality usually refers to the inequality ¢ < a+ b for the sides a, b, ¢
of a triangle in R? or R3. Proposition generalises this to F. See Figure [1.21]

Proposition 1.62 (Triangle inequality). For all vectors v,w € F™ we have

lo 4wl < {Jol] + [|lw]

and equality holds if and only if there are non-negative scalars \,u € F', not both
zero, such that \v = pw.

Proof. By the inequality of Cauchy-Schwarz, Proposition [1.61], we have
lo+wl® = (v+w,v+w) = (v,0) +2(v,w) + {w,w)

=[lvlI* + 2{v, w) + [lwl* < [[olI* + 2« ol - wl| + [lw]* = (o]l + [[w])*.
Since all lengths are non-negative, we may take square roots to find the desired
inequality. Equality holds if and only if (v, w) = ||v] - ||w]|.

If v =0 or w = 0, then clearly equality holds and there exist A and p as claimed:
take one of them to be 1 and the other 0, depending on whether v or w equals 0.
For the remaining case, we suppose v # 0 and w # 0.

Suppose equality holds in the triangle inequality. Then (v, w) = [|v]| - [|w]|, so
by Proposition there exist X,/ € F, not both zero, with Nv + p/w = 0.
Since v and w are nonzero, both X' and p’ are nonzero. For A\ = 1 and
pw=—u' /N we have v = Av = pw, and from

o]l - flwll = (v, w) = (pw, w) = pflwl]?
we conclude p > 0.

Conversely, suppose A, > 0, not both zero, and Av = pw. Then A\ and pu
are both nonzero, because v and w are nonzero. With v = p/A > 0, we find
v = v, s0 we have (v,w) = (vw,w) = vlwll> = [v| - |w| - ] = Jo] - [lw],
which implies that equality holds in the triangle inequality. [
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Definition 1.63. For all nonzero vectors v, w € F", we define the angle between
v and w to be the unique real number « € [0, 7] that satisfies

»

(1.12) cosa = M
[o]] - [l
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Note that the angle a between v and w is well defined, as by Proposition [I.61] the
right-hand side of lies between —1 and 1. By Proposition , the angle
also corresponds with the usual notion of angle in R? and R? in the sense that the
angle between v and w equals the angle between the two arrows that represent v
and w and that have 0 as tail. Finally, Definitions and imply that two
nonzero vectors v and w in F™ are orthogonal if and only if the angle between
them is 7/2.

[ Example 1.64. For v = (3,0) and w = (2,2) in R? we have (v,w) = 6, while
|v|| = 3 and |jw|| = 2v/2. Therefore, the angle § between v and w satisfies
cos = 6/(3-2v2) = 11/2, so we have § = 7 /4.

[ Example 1.65. Forv = (1,1,1,1) and w = (1,2, 3, 4) in R* we have (v, w) = 10,
while [|v|| = 2 and |Jw|| = v/30. Therefore, the angle § between v and w satisfies
cos =10/(2 - v/30) = 11/30, so 6 = arccos (2v/30).

Exercises

1.8.1. Prove that for all v, w € R™ we have ||[v—w|| < ||v||+||w]|. When does equality
hold?

1.8.2. Prove the cosine rule in R™.

1.8.3. Suppose v, w € F™ are nonzero, and let o be the angle between v and w.
(1) Prove that o = 0 if and only if there are positive \, u € F with \v = pw.
(2) Prove that a = 7 if and only if there are A\, u € F with A < 0 and p > 0

and Av = pw.
1.8.4. Determine the angle between the vectors (1,—1,2) and (—2,1,1) in R3.

1.8.5. Let p,q,r € R™ be three points. Show that p, ¢, and r are collinear (they lie
on one line) if and only if we have

<p—7’,q—7'>2 = <p—7”,p—7‘> : <q—7“,q—7“>-
1.8.6. Determine the angle between the vectors (1,—1,1,—1) and (1,0,1,1) in R%.
1.8.7. The angle between two hyperplanes is defined as the angle between their

normal vectors. Determine the angle between the hyperplanes in R* given by
r1 — 2x9 + 3 — x4 = 2 and 3x1 — 3 + 223 — 224 = —1, respectively.

1.9. What is next?

We have seen that R" is a set with an addition, a subtraction, and a scalar mul-
tiplication, satisfying the properties mentioned in Section [I.I} This makes R™ our
first example of a vector space, which we will define in the next chapter. In fact,
a vector space is nothing but a set together with an addition and a scalar multi-
plication satisfying a priori only some of those same properties. The subtraction
and the other properties will then come for free! Because we only have addition
and scalar multiplication, all our operations are linear, which is why the study of
vector spaces is called linear algebra.
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In the next chapter we will see many more examples of vector spaces, such as the
space of all functions from R to R. Lines and hyperplanes in R™ that contain 0
are vector spaces as well. In fact, so is the zero space {0} C R™. Because these
are all contained in R™, we call them subspaces of R™.

One of the most important notions in linear algebra is the notion of dimension,
which we will define for general vector spaces in Chapter [7]] It will not come
as a surprise that our examples R', R?, and R?® have dimension 1, 2, and 3,
respectively. Indeed, the vector space R™ has dimension n. Lines (containing 0)
have dimension 1, and every hyperplane in R (containing 0) has dimension n —1,
which means that planes in R? have dimension 2, as one would expect.

For R™ with n < 3 this covers all dimensions, so every subspace of R” with n < 3
is either {0} or R™ itself, or a line or a hyperspace, and these last two notions
are the same in R2. For n > 4, however, these are far from all subspaces of R”,
which exist for any dimension between 0 and n. All of them are intersections of
hyperplanes containing 0.

The theory of linear algebra allows us to generalise some of the important results
of this chapter about lines and hyperplanes to all subspaces of R™. For example,
in Proposition and Corollary [[.41] we have seen that for every line or hyper-
surface W C R" containing 0, we can write every v € R" uniquely as v = v; + vy
with v; € W and v, € W+. This does indeed hold for any subspace W of R" (see
Corollary [8.24). Moreover, for every subspace W C R™ we have (W+)+ =W (see
Proposition [8.20), thus generalising Proposition m Both results make exten-
sive use of theorems about dimensions. These two results can be used to compute
the intersection of any two subspaces, or to solve any system of linear equations.
The last of these two results can also be used to parametrise any subspace and
translates thereof, including hyperplanes. In this chapter, we have only done this
for lines (see Proposition . Orthogonal projections and reflections can also be
defined with respect to any subspace of R”, just like distances from points to any
(translate of a) subspace.

But linear algebra can be applied to many more vector spaces than only those
contained in R™. For example, the set of all functions from R to R is a vector
space of infinite dimension, to which our theory will apply just as easily as to R"!
Therefore, most of this book will be about general vector spaces. As mentioned
before, the space R™ of this first chapter is just one example.

As opposed to what we did in this chapter, we will also consider fields F' that are
not contained in R. This allows examples over the field C of complex numbers and
even over the field Fy = {0, 1} of two elements (in which we have 141 = 0), which
is widely used in cryptography. The precise definition of a field (and of C and Fs)
is given in Appendix [B] but, if wanted, readers can skip this definition and think
of a field as just R (or as a subset of R containing 0 and 1 in which we can add,
subtract, multiply, and divide by any nonzero element). They will still be able
to learn linear algebra from this book by skipping a few examples, exercises, and
remarks about fields such as Fy, which are indicated by the symbol 7.

The real strength of linear algebra comes from the understanding of linear maps,
which are functions between vector spaces that preserve the linear structure (the
addition and the scalar multiplication) of the spaces. Linear maps are defined in
Chapter ] Matrices are a convenient way to describe maps from F™ to F™ and
to do explicit computations. They are defined in Chapter 5 The last chapters of
this book are dedicated to understanding various aspects of linear maps.



CHAPTER 2

Vector spaces

In Section |1.1| we have seen that the newly defined addition () and scalar multi-
plication (®) on Euclidean space R"™ behave so closely to the regular addition and
multiplication, that we use the regular notations (4 and -) for them. Although
much of Chapter [I{also relies on the scalar product, we can prove many interesting
theorems about Euclidean space using just the addition and scalar multiplication
and the fact that they satisfy the properties (1)-(9) mentioned in Section

It turns out that in mathematics we encounter many other sets V' where one could
define an interesting new addition and a scalar multiplication satisfying the same
properties (1)-(9) of Section [I.1] Any proof of a fact about Euclidean space R"
that only makes use of these properties of addition and scalar multiplication is
then also a proof of the analogous fact for V.

Rather than stating these facts and their proofs for all sets with an addition and
a scalar multiplication separately, we define the abstract notion of a vector space,
which is a set in which we can add and scale elements, and where the addition and
scaling satisfy eight simple rules, called axioms. Euclidean space R™ then becomes
merely an ezample of a vector space.

Linear algebra is the study of these abstract vector spaces in general and starts
with proving that the properties (1)-(9) of Section |1.1{follow from the axioms. By
proving theorems using only these axioms and all the rules that follow from them,
we prove these theorems for all vector spaces at once.

As mentioned, in Chapter [I] we have seen the first examples, namely V' = F" for
any subfield F' of R, that is, for any subset F' C R containing 0 and 1 in which
we can add, multiply, subtract, and divide (except by 0). The scaling, or scalar
multiplication, scales elements of V' by elements of F. For the rest of this book,
we do not require that I is a subset of R. All we require from our scaling factors,
or scalars, is that they form a field, which means that —roughly speaking— they
form a set in which we can somehow add, subtract, and multiply elements, and
divide by any nonzero element. See Appendix [B] for a precise definition of fields.

For the rest of this book, we let F' denote a field; elements of F' are called scalars.

So as not to force all readers to first study the theory of fields, this book is set up
to allow some simplifications.

e Readers may assume that F'is (contained in) the field C of complex num-
bers, in which case they should skip all examples, exercises, and remarks
indicated by tf.

e Readers may assume that F' is (contained in) the field R of real num-

bers, in which case they should skip all examples, exercises, and remarks
indicated by t and 7.

Under these simplifying asumptions, the definition of a field reduces precisely to F’
being a subset of R or C that contains 0 and 1 and in which we can add, subtract,

39
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and multiply elements, and divide by any nonzero element. Examples are R and C
themselves, and the field QQ of rational numbers.

We will often use the field R of real numbers in our examples, but by allowing
ourselves to work with general fields, we also cover linear algebra over the field C
of complex numbers, and over finite fields, such as the field F; = {0,1} of two
elements (with 1+ 1 = 0), which has important applications in computer science,
cryptography, and coding theory. For the definitions of C and Fsy, see Appendix [B]

2.1. Definition of a vector space

Roughly speaking, a vector space over the field F is just a set V of which we can
add any two elements to get a new element of V', and of which we can scale any
element by an element of F'. The addition and scalar multiplication have to satisfy
some rules, and the exact definition of a vector space is as follows.

‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.

Deﬁnltlon 2.1. A wector space or linear space over F, or an F-vector space, is :
= a set V with a distinguished zero element 0y € V, together with an operation 2 :
= (¢ addltlonﬂ) that assigns to two elements =,y € V their sum z @y € V, and &
= an operation © (‘scalar multlphcatlonﬂ) that assigns to a scalar A € F' and an s
element x € V the scaled multiple A ® x € V of z, such that these operations s
satlsfy the following axioms.

(1)

2) Forall z,y,z €V, |[(x®y) D z=2x (y® 2) | (addition is associative).
)
)

For all z,y € V, |z & y = y ® x| (addition is commutative).

For all z € V, |z ® Oy = z| (adding the zero element does nothing).

(
(3
(

4) For every x € V, there is an 2’ € V such that |z @& 2’ = 0y | (existence of

negatives).
(5) Forall \,p € Fand z € V, | AO (p®x) = (A-p) ® x| (scalar multipli-
cation is associative).

(6) For all z € V, |1 ® z = x| (multiplication by 1 is the identity).

(7) Forall A € Fandz,y € V, [ AO(z@y) =(AOz)® (AOy)| (distribu-
tivity I).

(8) Forall \,p€ Fandz € V,|(A+p)©x=(AOz)® (1u©® )| (distribu-
tivity I1).

= The elements of a vector space are usually called vectors. A real vector space is a :
= vector space over the field R of real numbers and (1) a complex vector space is a & :
= vector space over the field C of complex numbers. :

.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.

Remarks 2.2.

(1) Instead of writing (V, 0y, ®, ®) (which is the complete data for a vector
space), we usually just write V', with the zero element, the addition,
and scalar multiplication being understood.

L Addition is a function V x V — V that sends the pair (z,y) to = & y.

2Scalar multiplication is a function F' x V' — V that sends the pair (\,z) to A ® z.



2.2. EXAMPLES 41

(2) We will often leave out the subscript V' in Oy, and just write 0 for the
zero of the vectorspace. It is crucial to always distinguish this from the
zero of the field F', even though both may be written as 0; it should
always be clear from the context which zero is meant.

(3) For now, we denote the addition and scalar multiplication of a vector
space by the symbols @ and ®, in order to distinguish them from the
addition and multiplication in F. Soon, we will see that they behave
so much like the usual addition and scaling, that we drop the circles in
the notation.

Exercises

2.1.1. Suppose that F' is contained in R. Show that F™ together with the zero
element and the coordinate-wise addition @ and scalar multiplication ® as
defined in Section is a vector space. [In Example we will generalise this
to general fields.]

2.1.2. Let V C R? be the set of all triples (x1, 22, 23) € R3 with 2 +xo+x3 = 0. IsV,
together with the usual coordinate-wise addition and scalar multiplication, and
the zero vector of R3, a vector space?

2.1.3. Let V C R3 be the set of all triples (21, z2, 23) € R3 with 21 +xo+z3 = 1. IsV,
together with the usual coordinate-wise addition and scalar multiplication, and
the zero vector of R?, a vector space?

2.1.4. Let V be a vector space over F. In the following table, with a and b elements
of F or V as given, indicate whether the elements a ® b and a & b are defined
and, if so, whether they are contained in F or in V.

a|lblacbladb
F|F
Fl|V
VIV

2.2. Examples

Recall that F' is a field (see the beginning of this chapter).

Example 2.3. The simplest (and perhaps least interesting) example of a vector
space over F'is V' = {0}, with addition given by 0 ® 0 = 0 and scalar multipli-
cation by A ® 0 = 0 for all A € F' (these are the only possible choices). Trivial
as it may seem, this vector space, called the zero space, is important. It plays a
role in linear algebra similar to the role played by the empty set in set theory.

Example 2.4. The next (still not very interesting) example is V' = F over
itself, with addition, multiplication, and the zero being the ones that make F'
into a field. The axioms above in this case just reduce to the rules for addition
and multiplication in F' (see Appendix [B]).

Example 2.5. Now we come to a very important example, which is the model of
a vector space over F'. For F' contained in R, it was already studied extensively
in Chapter (1| (cf. Exercise . Let n be a non-negative integer. We consider
the set V. = F"™ of n-tuples of elements of F. As in Section [1.1} we define
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addition and scalar multiplication ‘component-wise’:
(xhx%"'axn) D (yl)y27"'7yn> - (Il +y1,ﬂ72+y27...,$n+yn),
AO (21,29, ... xn) = (Az1, ATg, ..., AXy,).
Also as in Section [1.1}, we set 0y = (0,0, ...,0).
Of course, we now have to prove that our eight axioms are satisfied by our
choice of (V,0y,®,®). In this case, this is very easyEL since everything reduces
to addition and multiplication in the field F'. As an example, let us spell out in

complete detail that the first distributive law (7) and the existence of negatives
(4) are satisfied. We leave the other properties as an exercise.

For the first distributive law (7), take x,y € F™ and write them as
r=(x1,29,...,Tp) and v=(Y1,Y2, - Yn)-
Then we have
AO(xdy) =20 ((xl,x2,...,xn)@(yl,yg,...,yn))
=AO (@1 + Y1, T2+ Y2, Tn + Yn)
= (AMz1+y1), Mz + 42), ., M@0 + Yn))
= (Az1 + Ay, Az + Aya, .., Az, + Ayp)
= (Ax1, AZa, ..., Axpn) ® (Ay1, Ay, -« ., AYp)

= ()\Q L1, 225 - - - 7xn)) D ()\G> (yl:y27 s 7yn>)
=(Aoz)a (Aoy),
where the first three and the last three equalities follow from the definitions of
x,y and the operations @ and ®; the middle equality follows from the fact that

for each i we have A(z; + y;) = Ax; + Ay; by the distributive law for the field F.
This proves the first distributive law (7) for £".

For the existence of negatives (4), take an element x € F™ and write it as
r = (x1,29,...,x,). For each ¢ with 1 < i < n, we can take the negative —z;
of z; in the field F', where we already know we can take negatives, and set
¥ = (—xy,—xo,...,—1,).
Then, of course, we have
r®r = (x1,29,...,0,) D (—T1, —To,...,—Tp)

= (:cl + (—x1), 22 + (—x2), ..., Ty + (—xn)) =(0,0,...,0) =0y,

which proves, indeed, that for every x € F™ there is an 2’ € F™ with x4+’ = 0.

For n = 1, this example reduces to the previous one (if one identifies each
element = € F with the 1-tuple (z)); for n = 0, it reduces to the zero space.
(Why? Well, like an empty product of numbers should have the value 1, an
empty product of sets like F° has exactly one element, the empty tuple (),
which we can call 0 here.)

In physics, more precisely in the theory of relativity, R* is often interpreted as
space with a fourth coordinate for time.

3In fact, in Section (where the fact that F' was contained in R was actually never used)
we already claimed that all these properties follow directly from the fact that the operations are
defined coordinate-wise.
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Example 2.6. Let [’ denote the set of all infinite sequences (ay)n>o of ele-
ments in F. Similar to Example [2.5] we define the addition and scalar multi-
plication component-wise, so

(ag,ay,as,...)® (bg, by, ba,...) = (ap+ bo,a; + by, as + bs, . ..)
and
A© (ag,ay,as,...) = (Aag, Aaj, Aag, . . .).
Together with the zero vector consisting of only zeros, this is again a vector

space, and checking that all eight axioms are satisfied is just as easy as in
Example [2.5]

Example 2.7. Suppose F' = R. A magic square is a square of 3 x 3 real numbers
such that the three column sums, the three row sums and the two diagonal sums
are all equal. An example is the following.

81116
3|5 |7
41912

This magic square is well known, because it uses all integers from 1 to 9 exactly
once. Less interesting magic squares are

111 0l-1]1 1]-1]0
A=|1|1|1|, B=[1]0]-1|, and C=|-1]|0]1
111 10110 0l11]-1

Note that if we multiply each of the nine numbers in a magic square X by the
same number A, then we obtain a new square, which we denote by A ® X. If
all rows, columns, and diagonals of X add up to s, then those of A ® X all add
up to A - s, s0 A ® X is a magic square as well. Moreover, if we have two magic
squares X and Y, then we can make a new magic square, which we will denote
by X @Y, by letting the top-left number in X & Y be the sum of the top-left
numbers in X and Y, et cetera; if the sums in X and Y are all s and all ¢,
respectively, then the sums of X @Y are all s +t. Check this, and verify that
(50A)®B)®(30C) equals the well-known magic square above. As mentioned
above, we will see that @ and ® behave as addition and scalar multiplication,
so we will also write this combination as b A+ B+3C. We leave it as an exercise
to show that the set of magic squares, together with this addition & and scalar
multiplication ©® is a vector space over R, with the square of all zeros as zero
vector.

4

= Definition 2.8. For any two sets A and B, the set of all functions from A to B =

E is denoted by both Map(A4, B) and B4.
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Remark 2.9. Obviously, if f is a function from A to B and a is an element
of A, then f(a) is an element of B. In our notation, we will always be careful to
distinguish between the function f and the element f(a). For example, in the
case A = B =R, we will not say: “the function f(z) = 22" Correct would be
“the function f that is given by f(x) = 22 for all z € R.”
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Example 2.10. Suppose F' = R. Consider the set Map(R,R) of all functions
from R to R. The sum of two functions f, g € Map(R, R) is the function f @ g
that is given by

(f®9)(x) = f(z)+g(x)
for all x € R. The scalar multiplication of a function f € Map(R,R) by a factor
A € R is the function A ® f that is given by

(AO f)x) =X (f(x))
for all x € R. Of course, this is just the usual addition and scaling of functions,
and soon we will use the usual notation f 4+ ¢g and A\f again. The operations
obviously satisfy the eight axioms, but it is a good exercise to write this out in
detail. As an example, let us prove that the addition is associative.

Let f, g, h € Map(R, R) be three functions. We want to show that p = (f®g)dh
and ¢ = f@® (g@ h) are the same function. The two functions both have domain
and codomain R, so it suffices to prove that for all x € R we have p(x) = q(z).
Indeed, for all x € R we have

p(z) = ((fog) @ h)(z)=(f®g)(z)+h(z) = (f(z)+g(z)) + h(z)
and

g(z) = (f@ (g®h))(z) = f(z) + (9 & h)(z) = f(z) + (9(z) + h(z)),
which implies p(z) = ¢(x), because addition in R is associative. We leave it
to the reader to finish the verification that Map(R, R) is indeed a vector space
over R, with the constant zero function that sends every x € R to 0 € R as
zero. (For the first distributive law, see Example [2.11] which generalises this
example.)

Example 2.11. This example generalises Example [2.10L ~ Let X be a set.
Consider the set V = Map(X, F') = FX of all maps (or functions) from X to F'.
In order to get a vector space over F', we have to define addition and scalar
multiplication. To define addition, for every pair of functions f,g: X — F, we
have to define a new function f & ¢g: X — F. The only reasonable way to do

this is point-wise:
(f@g)(x) = f(z) +g(z).
In a similar way, we define scalar multiplication:

A O f)x) =X f(z).
We take the zero vector 0y to be the constant zero function that sends each
element x € X to 0 € F. We then have to check the axioms in order to verify
that we really get a vector space. Let us do again the first distributive law as
an example. We have to check the identity A® (f @ g) = (AO f) ® (A © g),
which means that for all x € X, we want

Ao (f@g)@)=((AofHaohog)(z).
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Solet A€ Fand f,g: X — F be given, and take any x € X. Then we get
Ao(fog)@) =r((f®g)()

=X (f(z) +g(x))

= A flz)+A-g(x)

= Ao NE)+(Aog)(x)

=((heohHeo(reg) (),
where all equalities, except for the middle one, follow from the definitions of
the operators & and ®; the middle equality follows from the first distributive
law for F. We leave it to the reader to finish the verification that Map(X, F)
is indeed a vector space over F.

Remark 2.12. Note the parallelism of this proof with the one of Example 2.5
That parallelism goes much further. If we take X to be I = {1,2,...,n},
then the vector space F! = Map(I, F) of maps from {1,2,...,n} to F can be
identified with F™ by letting such a map f correspond to the n-tuple

(f(1), f(2),--., f(n)).

Under this identification, the addition on F! corresponds with the addition
on F", and the same is true for scalar multiplication. It is not a coincidence
that the notations I/ and F™ are chosen so similar! See also Proposition [A.1]

Similarly, if we take X = Zs¢, then the vector space Map(Zsg, F') can be
identified with the vector space F'>° of Example[2.6) by letting a map f: Z>q — F
correspond to the sequence

(f(0), F(1), £(2), f(3),--- )

Cf. Example[C.3] Again, the addition and scalar multiplication on Map(Zsg, F')
correspond with those on F*°.

What do we get when X is the empty set?
Example 2.13. A polynomial in the variable x over F' is a formal sum
f= agx® + ag 128V + -+ aga® + a4 ag

of a finite number of scalar multiples of integral powers x? (with ¢ > 0); the
products a;x’ are called the terms of f and we say that a; € F is the coefficient
of the monomial z* in f. Here, we have used some intimidation, as we did not
explain what a variable is, nor a formal sum. Any feeling of discomfort caused
by this intimidation should be taken as a sign of good taste; a reader with this
feeling is encouraged to read Appendix[D] and to match what is said there with
what we say in this example and the next.

We let the zero vector 0 be the zero polynomial: the polynomial of which all
coefficients are 0. The degree of a nonzero polynomial f = Z?:o a;xt with ag # 0
is d. By definition, the degree of 0 equals —oo. Let F[z] denote the set of all
polynomials over F'.

A real polynomial in the variable x is a polynomial in the variable x over R, so
R[z] denotes the set of all real polynomials in the variable x.

We define the addition of polynomials coefficientwise. In other words, we collect
equal powers of z, so that the sum of the polynomials

f=ag?+ -+ a2’ + a1z + ag and g =bgx® + -+ box® 4 bz + by
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in Fz] equals
f®g=(aa+ba)x? + -+ (ay + bo)2® + (ar + by)x + (ag + bo).
The scalar multiplication of f by A € F is given by
AO f = Nagz? + - 4 Xagz? + ayx + Aag.

For example, the real polynomials

f=32"+2:"— 22+ V5
and

g=—a*+ 7%+ 327 — 2z + 1
have degrees 5 and 4, respectively, and their sum is
f@®g=32"+at+72° + 222 — V2 + (1 +V5).

As before, we are merely using the notation @ to distinguish it from the usual
addition of two real numbers, but we will soon write f + ¢ for this sum again.

Anybody who can prove that the previous examples are vector spaces, will have
no problems showing that F[x] is a vector space as well.

Remark 2.14. We can multiply the polynomials f = Z??O ax’ and g = Y% bja?
over F' by expanding the product and using ' - 27 = '/, which gives

d+e
f~g:Z Zaibj zk.
k=0 \ g

i+j=k
However, this multiplication is not part of the vector space structure on F[z].
Moreover, we can also define the derivative f’ of a polynomial f = Z?:o a;x’
by f/ =3¢ ia;z""'. (1) Note that while this reminds us of the derivative in

analysis, we need to define this explicitly, as analysis does not make any sense
for some fields, such as [F,.

Example 2.15. (ff) There are other examples that may appear stranger.
Let X be any set, and let V' be the set of all subsets of X. (For example,
if X = {a,b}, then V has the four elements 0, {a}, {b}, {a,b}.) We define
addition on V' as the symmetric difference: A@® B = (A\ B)U (B \ A) (this is
the set of elements of X that are in exactly one of A and B). We define scalar
multiplication by elements of F5 in the only possible way: 00 A =0, 10 A = A.
These operations turn V' into an Fy-vector space, with the empty set as zero.

To prove this assertion, we can check the vector space axioms (this is an in-
structive exercise). An alternative (and perhaps more elegant) way is to note
that subsets of X correspond to maps X — Fy (a map f corresponds to the
subset {x € X : f(x) = 1}) — there is a bijection between V and F5 — and
this correspondence translates the addition and scalar multiplication we have
defined on V' into those we had defined on Fy in Example

Exercises

2.2.1. Show that the set of magic squares, together with the addition and scalar
multiplication defined in Example is a real vector space.



2.2. EXAMPLES 47

2.2.2. Let A, B, C be the magic squares as in Example Prove that for each 3 x 3
magic square X, there are real numbers A, i, v such that X = AA 4+ uB + vC.

*2.2.3. Let n > 1 be an integer.

(1) Show that there exists a finite number of n x n ‘basic’ magic squares, such
that every n x n magic square is a sum of scalar multiples of these basic
magic squares.

(2) How many basic squares do you need for n = 47

(3) How many do you need for general n?

2.2.4. In Example the first distributive law and the existence of negatives were
proved for F™. Show that the other six axioms for vector spaces hold for F™
as well, so that F"™ is indeed a vector space over F.

2.2.5. Let X be the set of all your family members. We define two functions f, g
from X to R (see Example [2.11). For every family member z, we let f(z) be
the year in which x was born, and we let g(x) be the age of z (in years) today.
Is the function f & g constant?

2.2.6. Finish the proof of the fact that Map(R,R) is a vector space (see Exam-
ple 2.10).

2.2.7. In Example the first distributive law was proved for FX. Show that the
other seven axioms for vector spaces hold for F'X as well, so that FX is indeed
a vector space over F.

2.2.8. Prove that the set F'[x| of polynomials over F', together with addition, scalar
multiplication, and the zero as defined in Example is a vector space.

2.2.9. Given the field F' and the set V in the following cases, together with the
implicit element 0, are the described addition and scalar multiplication well
defined, and if so, do they determine a vector space? If they are well defined,
but they do not determine a vector space, then which rule is not satisfied?

(1) The field F = R and the set V of all functions [0, 1] — Rx, together with
the usual addition and scalar multiplication.

(2) () Example 215

(3) The field FF = Q and the set V =R with the usual addition and multipli-
cation.

(4) The field R and the set V' of all functions f: R — R with f(3) = 0,
together with the usual addition and scalar multiplication.

(5) The field R and the set V' of all functions f: R — R with f(3) = 1,
together with the usual addition and scalar multiplication.

(6) Any field F' together with the subset

{(@,9,2) € F* & w+2y—2=0},

with coordinatewise addition and scalar multiplication.
(7) The field F = R together with the subset

{(z,y,2) €ER® : z—2z=1},

with coordinatewise addition and scalar multiplication.
2.2.10. Let a € R™ be a vector. Show that the set a™ is a vector space.
2.2.11. (1) Suppose the set X contains exactly n elements. Then how many elements
does the vector space 5 of functions X — Fy consist of?

2.2.12. We can generalise Example further. Let V' be a vector space over F'. Let
X be any set and let VX = Map(X,V) be the set of all functions f: X — V.
Define an addition and scalar multiplication on V¥ that makes it into a vector
space.

2.2.13. Let V be a vector space over F', and Map(V, V') the vector space of all functions
from V to itself (see Exercise 2.2.12). Let idy denote the identity map on V.
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For every p € V, we let ¢,: V' — V denote the constant map that sends every
v €V to p, and we write T, = idy +cp.

(1) Show that for every v € V', we have T,(v) = v + p.

[This is why we call T}, ‘translation by p’.]
(2) Show that for every p,q € V, the composition T}, o T, equals T}, 1.
(3) Show that T}, is a bijection, with inverse T",.
2.2.14. Let S be the set of all infinite sequences (a,)n>0 of real numbers satisfying

the recurrence relation

Gnt2 = Apy1 +a, for all n > 0.
An example of an element in S is the sequence
(CL[), ai, az, as, a4, as, ag, a7, . . ) = (O> 1, 1’ 27 37 5a 85 13,.. )

of Fibonacci numbers. Show that the (term-wise) sum of two sequences from S
is again in S and that any (term-wise) scalar multiple of a sequence from S is
again in S. Finally show that S (with this addition and scalar multiplication)
is a real vector space.

2.2.15. Let U and V be vector spaces over the same field F. Consider the Cartesian
product

W=UxV=A{(u,v) : uelU,veV}.
Define an addition and scalar multiplication on W that makes it into a vector
space.

2.2.16. Set V = R, the set of non-negative real numbers. Define the operation @
on V by x @y = max(z,y) for all z,y € V, and define a scalar multiplication
by A\Ox =z forall A € Rand x € V. Is V, together with these operations,
and the element 0 € V', a vector space?

*2.2.17. For each of the eight axioms in Definition [2.1] try to find a system (V,0, +, -)
that does not satisfy that axiom, while it does satisfy the other seven.

2.3. Basic properties

Before we can continue, we have to deal with a few little things. The fact that we
talk about ‘addition’” and (scalar) ‘multiplication” might tempt us to use more of
the rules that hold for the traditional addition and multiplication than just the
eight axioms given in Definition 2.1, We will show that many such rules do indeed
follow from the basic eight. The first is a cancellation rule.

Lemma 2.16. If three elements x,y, z of a vector space V' satisfy x & z =y & z,
then we have x = y.

Proof. Suppose z,y,z € V satisfy t @z = y® z. By axiom (4) thereisa z’ € V
with z @ 2/ = 0. Using such 2’ we get

r=200=2800:202)=(202)®2 =(y®2)® =yd(za)=ya0 =y,

where we use axioms (3), (2), (2), and (3) for the first, third, fifth, and seventh
equality respectively. So x = y. 0J

It follows immediately that a vector space has only one zero element, as stated in
the next remark.

Proposition 2.17. In a vector space V, there is only one zero element: if two
elements 0' € V and z € V satisfy 0/ & z = z, then 0’ = 0.




[

2.3. BASIC PROPERTIES 49

Proof. Exercise. Il

Because of Proposition [2.17, we often leave the zero vector implicit when defining
a specific vector space. For instance, in Example we could have just defined
the addition and scalar multiplication of magic squares; for this to be a vector
space, the only choice for the zero is the magic square consisting of only zeros.

Proposition 2.18. In any vector space V', there is a unique negative for each
element.

Proof. The way to show that there is only one element with a given property
is to assume there are two and then to show they are equal. Take x € V' and
assume that a,b € V are both negatives of z, that is, t ®a =0 and x ® b = 0.
Then by commutativity we have

abr=r®a=0=xDb=0bDx,
so a = b by Lemma [2.16] O

:Il..ll..ll..ll..ll-.ll.lll..ll..ll..ll..ll...ll..ll..ll..ll..lll.ll..ll..ll..ll..ll...
: Notation 2.19. Since negatives are unique, given 2 € V' we may write —z for the s
= unique element that satisfies z @ (—z) = 0. Now we can also define a subtraction: &
s we write z © y for z @ (—y). .
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Note that if F'is contained in R, then the subtraction on F™ that we just got for
free, coincides with the subtraction that we defined in Section [I.1]

Here are some more harmless facts.

Proposition 2.20. Let (V,0y,®,®) be a vector space over F.

(1) For allz € V, we have 0 ® x = Oy

(2) For allz € V, we have (—1) ® z = —x.

(3) For all X € F, we have A ® Oy = Oy.

(4) We have —0y = Oy.

(5) Forall A\ € F and x € V such that A®x = 0y, we have A =0 or x = Oy.
(6) For all A\ € F and x € V, we have —(A©x) = A0 (—z) = (—A) O z.

(7) For all z,y,z €V, we have z =x Sy if and only if t =y P z.

Proof. We prove (1), (2), and (5), and leave the rest as an exercise.

(1) We have
00z)d0y=002=04+00zx=00z)® (00 2)

with the equalities following from axiom (3), the fact that 0 = 0+ 0
in F, and axiom (8), respectively. The Cancellation Lemma im-
plies Oy =0® z.

(2) It suffices to show that (—1) ® z satisfies the property that defines —x
uniquely, that is, it suffices to show z & ((—1) ® ) = 0y. This follows
from axioms (6) and (8), and property (1) of this proposition:

rd(-)or)=10z)e((-1)0z)=1+(-1)0z=00z =0y.

(5) Suppose A € F and z € V satisfy A ©® z = 0y. If A = 0, then we are
done, so we assume A # 0 without loss of generality. Then A has a
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multiplicative inverse A~! in the field F. We find
r=10rz=0N"Noz=2x"ToM0r) =100, =0y,

where the equalities following from axiom (6), the fact that A™'- A =1
in F, axiom (5), the hypothesis A ® z = 0y, and property (3) of this
proposition, respectively.

O
The axioms of Definition and the properties that we just proved, show that
the addition, scalar multiplication, and subtraction in a vector space behave just
like the usual addition, multiplication, and subtraction, as long as we remember
that the scalar multiplication is a multiplication of a scalar with a vector,
and not of two vectors! Therefore, from now on, we will just use the usual
notation: instead of z ®y and x ©y we write x +y and x —y, and instead of A\® x
we write A - x or even Ax.

From the context it should always be clear what the symbols mean. Suppose, for
example, that V' is a general vector space over F'. If x is an element of V', and we
see the equality
0-z=0,

then we know that the dot does not indicate the multiplication in F', so it stands
for the scalar multiplication of V. Therefore, the first zero is the zero element
of F. The scaled multiple 0 - z is an element of V', so the second zero is the zero
element of V.

As usual, and as in Section [1.1] scalar multiplication takes priority over addition
and subtraction, so when we write Az + py with A,y € F and z,y € V, we
mean (Az) £ (uy). Also as usual, when we have ¢ vectors z1,xs,...,2; € V, the
expression x1 £ xy a3+ - -+ 2, should be read from left to right, so it stands for

(. ((xy £ag) £ag) £--+) 2y
~——
t—2
If all the signs in the expression are positive (+), then any other way of putting

the parentheses would yield the same by the fact that the addition is associative
(axiom (2)). The sum of t vectors 1, ...,z is 1 + o + -+ - + 2.

Exercises

2.3.1. Prove Proposition [2.17]
2.3.2. Finish the proof of Proposition [2.20)

2.3.3. Is the following statement correct? “Axiom (4) of Definition is redundant
because we already know by Proposition that for each vector x € V the
vector —x = (—1) ® z is also contained in V.”

2.3.4. Let (V,0y,®, ®) be a real vector space and define Sy = x @ (—y), as usual.
Which of the vector space axioms are satisfied and which are not (in general),
for (V,0y,©,®)? NOTE. You are expected to give proofs for the axioms that
hold and to give counterexamples for those that do not hold.
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CHAPTER 3

Subspaces

Recall that F is a field (see the beginning of Chapter .

3.1. Definition and examples

In many applications, we do not want to consider all elements of a given vector
space V', but only the elements of a certain subset. Usually, it is desirable that
this subset is again a vector space (with the addition and scalar multiplication it
‘inherits’ from V). In order for this to be possible, a minimal requirement certainly
is that addition and scalar multiplication make sense on the subset. Also, the zero
vector of V' has to be contained in U. (Can you explain why the zero vector of V
is forced to be the zero vector in U?)
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* Definition 3.1. Let V be an F-vector space. A subset U C V is called a vector &

Here the addition and scalar multiplication are those of V. Often we will just say
bspace without the words linear or vector.
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(1) 0eU.
(2) If uy,us € U, then uy +ug € U (‘U is closed under addition’).

(3) If A€ F and u € U, then Au € U (‘U is closed under scalar multiplica-
tion’).

'.IIllllllllllllllllllllll

Note that, given the third property, the first is equivalent to saying that U is
non-empty. Indeed, let u € U, then by (3), we have 0 = 0-u € U. Note that here
the first 0 denotes the zero vector, while the second 0 denotes the scalar 0.

We should justify the name ‘subspace’.

|

Lemma 3.2. Let (V,+,-,0) be an F-vector space. If U C V s a linear subspace
of V, then (U,+,-,0) is again an F-vector spaceﬂ.

Proof. By definition of what a linear subspace is, we really have well-defined
addition and scalar multiplication maps on U. It remains to check the axioms.

Y

For the axioms that state ‘for all ..., and do not involve any existence

statements, this is clear, since they hold (by assumption) even for all elements
of V, so certainly for all elements of U. This covers all axioms but axiom (4).
For axiom (4), we need that for all w € U there is an element v’ € U with
u—+ v = 0. In the vector space V there is a unique such an element, namely

v = —u = (—1)u (see Proposition Notation [2.19, and Proposition [2.20)).

IThe operators + and - for V are functions from V x V and F x V, respectively, to V. The

operators for U, also denoted by + and -, are strictly speaking the restrictions +|yxy and | px v
to U x U and F x U of these operators for V', with the codomain restricted from V to U as well.

51
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This element v’ = —wu is contained in U by the third property of linear subspaces
(take A = —1 € F). O

is time for some examples.

Example 3.3. Let V' be a vector space. Then {0} C V and V itself are linear
subspaces of V.

Example 3.4. Let V C R3? be the set of all triples (w1, 29, z3) satisfying

21 + 29 + x5 = 0. Clearly the zero vector 0 € R? is contained in V. Suppose we

have elements x,y € V and write them as z = (21,22, 2z3) and y = (y1, Y2, y3)-

Then by definition of V' we have 1 + 29 + 23 = 0 = y; + y2 + y3. Hence, if

we write the sum z = x4+ y as z = (21, 22, 23), then we have z; = z; + y; for

i €{1,2,3}, so we get

zitzotzy = (T14y)+(@2tye) +(@s+ys) = (z1+x2+ws)+(y1+y2+ys) = 0+0 = 0.
This implies that z = x 4 y is also contained in V. We leave it as an exercise

to show that for any A € R and any = € V, we also have Ax € V. This means

that the subset V' C R? satisfies all three requirements for being a subspace, so
V is a linear subspace of R?. In Section [3.2] we will generalise this example.

Example 3.5. Consider V = R? and, for b € R, set

Up={(z,y) €R*:z +y =10}
For which b is U, a linear subspace?
We check the first condition. We have 0 = (0,0) € U, if and only if 0 + 0 = b,
so Uy, can only be a linear subspace when b = 0. The question remains whether
U, is indeed a subspace for b = 0. Let us check the other properties for Uj.
If we have (z1,41),(%2,y2) € Uy, then 3 +y; = 0 and x5 + yo = 0, so
(z1+22)+ (Y1 +y2) = 0. This implies (z1,y1) + (22, y2) = (21 + 72, Y1 +y2) € Up.
This shows that Uy is closed under addition.

For each A € R and (x,y) € Uy, we have x +y = 0, so \x + Ay = AM(z +y) = 0.
This implies A(z,y) = (Ax, A\y) € Up. This shows that Uy is also closed under
scalar multiplication. We conclude that Uy is indeed a subspace.

The following example is a generalisation of Example [3.5] The scalar product and
Proposition allow us to write everything much more efficiently.

Example 3.6. Given a nonzero vector a € R? and a constant b € R, let L C R?
be the line consisting of all points v € R? satisfying (a,v) = b. We wonder when
L is a subspace of R2. The requirement 0 € L forces b = 0.

Conversely, assume b = 0. Then for two elements v, w € L we have
(a,v+w) = (a,v) + (a,w) =2b =0,
so v+ w € L. Similarly, for any A € R and v € L, we have
(a, W) = XMa,v) =A-b=0.
So L is a subspace if and only if b = 0.

Example 3.7. Let X be a set, and x € X an element. Consider the subset
U, ={feF* : f(x) =0}
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of the vector space F'X = Map(X, F). Clearly the zero function 0 is con-
tained in U,, as we have 0(xz) = 0. For any two functions f,g € U, we have
f(z) =g(x) =0,s0also (f+g)(x) = f(z)+g(x) = 0, which implies f+g € U,.
For any A € F'and any f € U, we have (A\f)(z) = X- f(z) = A-0 = 0, which im-
plies Af € U,. We conclude that U, is a subspace of the vector space Map(X, F')
over I

Example 3.8. Consider Map(R, R) = RE, the set of real-valued functions on R.
You will learn in Analysis that if f and g are continuous functions, then f+g¢
is again continuous, and \f is continuous for any A € R. Of course, the zero
function x + 0 is continuous as well. Hence, the set of all continuous functions
C(R) ={f € Map(R,R) : f is continuous}

is a linear subspace of Map(R, R).

Similarly, you will learn that sums and scalar multiples of differentiable func-

tions are again differentiable. Also, derivatives respect sums and scalar multi-

plication: (f +g) = f'+ ¢, (\f)' = Af’. From this, we conclude that

C"(R) = {f € Map(R,R) : f is n times differentiable and f™ is continuous}

is again a linear subspace of Map(R, R).

In a different direction, consider the set of all periodic functions with period 1:
U={feMapR,R) : f(x+1)= f(x) for all x € R}.

The zero function is certainly periodic. If f and g are periodic, then

(f+rg)a+l)=fla+1)+g@+1)=f(z)+g(x) =(f+9)),
so f+ g is again periodic. Similarly, Af is periodic (for A € R). So U is a linear
subspace of Map(R, R).

Exercises

3.1.1. Let V C R3 be the set of all triples (z1, xo, x3) satisfying x1 + 2z — 323 = 0.
Show that V is a linear subspace of R3.

3.1.2. Let U C R? be the set of all triples (21, z2, 23) satisfying 21 + 2z — 323 = 1.
Is U a linear subspace of R3?

3.1.3. Let W be the set of all 3 x 3 magic squares whose row, column, and diagonal
sums are all equal to 0. Is W a vector space?

3.1.4. Given an integer d > 0, let R[z]; denote the set of real polynomials of degree
at most d. Show that the addition of two polynomials f,g € R[z]q satisfies
f + g € R[z]4. Show also that any scalar multiple of a polynomial f € R[], is
contained in R[z]|4. Prove that Rlz]q is a vector space.

3.1.5. Let X be a set with elements x1, 29 € X. Show that the set
U={feF* : f(x1)=2f(z2)}
is a subspace of FX.
3.1.6. Let X be the interval [0,1] C R. Is the set

U={feMap(X,R) : f(0)=f(1)"}
a subspace of Map(X,R)?

3.1.7. Which of the following are linear subspaces of the vector space R??
(1) Ur ={(z,y) € R? 1y = —Vema},
(2) Uz = {(z,y) € R? : y = 2?},
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(3) Us = {(z,y) € R? s ay = 0}
3.1.8. Which of the following are linear subspaces of the vector space V of all func-
tions from R to R?
(1) Uy ={f eV : fiscontinuous}
(2) Uo=A{feV : f(3)=0}
(3) Us={f eV : fiscontinuous or f(3) =0}
(4) Uy={f €V : fiscontinuous and f(3) =0}
(5) Us=A{feV : f(0)=3}
(6) Us={feV : f(0) =0}
3.1.9. Let X be a set.
(1) Show that the set FX) of all functions f: X — F that satisfy f(z) =0
for all but finitely many = € X is a subspace of the vector space FX.
(2) More generally, let V be a vector space over F. Show that the set V(X)
of all functions f: X — V that satisfy f(z) = 0 for all but finitely many
x € X is a subspace of the vector space VX (cf. Exercise [2.2.12)).
3.1.10. Let X be a set.
(1) Let U C FX be the subset of all functions X — F whose image is finite.
Show that U is a subspace of FX that contains FX) of Exercise
(2) More generally, let V' be a vector space over F. Show that the set of all
functions f: X — V with finite image is a subspace of the vector space
VX that contains VX) of Exercise

3.2. The standard scalar product (again)

In Section we defined the (standard) scalar productﬂ for fields that are con-
tained in R. That section actually never used the fact that the field was contained
in R, so we can quickly restate the definitions and results in the generality that
we are working in nowﬂ For this section, we let n be a non-negative integer.

.‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
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Definition 3.9. For any two vectors z = (x1, 22, ...,2,) and y = (y1, Y2, -+, Yn)

in F™ we define the standard scalar product of x and y as

(z,y) = 191 + Tay2 + -+ + TpYn.

As mentioned in Section [1.3] we will often leave out the word ‘standard’, and the
scalar product may, in other books, be called the dot product, in which case it may
get denoted by z - y. Some books may call it the (standard) inner product for any
field, but we will only use that phrase for fields contained in R.

Example 3.10. (11) Suppose we have z = (1,0,1,1,0,1,0) in F%. Then we get
(z,2) =1:140-04+1-141-140-0+1-1+0-0
=140+14+14+04+1+0=0.

2See footnote [1|on page @
3For those readers that are assuming that F' is contained in R (see the beginning of Chap-
ter [2), the only things new in this section are Proposition [3.14] and the identity (3.1]).
Yy g P Yy

TSI



3.2. THE STANDARD SCALAR PRODUCT (AGAIN) 55

Proposition 3.11. Let A € F be a scalar and let x,y,z € F™ be elements. Then
the following identities hold.

(1) (z,y) = (y, z),

(2) <)\£U,y> =A <.T,y> = <J?, /\y>7
(3) (z,y+2) = (z,y) + (2,2).
(4) (x+y,2) = (z,2) + (y,2).
() (x,y —2) = (x,y) — (z,2).
(6) <£L’ - Y Z) = <$7Z> _ <y7 Z>

Proof. See Proposition [L.4] for the first three identities. The last three follow
from the first three. O]

We also generalise the notion of hyperplanes and lines to general fields.

‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlllIIIIIIIIIIIIIIIIIIIIIII.

: Definition 3.12. A hyperplane in F" is a subset H C F™ for which there exist a &
= nonzero vector a € F™ and a constant b € F' with

H={veF" : (a,v)=0b}. :

'.IIIIIIIIIIIIIlllIlllIlllIlllIlllIIIIIIIIIIIIIIIIIIIIIIIIIIlllIIIIIIIIIIIIIIIIIIIIII’
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* Definition 3.13. A line in F™ is a subset L C F™ for which there exist vectors &
= a,v € F" with v nonzero and with

L={a+X : Xe F}.
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In Exercise we will see when two hyperplanes or two lines are equal.

Proposition 3.14. Let W C F™ be a line or a hyperplane. Then W is a subspace
iof and only if it contains the element 0.

I: Proof. Exercise. 0

Inspired by Chapter [I we define the notion of orthogonality to general fields, even
though for fields that are not contained in R, it has nothing to do with any angle

being 90 degrees (see Definition and Warning [3.17).

.‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘

= Definition 3.15. We say that two vectors v,w € F™ are orthogonal E] to each i

= other when (v, w) = 0; we then write v L w.

'.ll.lll.lll.ll..lII.IIIIIIIIIIIIIIIIIl.l.lll.lll.lll.lII.III.III-IIIIIIIIIIIIIIIIIII’
Of course, now we also generalise the notation S+ of Definition to general
fields.

.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlllIIIIIIIIIIIIIIIIIIIIIIIIIII.

: Definition 3.16. For any subset S C ™, we let S* denote the set of those
= elements of F™ that are orthogonal to all elements of S, that is,

St={xcF" : (s,z)=0forall sc S}.

: For every element a € F" we define o as {a}".
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If a € F™ is nonzero, then a' is a hyperplane containing 0. By definition, the set
St is the intersection of all subspaces at with a € S, that is,

(3.1) St=[)da"

a€esS

4We reserve the word “perpendicular” for fields that are contained in R.
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This description will be used in the next section to show that St is a linear
subspace of F™ for any S C F", though it is also a nice exercise to prove this
directly.
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:Warning 3.17. (f) Proposition states that the only vector in R™ that is !

§ orthogonal to itself is 0. Over other fields, however, we may have (v,v) = 0 for
I nonzero v. For instance, the vector a = (1,i) € C? satisfies (a,a) = 0. The fact 1
Ithat a is orthogonal to itself, means that a is contained in the hyperplane at! (1) I

:Also the vectors w = (1,1) € F2 and 2 € F? of Example are orthogonal to :
I themselves. 1
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Exercises

3.2.1. Prove that for any two distinct points p,q € F™, there is a unique line that
contains both (cf. Proposition [1.12)).

3.2.2. Let S C F™ be a subset. Prove that S= is a linear subspace (cf. Lemma [1.25)).
3.2.3. Prove Proposition

3.2.4. (1) Let a,a’ € F™ be two nonzero vectors and b,b’ € F two constants. Show
that the hyperplanes

Hop={veF" : (a,v)=0b} and Hyy={veF" : (d,v)=0}
are equal if and only if there exists a nonzero A € F such that a’ = \a
and b/ = \b.
(2) Let a,d’,v,v" € F™ be vectors with v, v' nonzero. Show that the lines
Lyy={a+X : XeF} and Lyy={d+MN : XeF}
are equal if and only if we have a’ € L and there exists a nonzero A € F
such that v' = \v.

3.2.5. Let ay,...,a; € F™ be vectors and by,...,b € F constants. Let V C F" be
the subset

V={xeF" : (a1,z) =by, ..., (ag,x) = bs}.

Show that with the same addition and scalar multiplication as F'™, the set V
is a vector space if and only if by = ... =b; = 0.

3.3. Intersections

The following result can be used, for example, to show that, with U and C(R) as
in Example[3.8] the intersection UNC(R) of all continuous periodic functions from
R to R is again a linear subspace.

Lemma 3.18. Let V' be an F-vector space, and Uy, Uy C V linear subspaces of V.
Then the intersection Uy NUsy is again a linear subspace of V.
More generally, if (U;)ier (with I # 0) is any family of linear subspaces of V', then
their intersection U = (,c; U; is again a linear subspace of V.

Proof. Tt is sufficient to prove the second statement (take I = {1,2} to obtain
the first). We check the conditions.
(1) By assumption 0 € U; for alli € I. So 0 € U.

(2) Let x,y € U. Then z,y € U, for all ¢ € I. Hence (since U, is a subspace
by assumption) x 4+ y € U; for all i € I. But this means x +y € U.
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(3) Let A € F, x € U. Then x € U; for all i € I. Hence (since U; is
a subspace by assumption) Az € U; for all ¢ € I. This means that
A el.

We conclude that U is indeed a linear subspace. Il

Example 3.19. Consider the subspace C*(R) C Map(R,R) of all functions f
from R to R that are twice differentiable and for which the second derivative
f" is continuous (see Example [3.8). Consider the sets

U={feC®) : f'=~f}
and
V ={f € Map(R,R) : f(0) = 0}.
Since derivatives respect addition, we find that for all functions f,g € U we
have
(f+9)"=1"+d"=(=f)+(-9) ==(f+9)

so we obtain f + g € U. Similarly, for any A € R and f € U, we have A\f € U.
Since we also have 0 € U, we find that the set U of solutions to the differential
equation f"” = — f is a subspace of C%(R). It contains, for example, the functions
sine, cosine, and their sum. By Example the set V' is also a linear subspace,
so by Lemma , the intersection UNV is also a linear subspace of Map(R, R).
It is the set of solutions to the system of functional equations

"=—f and  f(0)=0.

The following proposition is a generalisation of Lemma to all fields.

Proposition 3.20. Let n be a non-negative integer, and S C F™ a subset. Then
S+t is a linear subspace of F™.

Proof. We use the identity (3.1). For each a € S, the hyperplane at C F"
contains 0, so it is a subspace by Proposition By Lemma m (with the
index set I equal to S), the intersection (), g a™ is also a linear subspace. This

intersection equals St by (3.1)). O

Note that in general, if U; and U; are linear subspaces, then the union U; U U,
is not (it is if and only if one of the two subspaces is contained in the other —
exercise!).

Example 3.21. Consider the subspaces
Uy = {(z,0) € R* : z € R}, Uy ={(0,z) e R* : z €R}.

The union U = U; U U, is not a subspace because the elements u; = (1,0) and
ug = (0,1) are both contained in U, but their sum u; 4+ us = (1,1) is not.

Exercises

3.3.1. Suppose that U; and U, are linear subspaces of a vector space V. Show that
Uy U Us is a subspace of V if and only if Uy C Us or Uy C Us.

3.3.2. Let Hy, Ho, H3 be hyperplanes in R3 given by the equations
((1,0,1),v) =2, ((-1,2,1),v) =0, ((1,1,1),v) = 3,

respectively.
(1) Which of these hyperplanes is a subspace of R3?
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(2) Show that the intersection Hy N Hy N H3 contains exactly one element.

3.3.3. Give an example of a vector space V with two subsets U; and Us, such that
Ui and Uy are not subspaces of V, but their intersection U; N Uy is.

3.3.4. Let n be a positive integer and let M denote the set of all magic n xn squares,
that is, squares of n x n real numbers of which the n row sums, the n column
sums, and the two diagonal sums are all equal. Let P denote the set of all n?
positions in an n X n square.

(1) Show that M is a vector space over R with the position-wise addition and
scalar multiplication.

(2) Suppose p € P is a position. Show that the set of magic squares with a 0
on position p is a subspace of M.

(3) Suppose S C P is a subset. Show that the set of magic squares with a 0
on position p for each p € S, is a subspace of M.

3.4. Linear hulls, linear combinations, and generators

Given a set S of vectors in a vector space V', we want to understand the smallest
subspace of V' that contains S. Let us look at a specific case first.

[ Example 3.22. Let V be a vector space over F', and let v;,v5 € V be two
vectors. Suppose that W is any subspace of V' that contains v; and wvs.
According to the definition of linear subspaces, all scalar multiples of v; and wvs,
and sums thereof are contained in W as well. This implies that every element
of the form Ajv; 4+ Ao, with Ay, Ay € F', is contained in W. So for the set

U= {)\17]1 + Aoy /\1,)\2 € F}
we have U C W. On the other hand, U is itself a linear subspace:

(1)0:0'014‘0"1)26(],
(2) ()\11)1 + )\21}2) —+ (,U1U1 -+ ,MQ’UQ) = ()\1 -+ M1)U1 + ()\2 -+ /Lz)?]g c U,
(3) )\()\1'01 + )\21)2) = ()\)\1)1}1 + ()\)\2)1]2 eU.

(Exercise: which of the vector space axioms have we used where?)

Therefore, U is the smallest linear subspace of V' containing v; and vy in the
following sense: U is a subspace containing v; and vy, and every subspace
W C V containing v; and v, contains U.

This observation generalises.

‘IIIIIIIIIlllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII..
= Definition 3.23. Let V be an F-vector space with ¢ elements vy, vs, ..., v, € V. .
= The linear combination (or, more precisely, F'-linear combination) of vy, vs, ..., v
= with coefficients A1, Ao, ..., Ay € F' is the element

v = A\U1 + AgUg + - - -+ Ay

2 If t = 0, then the only linear combination of no vectors is (by definition) 0 € V.
2 If S C V is any (possibly infinite) subset, then an (F'-)linear combination of S is
= a linear combination of finitely many elements of S.

'.lllIlllIllllllllIIIIIIIIIIIIIIIIIlllIlllIlllIlllIlllIllllllllIIIIIIIIIIIIIIIIIIIIII’

o NN N NSNS AN E NSNS AN AEAEAEREREREREREERER,
* Definition 3.24. Let V be a vector space over F'. If S is a subset of V, then &
2 L(S) is the set of all linear combinations on S. If we want to indicate the field F' &
= of scalars, we write Lz(S). For finitely many elements vy, va,...,v; € V, we also .
= write L(vq,vg, ..., v;) instead of L({vy,ve,...,v:}).
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Remark 3.25. The set L(vy,vs,...,v;) is defined as the set of all linear com-
binations on the set S = {vy, va,...,v:}. It is true that this equals the set of all
linear combinations of vy, v, ..., v, but this relies on two subtleties. First of
all, if some of the t vectors are equal, then the set S has fewer than ¢ elements.
Nonetheless, a linear combination of vy, vs, ..., v; is still a linear combination on
S, as we can combine terms: if v; = v;, then \v; + A\ju; = (A + Aj)v;. Second,
the converse is also true. A linear combination on S may a priori not use all
t vectors, but it is still also a linear combination of all vy, vs, ..., v, as we can
just add coefficients zero for the vectors that were not used.

The linear combinations of one vector a € V are exactly its scalar multiples, so
L(a) is the set {Aa : A € F'} of all scalar multiples of a. Note that this is consistent
with Notation .13l

Proposition 3.26. Let V' be a vector space with t elements vy, v, ..., vy € V.
Then the set L(vy,vs,...,v;) is a linear subspace of V. More generally, let S CV
be a subset. Then L(S) is a linear subspace of V.

Proof. We start with the first statement. Write U = L(vy,vg, ..., v;). First of
all, we have 0 € U, since 0 = Ov; + Ovg + - - - + Ov (this even works for ¢ = 0).
To check that U is closed under addition, let v = A\jv; + Agvg + -+ - + A\yvy and
w = pyv1 + pove + - - - + vy be two elements of U. Then

vtw= (/\11]1 + )\21)2 + -+ At”t) + (ulvl + fovg + -0 + ,utvt)
= ()\1 + ul)vl + ()\2 + /LQ)UQ + -+ (>\t + ﬂt)vt

is again a linear combination of vy, vs,..., v, S0 v +w € U. Also, for A € F,
the element

A = A Avy + Agvg + -+ + \y)
= ()\)\1)1)1 + ()\)\2)7)2 + -+ ()\)\t)vt

is a linear combination of vy, vs,..., v, so Av € U. We conclude that U is
indeed a linear subspace of V.

For the general case, the only possible problem is with checking that the set
of linear combinations on S is closed under addition, because two linear com-
binations might not be linear combinations of the same elements. For this, we
observe that if v is a linear combination on the finite subset I of S and w is a
linear combination on the finite subset J of S, then v and w can both be consid-
ered as linear combinations on the finite subset 7 U J of S (just add coeflicients
zero); now our argument above applies. OJ

For any subset S of a vector space V', the subspace L(S) is called the linear hull
or linear span of S, or the linear subspace generated by S. If L(S) =V, then we
say that S is a generating set for V' or that S generates V, or that the elements
of S generate V. If V' can be generated by a finite set S, then we say that V is
finitely generated.

Be aware that, besides L(S), there are various different notations for linear hulls
in the literature, for example Span(.S) or (S) (which in BTEX is not written $<S>$,
but $\langle S \rangle$!).

Example 3.27. Take the three vectors
er = (1,0,0), es = (0,1,0), and es = (0,0,1)
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so every element in R? is a linear combination of e;, e, e3. We conclude that R3

60
in R3. Then for every vector x = (11, T2, v3) € R we have x = x1e; + 169 +13€3,
is contained in L(ey, e, e3) and therefore L(ey, €5, e3) = R3, so the set {ey, €2, 3}
generates R3.

€1I<1,O,O,...,O),
es = (0,1,0,...,0),

e, = (0,0,...,0,1),

IIIIIIIIIIIIIIIIIIIIIIIIIIIII.‘

= with e; the vector in F™ whose -th entry equals 1 while all other entries equal 0.
‘.l...ll..ll..ll..ll..lII-Il..ll..ll..ll..ll...l...ll..ll..ll..ll..ll..ll..ll..ll..ll’
For every vector x = (:pl,xg, ... ,:L‘n) € F™ we have x = x1e1 + 2969+ -+ T,€,, SO
x is a linear combination of ey, es, ..., e,. Therefore, as in the previous example,
we find L(E) = F", so the set E = {ej,ea,...,e,} generates F™, thus explaining

the name standard generators.

Since every vector is a linear combination of itself (v = 1-v), it is clear that L(S5)
contains S for every subset S of any vector space. The following lemma shows

that L(S) is the smallest linear subspace containing S.

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘

Definition 3.28. Let n be a positive integer. The standard generators of F™ are =

Lemma 3.29. Let V be an F-vector space and S a subset of V. Let U be any

[subspace of V' that contains S. Then we have L(S) C U.

Proof. Since U is a linear subspace that contains S, it also contains all scalar
multiples of elements in S, as well as sums thereof. Hence, U contains all linear

combinations on S, so we have L(S) C U.

If U is a certain subspace of a vector space V, and we wish to show that U equals V,
then, by Lemma [3.29] it suffices to show that U contains a generating set S for V.

[~ Example 3.30. Consider the vectors
v1 =(1,0,3), wvy=(0,1,2), w3=(0,0,1)

combinations of vy, v9, and v3, as we have
e1 = v; — 3us, ey = Uy — 203, and €y = Us.

We conclude that vy, vs, and v5 do indeed generate R3.

[ Example 3.31. Take V = R* and consider S = {v;, v, v3} with

For a; = (1,0,—1,0) and as = (0,1,0, —1), the hyperplanes

in R3, and set U = L(vy,v2,v3). We wonder whether vy, vy, and v3 generate R3,
that is, whether U = R3. This is obviously equivalent to the question whether
the inclusion R* C U holds. By Lemma m, this is the case if and only if
the standard generators eq, e, e3 are contained in U. Indeed, they are linear

v =(1,0,1,0), v =1(0,1,0,1),  w3=(1,1,1,1).

H ={zxeR" : (z,a1) = 0}, and Hy={z e R" : (x,a9) =0}



3.4. LINEAR HULLS, LINEAR COMBINATIONS, AND GENERATORS 61

are subspaces (see Proposition [3.14) that both contain vy, vq,v3. So certainly
we have an inclusion L(vy,vq,v3) C Hy N Hy = {ay,as}*.

Conversely, every element x = (x1, z9, 3, 4) in the intersection H; N Ho satisfies
(x,a1) = 0,80 x; = x3 and (x,as) = 0, s0 x5 = x4, which implies z = x1v1+290,.
We conclude Hy N Hy C L(vy,v9), so we have

L(’Ul,UQ,Ug) C H1 N HQ C L(UI,UQ) C L(Ul,UQ,Ug).
As the first subspace equals the last, all these inclusions are equalities. We
deduce the equality L(S) = H; N Hy, so S generates the intersection H; N Hs.
In fact, we see that we do not need vs, as also {vi,vs} generates Hy N Ha.

In Section we will see how to compute generators of intersections more
systematically.

Lemma 3.32. Let V' be a vector space and S, T subsets of V satisfying T C L(S)
and S C L(T). Then we have L(S) = L(T).

Proof. Applying Lemma to S and U = L(T'), we obtain L(S) C L(T). By
symmetry we also have L(T") C L(S5), so we find L(S) = L(T). O]

In Proposition we have seen that for any set S C F™, the set St is a linear
subspace. The following proposition states a few more properties of S*.

Proposition 3.33. Let n > 0 be an integer, and S a subset of F™. Then the
following statements hold.

(1) For any subset T C S we have S+ C T+.

(2) We have St = L(S)*.

(3) We have L(S) C (S*)*.

(4) For any subset T C F™ we have ST NT+ = (SUT)*.

Proof. We leave (1), (3), and (4) as an exercise to the reader. To prove (2), note
that from S C L(S) and (1) we have L(S)* C S*, so it suffices to prove the
opposite inclusion. Suppose we have z € St, so that (s,z) = 0 for all s € S.
Now any element ¢ € L(S) is a linear combination of elements in S, so there
are elements s, S9,...,s, € S and scalars Ai, Ay, ..., \, € F such that we have
t = AiSs1+ -+ + A\uSn, which implies

(t,xy = (AMs1+-+A\Sn, ) = M(sp,2)+ -+ A (Sp, ) = Ap-0+- -+ X,-0=0.
We conclude that we have x € L(S)*. O

[ Remark 3.34. Later we will see that the inclusion L(S) C (S*)* of Proposi-
tion is in fact an equality, so that for every subspace U we have (U+)+ = U.
See Proposition [8.20] and Exercise [8.2.4]

We finish this section with the vector space of polynomial functions.

[ Example 3.35. Let F' C C be afield. Inside the vector space F'¥" of all functions
from F' to F'. we consider the power functions p,: x — x™ Their linear hull
L({pn : n € Z>p}) C FF is the linear subspace of polynomial functions from F
to F, i.e, functions that are of the form

T apt" 4 Ay 4 4 a4 ag
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with n € Zso and ag,ay,...,a, € F. By definition, the power functions p,
generate the subspace of polynomial functions, which we denote by P(F'). For
F = R, this subspace P(R) is contained in the subspace C(R) of continuous
functions.

Remark 3.36. Let F' C C be a field. In Example [2.13| we defined polynomials
over F' as formal sums. These are a priori not the same as polynomial functions,
but to any such polynomial Zi:o a,x™ we can associate the polynomial function

that sends xg € F' to Zi:o apx(. This gives a map
¢: Flz] = P(F) C F¥

that is clearly surjective. It is also injective, which follows from the theorem
that a nonzero polynomial over F' can not have more zeroes than its degree (see
Exercise . Hence, there is a natural bijection between polynomials and
polynomial functions. Under this bijection, also their derivatives, defined for
polynomial functions in terms of the usual limits, and for abstract polynomials
by Remark[2.14] coincide, so the difference between polynomials and polynomial
functions will not cause any confusion over subfields of C. In fact, By abuse of
notation, the function ¢(f) is often also denoted by f. In Appendix @, we also
define polynomial functions over general fields. In that context one should be
careful, as the map above need not be injective.

Exercises

3.4.1. Prove Proposition [3.33
3.4.2. Do the vectors

(1,0,-1), (2,1,1), and (1,0,1)

generate R3?
3.4.3. Do the vectors

(1,2,3), (4,5,6), and (7,8,9)

generate R3?
3.4.4. Let U C R* be the subspace generated by the vectors
(1,2,3,4), (5,6,7,8), and (9,10,11,12).
What is the minimum number of vectors needed to generate U? As always,

prove that your answer is correct.

3.4.5. Let X be a set. Consider the subspace FX) of FX consisting of all functions
f: X — F that satisfy f(z) = 0 for all but finitely many = € X (cf. Exercise
3.1.9). For every z € X we define the function e,: X — F by

en(z) = {1 if z=ux,

0 otherwise.

Show that the set {e, : = € X} generates F*X).

3.4.6. Does the equality L(I NJ) = L(I) N L(J) hold for all vector spaces V' and
subsets [ and J of V7
3.4.7. We say that a function f: R — R is even if f(—z) = f(z) for all x € R, and
odd if f(—z) = —f(z) for all x € R.
(1) Ts the subset of R¥ consisting of all even functions a linear subspace?
(2) TIs the subset of R consisting of all odd functions a linear subspace?
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3.4.8. Let V be a vector space and S,T C V subsets. Show that the inclusion
L(S) C L(SUT) holds and that we have equality if and only if T C L(S).
3.4.9. Let V be a vector space over F', containing vectors vy, ve,...,v, € V. Set
W = L(vi,v9,...,v,). Using Lemma give short proofs of the following
equalities of subspaces.
(1) W = L(v},...,v),) where for some fixed j and some nonzero scalar A\ € F'
we have v; = v; for i # j and v; = Av; (the j-th vector is scaled by a
nonzero factor \).
(2) W = L(v},...,v),) where for some fixed j, k with j # k and some scalar
A € F we have v] = v; for i # k and vj, = vj, + Av; (a scalar multiple of v;
is added to wvg).
(3) W = L(v],...,v),) where for some fixed j and k we set v, = v; for i # j, k
and v} = vy, and vy, = v; (the elements v; and vy, are switched),

3.4.10. Let V be an F-vector space and S a subset of V. Show that we have
L(S) = ﬂ{U C V : U linear subspace of V' and S C U}.

[Note that the notation in this proposition means the intersection of all elements
of the specified set: we intersect all linear subspaces containing S.]
[Note that in the extreme case S = (), we have to intersect all linear subspaces
of V, so the above reduces to the (correct) statement L(0)) = {0}.]

3.5. Sums of subspaces

We have seen that the intersection of linear subspaces is again a linear subspace,
but the union usually is not, see Example [3.21] However, it is very useful to have
a replacement for the union that has similar properties, but is a linear subspace.
Note that the union of two (or more) sets is the smallest set that contains both
(or all) of them. From this point of view, it is natural in the context of vector
spaces to study the smallest subspace containing two given subspaces, which is
the subspace generated by the union.

.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.

E Definition 3.37. Let V' be a vector space, Uy, Uy C V' two linear subspaces. The
= sum of Uy and U, is the linear subspace generated by U; U Us:

Uy +Us = LU UU,).
More generally, if (U;);c; is a family of subspaces of V (I = () is allowed here),

then their sum is again
> ui=r(Juv).-

i€l i€l

»
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We want a more explicit description of these sums.

Lemma 3.38. If Uy and Uy are linear subspaces of the vector space V, then we
have
U+ Uy = {U1+U2:U1 € Ul,UQ € UQ}
If (Uy)ier is a family of linear subspaces of V', then we have
ZUi = {Zu] :J C I finite and u; € U; for all j € J}.

il jeJ
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Proof. For each equality, it is clear that the set on the right-hand side is con-
tained in the left-hand side (which is closed under addition). For the oppo-
site inclusions, it suffices by Lemma m (applied with S equal to the unions
Uy U U, and |J,; U;, respectively, which are obviously contained in the appro-
priate right-hand side) to show that the right-hand sides are linear subspaces.

We have 0 =0+0 (and 0 = .5 u;), so 0 is an element of the right-hand side
sets. Closure under scalar multiplication is easy to see. Indeed, for u; € U; and
Uy € Us, we have

)\(ul + UQ) = )\Ul + )\Ug s
and we have \u; € Uy, A\us € U,y, because Uy, U, are linear subspaces; hence,
the element A(uy + ug) is also contained the right-hand side of the first equality
of the lemma. Similarly, for every finite subset J C I and elements u; € U; for

each j € J, we have
A Z uj = Z Au;
jeJ jeJ
and Au; € Uj, since U; is a linear subspace; hence, the element A\ jeg Uy is
also contained in the right-hand side of the second equality.

Finally, for uy,u] € Uy and ug, ul, € Uy, we have
(ug + ug) + (u] +uy) = (uy + uf) + (ug + ub)

with uy + v} € Uy, ug + u), € Uy. And for Jy, J, finite subsets of I, u; € U; for
J € Ji, uj € Uy for j € Jo, we find

(Cw)+(Xw)= X w
jeN JjEJ2 jeJ1UJs
where we use v; = u; € U; if j € J; \ Jp, while v; = u; eU;ifje Jy\ Ji, and
v; = u; + u; € U; if j € Ji N J,. This shows that the right-hand sides are also
closed under addition, which implies that they are indeed subspaces. [

Alternative proof. Clearly the right-hand side is contained in the left-hand side,
so it suffices to prove the opposite inclusions by showing that any linear combi-
nation of elements in the unions U; U Uy and | J,¢; U;, respectively, is contained
in the appropriate right-hand side.

Suppose we have v = \jw; + -+ + Asws with w; € U; U U,. Then after re-
ordering we may assume that for some non-negative integer » < s we have
wi,...,w, € Uy and w,y1,...,ws € Us. Then for uy = \jwy + -+ + \w, € Uy
and us = A\ Wpraq + - - - + Asws € Uy we have v = uy + us, as required.

Suppose we have v = A\jwy + - - - + A w, with wy, € Uiel U; for each 1 < k < s.
Since the sum is finite, there is a finite subset J C I such that wy € U, U; for
each 1 < k < s. After collecting those elements contained in the same subspace
U; together, we may write v as

Tj
0= > Awwi
jeJ k=1
for scalars \jz and elements wj; € U;. Then for u; = >°,7 Ajpwjr € U; we

have v =3, ; u;, as required. O
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[ Example 3.39. The union U; U U, of Example contains the vectors
e; = (1,0) and e; = (0,1), so the sum U; + Uy = L(U; U Uy) contains
L(ey, e5) = R? and we conclude U, + U, = R2.

[ Example 3.40. Let V be the subspace of Map(RR, R) consisting of all continuous
functions from R to R. Set

We now prove Uy + U; = V. It suffices to show that every continuous function
f can be written as f = fy + fi where fy and f; are continuous functions
(depending on f) with fo(0) = fi(1) = 0. Indeed, if f(0) # f(1), then we can
takel|

) B __ ) _

while in the case f(0) = f(1) = ¢ we can take fy and f; that are given by

fol@) =c(f(x) + o —c)+ (f(x) —¢),  filz)=—c(f(z) +2z—c—1).
Note that in all cases we indeed have fy € Uy and f; € U;. This proves the
claim.

The following lemma shows that the sum of two subspaces is generated by the
union of any set of generators for one of the spaces and any set of generators for
the other.

Lemma 3.41. Suppose V' is a vector space containing two subsets S andI’. Then
the equality L(S) + L(T) = L(SUT) holds.

I: Proof. Exercise. O

.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.

= Definition 3.42. Let V be a vector space. Two linear subspaces Uy, Uy C V are
= said to be complementary (in V) if Uy N Uz = {0} and Uy + Uz = V.
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[ Example 3.43. Take u = (1,0) and v/ = (2,1) in R?, and set U = L(u) and
U’ = L(u'). We can write every (z,y) € R? as

(@,y) = (2 -2y,0)+ 2y, y) = (e —2y) uty v eU+U,
so U + U’ = R2% Suppose v € UNU'. Then there are \, u € R with
(A, 0) = M =v=pu' = (2u, 1),

which implies p = 0, so v = 0 and U N U’ = {0}. We conclude that U and U’
are complementary subspaces.

Ysumnnn

Lemma 3.44. Let V' be a vector space and U and U’ subspaces of V.. Then U
and U" are complementary subspaces of V if and only if for every v € V' there are
unique elements uw € U and v’ € U’ such that v =u + u'.

Proof. First suppose U and U’ are complementary subspaces. Let v € V. Since
V = U + U’, there certainly are u € U and «' € U’ such that v = u + «’. Now

"Knowing that we have f — f(a) € U, for a € {0,1}, we found the mys-
terious choices for fy and f; by looking for A,pu € R for which f equals
AMf=fO0)+p(f—f(1) = A+p)f—(Af(0)+pf(1)) for all f; this yields two linear equations
A+ p=1and Af(0) + puf(1) = 0, which we can solve for A and p.
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assume that also v = w + w’ with w € U and w’ € U’. Then u + v’ = w + v/,
sou—w=w —u eUNU' henceu—w=w"—u =0, and u = w, v = w'.

Conversely, suppose that for every v € V' there are unique u € U, v’ € U’ such
that v = u+ /. Then certainly we have U 4+ U’ = V. Now suppose w € UNU’.
Then we can write w in two ways as w = u+u' with u € U and v’ € U’, namely
with v = w and v = 0, as well as with v = 0 and «' = w. From uniqueness,
we find that these two are the same, so w =0 and U NU" = {0}. We conclude
that U and U’ are complementary subspaces. O

As it stands, we do not yet know if every subspace U of a vector space V has a
complementary subspace in V. In Proposition we will see that this is indeed
the case, at least when V' is finitely generated. The next proposition shows that
it is true in an easy special case, namely when F' is contained in R and U is the
subspace of F™ generated by a nonzero element a € F™.

Corollary 3.45. Suppose F is contained in R. Letn > 0 be an integer and a € F"
a nonzero element. Then the subspaces L(a) and

at={ze€F" : (a,2) =0}

are complementary subspaces of F™.

Proof. Proposition says that every v € F™ can be written uniquely as the
sum of an element v; € L(a) and an element vy € at. Hence, by Lemma M
the spaces L(a) and at are complementary subspaces, which already finishes
the proof.

Alternatively, we first conclude only L(a) + a* = F" from Proposition m
We also claim L(a) Nat = {0}. Indeed, suppose that w = Aa € L(a) is also
contained in at. Then we have 0 = (w,a) = A a,a). Since a is nonzero, we

have (a,a) # 0, so we conclude A = 0, which means w = 0. O

=
Warning 3.46. If U and U’ are complementary subspaces of a vector space V, 1
then they are not setwise complements of each other! First of all, they are not I
disjoint, as we have U N U’ = {0} # (. Second, we have U U U’ # V unless one:
one the subspaces is {0} and the other is V. I

--------------------------------------’

Exercises

3.5.1. Prove Lemma B.471

3.5.2. State and prove a version of Lemma for an arbitrary collection of (.S;);cr
of subsets.

3.5.3. Suppose Uy,Us C F™ are subspaces. Show that we have
(U1 + Ut = U nUS.

3.5.4. Suppose V is a vector space with a subspace U C V. Suppose that Uy, Us C V
are subspaces of V' that are contained in U. Show that the sum Uj + Us is also
contained in U.

3.5.5. Take u = (1,0) and v/ = (a, 1) in R?, for any a € R. Show that U = L(u)
and U’ = L(u') are complementary subspaces.

3.5.6. Let U, and U_ be the subspaces of RF of even and odd functions, respectively

(cf. Exercise [3.4.7)).
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(1) Show that for any f € RE, the functions f, and f_ given by

fole) = TOIEE ) =

are even and odd, respectively.
(2) Show that U} and U_ are complementary subspaces.

3.5.7. Are the subspaces Uy and U; of Example [3.40] complementary subspaces?
3.5.8. True or false? For every subspaces U,V,W of a common vector space, we

have UN(V 4+ W) =(UNV)+ (UNW). Prove it, or give a counterexample.
3.5.9. Let W be a vector space with subspaces Uy, Us, V1, V5 satisfying

UicWVp and Uy C V5.
Suppose that Uy + Uy = W and Vi NV, = {0}.

(1) Show that V; and V5 are complementary subspaces in W, and that U; and

Usy are as well.
(2) Show that we have Uy = V; and Us = V5.

In the proof of Proposition [1.30| and Corollary and the definition of reflection, we
used the fact that a is nonzero to conclude that we have (a,a) # 0. The following
exercises show that, in these three cases, this is the only way in which we used that the
ground field is R. They give a generalisation to general fields.

3.5.10. Let n > 0 be an integer, and a € F" an element with (a,a) # 0. Show that

for every element v € F™ there is a unique A € F' such that for w = v — Aa we
2
have {a,w) = 0. Moreover, this A equals éggi, we then have (\a, A\a) = %z
2
and w = v — Aa satisfies (w,w) = (v,v) — <<a’v>> .
3.5.11. Let n > 0 be an integer, and a € F™ an element with (a,a) # 0. Show that
the subspaces L(a) and

at ={zeF" : (a,z) =0}
are complementary subspaces of F™.
3.5.12. Let n > 0 be an integer, and a € F™ an element with (a,a) # 0. Set

H=at={2z€F" : (a,z) =0}.
Then for any v € F", we define the reflection of v in H to be

(v,a)

(a,a)

(1) Show that the reflection of sy (v) in H equals v.

(2) Suppose that s (w) is the reflection of a vector w € F™ and sg(z) is the
reflection of the sum x = v + w. Show that sy (z) = sg(v) + sp(w). (A
similar statement holds for the scalar multiplication instead of the sum;
together, this shows that reflections are linear maps, as defined in the next

section. See Example )

sgv) =v—2 a.






CHAPTER 4

Linear maps

Recall that F' is still a field (see the beginning of Chapter [2)).

So far, we have defined the objects of our theory: vector spaces and their elements.
Now we want to look at relations between vector spaces. These are provided by
linear maps — maps between two vector spaces that preserve the linear structure.

4.1. Definition and examples

Among all maps between two vector spaces V and W, we want to single out those
that are ‘compatible with the linear structure.’

PALEL L LR LR LRLRRERLRLRRERLLRERERENRLRLERERLNELRLRLERERLERLRLRLERLRLERERLNLRNYS

: Definition 4.1. Let V and W be two F-vector spaces. A map f:V - W isi
= called an (F-)linear map or a homomorphism if

(1) for all vy, vy € V, we have f(v; + ve) = f(v1) + f(v2), and
(2) for all A € F and all v € V| we have f(A\v) = Af(v).

YEEEEEEEEN
4EEEEEEEEEENR

The set of all linear maps from V' to W is denoted by Hom(V, W).

A bijective homomorphism is called an isomorphism. Two vector spaces V and W
are said to be isomorphic, written V' = W, if there exists an isomorphism between
them.

A linear map f: V — V is called an endomorphism of V; if f is in addition
bijective, then it is called an automorphism of V. We recall (see Appendix that
if f: V — V is an endomorphism and n is a positive integer, then we write

fr=fofo-of
—_——

n

for the composition of n times applying f. The first examples of linear maps are
given by the following proposition.

Proposition 4.2. Let n > 0 be an integer. For every a € F™, the function
F*"—> F, xw {a,z)

s a linear map.

I: Proof. This follows directly from Proposition O

Obviously, the scalar product is in fact linear in both arguments, that is, if instead
of the first argument, we fix the second argument to be a € F™, then also the map
F"— F, x> (x,a) is linear. This is why we call the scalar product bilinear.

Here are some simple properties of linear maps.

69
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Lemma 4.3. Let U, V., W be vector spaces over a field F.

(1) If f: V — W is linear, then f(0) = 0.
(2) If f: V — W s an isomorphism, then the inverse map f~' is also an
1somorphism.

B) If f:U =V and g: V — W are linear maps, then go f: U — W is also
linear.

i Proof.

(1) This follows from either one of the two properties of linear maps. Using
the first, we get

f(0) = f(0+0) = f(0)+ f(0)
which by Lemma implies f(0) = 0. Instead, we can also use the
second property, which gives

f(0)=/f(0-0)=0-f(0)=0.
(Which of the zeros are scalars, which are vectors in V', in W?)

(2) The inverse map is certainly bijective; we have to show that it is linear.
So take wy,wy € W and set v; = f~Yw), va = f~'(wy). Then
f(v1) = wr, f(ve) = wa, hence f(vy + ve) = wy + wy. This means that

S w1 +we) = w1+ ve = fH (wy) + fH (ws) .
The second property for being linear is checked in a similar way.

(3) Exercise.

|
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I Warning 4.4. Many people learn in high school that for all real numbers a, b, the :
i function f from R to R given by f(z) = ax+0 is called linear. With our definition

I of linear functions, this is only the case when b = 0! Indeed, from Lemma [4.3]}
I we find that if f is linear, then b = f(0) = 0. For b = 0, it is casy to sce that f is I
j indeed linear. (It also follows from Proposition {4.2] with n = 1.) :

‘---------------_--_-------------------

Lemma 4.5. Let f: V — W be a linear map of F-vector spaces.
(1) For allv,w € V and A\, u € F, we have f(Av — pw) = Af(v) — pf(w).
(2) For all vy,vs,...,v, €V and A, s, ..., N\, € F we have
JOwvr + -+ X)) = Acf(vr) + -+ A f ().
(3) For any subset S C V we have f(L(S)) = L(f(95)).

I: Proof. Exercise. OJ

There are two important linear subspaces associated to any linear map: its image
im(f) and its kernel, which is defined below.

‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlllIIIIIIIIIIIIIIIIIIIIII.

: Definition 4.6. Let f: V — W be a linear map. Then the kernel of f is defined :
= to be

ker(f) ={veV: f(v) =0}.
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Lemma 4.7. Let f: V — W be a linear map.

(1) The kernel ker(f) is a linear subspace of V.
(2) The image im(f) is a linear subspace of W'.
(3) The map f is injective if and only if ker(f) = {0}.

i Proof.

(1) We have to check the three properties of subspaces for ker(f). By the
previous remark, f(0) = 0, so 0 € ker(f). Now let v1,v, € ker(f).
Then f(vi) = f(v2) = 0, so f(vy +va2) = f(v1) + f(v2) =0+ 0 =0,
and vy + vy € ker(f). Finally, let A be a scalar and v € ker(f). Then
f(v) =0,s0 f(Av) = Af(v) = A-0 =0, and therefore \v € ker(f). We
conclude that ker(f) is indeed a subspace.

(2) We check again the subspace properties. We have f(0) = 0 € im(f).
If wy,ws € im(f), then there are vy,vo € V such that f(v;) = wy,
f(ve) = way, hence wy + we = f(vy + v2) € im(f). If A is a scalar
and w € im(f), then there is v € V such that f(v) = w, hence
Aw = f(Av) € im(f). We conclude that im(f) is indeed a subspace.

(3) If f is injective, then there can be only one element of V' that is

mapped to 0 € W, and since we know that f(0) = 0, it follows that
ker(f) = {0}.
For the converse, assume that ker(f) = {0}, and let v;,v9 € V be
such that f(v1) = f(va). Then f(v; —vy) = f(v1) — f(vg) = 0, so
v; — vg € ker(f). By our assumption, this means that v; — vy = 0,
hence vy = vy. This shows that f is indeed injective.

O

[ Remark 4.8. If you want to show that a certain subset U in a vector space V'
is a linear subspace, it may be easier to find a linear map f: V' — W such that
U = ker(f) than to check the properties directly.

[ Example 4.9. Let n > 0 be an integer, and a € F™ an element. Then the
kernel of the map
F"—= F,  xw {a,z)

| is the set a*t.

The following lemma generalises the first two statements of Lemma [4.7]

Lemma 4.10. Let f: V — W be a linear map.

(1) If U C W s a linear subspace, then f~1(U) is a linear subspace of V; it
contains ker(f).

(2) If U C V is a linear subspace, then f(U) is a linear subspace of W ; it is
contained in im(f).

Proof. We leave it as an exercise to generalise the proofs of the first two state-
ments of Lemma [4.7] O

It is time for some more examples of linear maps.




72

4. LINEAR MAPS

Example 4.11. Let V be any vector space. Then the unique map f: V' — {0}
to the zero space is linear. More generally, if W is another vector space, then
f:V— W, v~ 0, is linear. It is called the zero homomorphism; often it is
denoted by 0. Its kernel is all of V; its image is {0} C W.

Example 4.12. For any vector space V', the identity map idy is linear; it is
even an automorphism of V. Its kernel is trivial (= {0}); its image is all of V.

Example 4.13. If V = ™, then all the projection maps
WjZFn%F, (Il,...,.%n)HSL’j

are linear. (In fact, one can argue that the vector space structure on F™ is
defined in exactly such a way as to make these maps linear.) This map 7; can
also be given by x — (z,e;), where e; is the j-th standard generator of F™.
The image of m; is F, so 7; is surjective; its kernel is e, which consists of all

Wi Y
vectors of which the j-th coordinate is 0.

Example 4.14. Let V be a vector space over F', and A € F' an element. Then
the map

V=V v—=X
is a linear map that is called multiplication by A. 1t is sometimes denoted by
[A], or just A. Clearly, for two elements A, u € F', we have [\] o [u] = [Au]. If A
is nonzero, then [)\] is an isomorphism, with inverse [A71].

Example 4.15. Take the vector a = (1,1,1) € R? and set

V=at= {(z1,29,23) €ER® : ) + 2y + 23 = 0}.
Let ¢: V — R? denote the map that sends (1, x9,x3) to (21, 22). Then clearly
1 is linear. For every x = (21, x9,23) € V in the kernel of ¢ we have 1 = x5 = 0,
so from the definition of V' we also get x3 = 0, and therefore z = 0. It follows

that ker(¢)) = {0}, so v is injective. The map 1 is also surjective, so 1 is an
isomorphism; its inverse sends (z1,7) € R? to (z1, 22, —71 — 12).

Example 4.16. Suppose V = R" and a € V is nonzero. Set H = a*. Then
the following maps from V to V are linear.

(1) The orthogonal projection 7,: R™ — R"™ onto L(a) given by

(v.0)

(a,a)

(see Definition [I.31)). Indeed, linearity follows from the fact that the
scalar product with a is linear (see Proposition . Note that for the
a = e;, the j-th standard vector, and the projection map m;: R* — R
on the j-th coordinate, we have

U+

ey (0) = m5(0) - .
The kernel of 7, is at and the image is L(a).
(2) The orthogonal projection 7y = 7,1 : R™ — R™ onto H given by

(v,a)
(a,a)

VU — a=1v—m,(v)
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(see Definition [1.31]). Indeed, for checking addition, note that, by lin-
earity of m,, we have

Ter(V+w)=v+w—m(v+w) =v—m(v) + w— 7 (w) =71 (V) + 7o (w).
The scalar multiplication follows similarly. The kernel of 7,1 is L(a)

and the image is a™*.

(3) The reflection sz : R™ — R™ in the hyperplane H = a' given by

(v.a)

(a,a)

(see Definition and the identity in ((1.11])). The linearity is proven

in the same way as for the projection onto H = a*. The identity in (1.8))
shows that sy o sy = idy, which implies that sy is an isomorphism.

V= v —2

[ Example 4.17. Let V be the vector space of 3 X 3 magic squares (see Exam-
ple . Then the map r: V' — V that rotates the square over 90 degrees is
linear. Another endomorphism is the map ¢: V' — V that sends a square M to
the constant square in which all entries are equal to the middle square of M.
Check this for yourself! We leave it as an exercise to find the kernel and the
image of these linear maps.

[ Example 4.18. For any two vector spaces Vi, V5 over I, the projection maps
Vi x Vo — Vi and Vi x Vo — V4 given by (v1,v9) — vy and (vy,v3) — vy,
respectively, are linear, cf. Exercise [2.2.15]

Exercises

4.1.1. Finish the proof of Lemma [£.3]
4.1.2. Prove Lemma
4.1.3. Finish the proof of Lemma [4.7]

4.1.4. Which of the following maps between vector spaces are linear?
(1) RS 5 B2, (1,9,2) > (z — 29, + 1),
(2) R® = R3, (z,y,2) — (22,17, 27),
(3) (T) (C3 — (C4a (m,y,z) = (.’E—FQy,l‘ - 3Zay_ z,x+2y+z),
(4) R® =V, (x,9,2) + zv1 + yvg + zv3, for a vector space V over R with
v1, V9,03 €V,
(5) P(R) — P(R), f+ f’, where P(R) is the vector space of real polynomials
and f’ is the derivative of f,
(6) P—R2, [ (£(2), (0)):
4.1.5. Given the linear maps of Examples and what are their kernels and
images?
4.1.6. Let f: V — W be a linear map of vector spaces. Show that the following are
equivalent.
(1) The map f is surjective.
(2) For every subset S C V with L(S) =V we have L(f(S)) = W.
(3) There is a subset S C V with L(f(S)) = W.

4.1.7. Let p: R? — R? be rotation about the origin (0, 0) over an angle 6.
(1) Show that p is a linear map. [You may assume that p sends parallelograms
to parallelograms.]
(2) What are the images p((1,0)) and p((0,1))?
(3) Show that we have

p((z,y)) = (xcosl — ysinb, zsinh + y cos ).
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4.1.8. Show that the reflection s: R? — R? in the line given by y = —x is a linear
map. Give an explicit formula for s.
4.1.9. As before, let F[z] be the vector space of polynomials over F.

(1) Given an element a € F, we define the evaluation map evy: Flz] — F
that sends a polynomial f = Z;‘i:o cir’ to f(a) = Z;'i:o c;a’. Show that
ev, is linear.

(2) Show that the map ¢: F[z] — FI of Remark and Exercise is
given by

[ (e eva(f)),

and deduce that ¢ is linear.
4.1.10. Given the map
T:R* =R (2,y) = 2(3,5) + (3, —2)
and the vectors v; = (2,1) and vy = (-1, 2).
(1) Show that T'(v1) = v; and T'(ve) = —vs.
(2) Show that T equals the reflection in the line given by 2y — x = 0.

4.1.11. Give an explicit expression for the linear map s: R? — R? given by reflecting
in the line y = 3x.

4.2. Linear maps form a vector space

If X is any set, and W an F-vector space, then we can add any two functions
f,g: X — W point-wise, by defining the sum f 4+ g to be given by

(f +9)(x) = f(z) +g(x)
for every x € X. Note that the last plus sign denotes addition in W. We will see
that if X is itself a vector space over F', and f and g are linear maps, then the
sum f + ¢ is linear as well. A similar statement holds for the point-wise scalar
multiplication. With the language that we have set up so far, we can phrase this
as follows.

Lemma 4.19. Let V' and W be two F-vector spaces. Then the set Hom(V, W) of
all linear maps V- — W, with addition and scalar multiplication defined point-wise,
forms an F-vector space.

Proof. Using only the fact that I is a vector space, one checks that the vector
space axioms hold for the set of all maps V' — W (see Exercise [2.2.12)). Hence

it suffices to show that the linear maps form a linear subspace.

The zero map is a linear map, so it is contained in Hom(V, W). If f,g: V — W
are two linear maps, we have to check that f+g is again linear. So let vy,vo € V
be elements; then we have

(f+ g)(v1 +v2) = f(vr +v2) + g(vr +v2) = f(v1) + f(v2) + g(v1) + g(v2)
= f(v1) + g(v1) + f(v2) + g(v2) = (f + g)(v1) + (f + g)(v2).
Similarly, if A € F' and v € V| then we have
(F+9)0w) = FO0) +g(w) = Af(0) +Ag(v) = A(F(0) +9(0) = A+ (F +9)(0)

We conclude that f+ ¢ is indeed linear, so Hom(V, W) is closed under addition.
Now let € F', and let f: V — W be linear. We have to check that uf is again
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linear. So let v1,v, € V' be elements; then we have

(f)(vi +v2) = puf (01 +v2) = p(f(vr) + f(va))
= pf(v1) + pf (v2) = (uf)(01) + (f)(v2)
Finally, let A € F and v € V. Then
(1)) = f O0) = (M) = () F(0) = A(pef (0) = A+ (uf)(0)

It follows that uf is indeed linear, so Hom(V, W) is also closed under scalar
multiplication. It follows that Hom(V, W) is indeed a linear subspace. 0

Example 4.20. Let V' = Map(R,R) be the vector space of functions from R
to R. For any a € R, we let ev, € Hom(V,R) denote the evaluation map that
sends a function f € V to f(a). Then for two real numbers a,b € R, the map
ev, +ev, € Hom(V,R) sends the function f to ev,(f) + evy(f) = f(a) + f(D).

Example 4.21. Let f, g € Hom(R? R?) be given by
f((l',y, Z)) - (IE — & + 2y)7

g((‘T?yWZ)) - (y +2,y— Z)‘
Then the linear map h = f + g is given by

h((x,y,z)) =(x+y,x+3y—2).

Example 4.22. Let p: R? — R? be the rotation around 0 over an angle 27 /3.
Then p sends (z,y) € R? to

(——x — —\/_y, ;x/_x — Ey)

(see Exercise 4.1.7). The map p? = p o p is rotation over 47/3, so we can use
Exercise to easily obtain an explicit formula for that as well. Instead, we
use the above and compute

P*((z.y)) = p(p(x)) = p((—32 — —fy, 5V — 5y))
= (— 3(—32 — 5V3y) — 5V3(3V3z — gy),
W e 10— VA )
= (— 32 +3V3y,—3V3z — 3y),
which is indeed what Exercise would have given. Adding the two expres-
sions for p and p?, we find that the sum p + p* sends a point p = (z,y) to
(—z,—y) = —p, so in fact, the map id +p + p? is the zero map. We could have
also seen this geometrically, as for each point p € R?, the three points p, p(p),

and p(p(p)) are the vertices of an equilateral triangle with center 0, so their sum
is 0.

Example 4.23. Suppose V = R" and a € V is nonzero. Set H = a*. Let m,,
7, and sy be the orthogonal projection onto L(a), the orthogonal projection
onto H, and the reflection in H, respectively, as in Example [4.16] Then the
linearity of the last two maps follows from the linearity of the first, as we have

Ty = idy —7,, and sy =idy —2m, = 27y —idy .

Note that this is in line with the fact that in Example we used linearity of
T, to prove linearity of 7y and sg.
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Example 4.24. Suppose V = R" and a € V is nonzero. Set H = a' and
L = L(a). Let m, and my be the orthogonal projection onto L(a) and H,
respectively. Then the map s, = idy —27y = 27, — idy is also linear. This
is reflection in the line L. In R3, it is the same as rotation around L over 180
degrees.

Example 4.25. Let M C R? be the line of all points (z,y) € R? with z = y.
Then a = (1,—1) is a normal of M, and the reflection s in M sends the point
(r,y) € R? to (y,z). By the previous example, the orthogonal projection m,
onto L(a) satisfies s = id —2m,, so we have m, = 3(id —s). This means that m,
sends (z,y) to (3(z—y), 2 (y—=)) = $(z—y)-a. The projection my; onto the line
M satisfies id +s = 2my. This means that 7y sends (z, y) to (3(z+y), 3(z+y)).
Draw pictures to convince yourself!

[ Example 4.26. If V is an F-vector space, and we multiply the identity idy by
the scalar A, then we obtain the map [A] that is multiplication by A.

The following proposition shows that composition of linear maps respects addition
and scalar multiplication.

Proposition 4.27. Let U, V, W be vector spaces over F. Let f, f1, fo € Hom(U, V)
and g, g1, g2 € Hom(V, W) be linear maps. Let X € F' be a scalar. Then we have

go(fi+f2) =(go fi)+(go f2),
(1 +g2)of=(g0f)+(g20f),
go(Af)=A-(gof)=(Ag)of.

Proof. Let u € U be any element. To verify the first identity, we note that

(g0 (fr + f2))(u) = g((f1 + f2)(u)) = g(f1(u) + fo(u)) = g(f1(u)) + g(f2(u))
= (g o fi)(u) + (go f2)(u) = ((go f1) + (g0 f2))(u).
Note that for the first and fourth equality we used the definition of composition,
for the second and fifth equality we used the definition of addition of maps (to
V and W, respectively), and for the third equality we used linearity of g. This
proves the first identity, as it holds for all u € U. For the second identity of the
proposition, we have
((g1 4 g2) © f)(uw) = (91 + g2)(f (u)) = g1.(f (w)) + g2(f (w))
= (g10f)(u) +(g20 f)(w) = (g0 f) + (920 f))(u),

where the first and third equality follow from the definition of composition, and
the second and fourth equality from the definition of addition of maps. Since

this holds for all u € U, it proves the second identity. We leave the last two
identities as an exercise: only for one of the two, linearity of ¢ is needed. 0

--------------------------------------\
§ Warning 4.28. Note that composition of functions is not commutative in general.
1If V is a vector space and f,g € Hom(V, V') are two endomorphisms of V', then I
I we have

i
1
I (F+9)°=(f+g)o(f+9)=Ffof+fogtgof+gog :
1
1
J

j Since fog may not be equal to go f, we can in general not simplify the right-hand
lside.
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Example 4.29. Let C*(R) denote the set of all functions from R to R that
can be differentiated n times for every positive integer n. In other words, we set
C*(R) = (),50C"(R) with C"(R) as in Example .8 Let D: C*(R) — C*(R)
be the linear map that sends a function f to its derivative f’. Then for every in-
teger n > 0, the map D™ sends a function f to its n-th derivative f™. The maps
id+D and id — D send a function f to f+ f" and f— f’, respectively. Of course,
we can work out easily what the composition (id +D)o(id —D) does to a function
f, but with Proposition we immediately find (id +D) o (id —D) = id —D?,
so it sends f to f — f@.

[ Example 4.30. Let V be a vector space and 7: V' — V' an endomorphism.

(1) Suppose 72 = 0. Then for f =id +n and g = id —7 we have
fog=gof=id—n*=id,
so id +m and id —7 are each other’s inverses, and therefore both bijec-
E&V(Zonzero example is the map 7: R? — R? that sends (z,y) to (0, z).]
(2) Suppose 72 = 7 (cf. Exercise [£.2.6). Then for 7/ = id —m we have
7 =({d-mo(id-n)=id—-r -7+ =id—7 =7

[A nonzero example is V' = R"™ and, for some nonzero vector a € V,
the map 7 is the orthogonal projection onto the line L(a); then #’ is
the orthogonal projection on the hyperplane a.]

[ Example 4.31. Let P(R) be the vector space of polynomial functions on R.
Then the following maps are linear.

(1) Evaluation: given a € R, the map ev,: P(R) = R, p — p(a) is linear.
The kernel of ev, consists of all polynomials having a zero at a; the
image is all of R.

(2) Differentiation: D: P(R) — P(R), p — p' is linear.

The kernel of D consists of the constant polynomials; the image of D
is P(R) (see below).

(3) Definite integration: given a < b, the map
b
I.y: PR) — R, p+— /p(x) dx

is linear.

(4) Indefinite integration: given a € R, the map

xT

I: P(R) —s P(R), pr— (x o /p(t) dt)

a

is linear. This map is injective; its image is the kernel of ev, (see
below).

(5) Translation: given a € R, the map
T,: PR) — P(R), pr— (z— p(z+a))

is linear. This map is an isomorphism: 7' =T_,.
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The Fundamental Theorem of Calculus says that Dol, = idp and that for every
p € P(R) we have (I, 0 D)(p) = p(b) — p(a) and (I, o D)(p) = p — p(a). This
can now be written as I, 0 D = ev, —ev, and I, 0 D = idp — ev,.

The relation D o I, = idp implies that I, is injective and that D is surjective.
This implies that ev, ol, = 0, hence im(I,) C ker(ev,). On the other hand, if
p € ker(ev,), then I,(p') = p — p(a) = p, so p € im(I,). Therefore we have
shown that im(/,) = ker(ev,).

Let C' C P(R) be the subspace of constant polynomials, and let Z, C P(R)
be the subspace of polynomials vanishing at a € R. Then C' = ker(D) and
Z, = ker(ev,) = im(/,), and C and Z, are complementary subspaces. The map
D restricts to an isomorphism Z, = P(R), and I, restricts (on the target side)
to an isomorphism P(R) = Z, (exercise!).

Exercises

4.2.1. Let V be the vector space of 3 x 3 magic squares (see Example . Let r
and ¢ be the endomorphisms of Example Show that we have idy+r? = 2¢.
4.2.2. As in Example we let p: R? — R? denote rotation around 0 over 27 /3.
Set f =p—id and g = p+ 2 -id. [Suggestion: Draw some pictures of what
these linear maps f and g do.]
(1) Use Example to show that fog=go f = —3-id.
(2) Conclude that f and g are isomorphisms.

4.2.3. Let V C R? be the plane
V={(x,9,2) €R? : 20 —y+2=0}.
(1) Give an explicit expression for the reflection s: R® — R3 in the plane V.

[Hint: first find the images of the standard generators ey, eg, e3.]
(2) Show that the subsets

Uy ={veR?: sv)=v} and U . ={veR: s(v)=—v}
are subspaces.
(3) Show Uy =V and U_ = L(a) for some a € R3.
(4) Show that Uy and U_ are complementary subspaces.
4.2.4. This exercise generalises Exercises and Assumeﬂ that in ' we
have 2 # 0, so that we can divide by 2. Let V be a vector space over F', and

let s: V' — V be a linear map satisfying s(s(v)) = v for all v € V' (for example,
s: R™ — R™ is the reflection in some hyperplane). Set

Vi={veV : s(v)=v} and Vo={veV : s(v)=-v}
(1) Show that s is an isomorphism.
(2) Show that for every v € V' we have
v+ s(v) v — s(v)
2 2
Show that idy +s has kernel V_ and image V.
Show that idy —s has kernel V. and image V_.
Show that V. and V_ are complementary subspaces in V.
For what choice of s does Exercise become a special case?

€V, and V..

(3)
(4)
()
(6)

IFor readers that assume F is contained in R or C (see beginning of Chapter 7 this as-
sumption holds automatically.
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4.2.5. Suppose V is a vector space with two complementary subspaces U and U’,
cf. Definition [3.42] Then for every v € V there are unique elements u € U
and v’ € U’ with v = u + v/ by Lemma let my: V' — V denote the map
that sends v to the corresponding element u. Note that m also depends on U’,
even though it is not referred to in the notation. We call my the projection of
V onto U along U’.

(1) Show that 7y is linear.

(2) Show that 7y has image U and kernel ker 7y = U’.

(3) Show that 7y satisfies my o 7y = 7.

(4) Show that 7y is the unique endomorphism of V' that is the identity on U
and 0 on U’.

(5) Show that idy —my is the projection of V onto U’ along U.

4.2.6. Let V be a vector space and w: V — V an endomorphism that satisfies

mom =m. Set U =im(w) and U’ = ker(m).

(1) Show that for every v € V| we have v — 7(v) € U'.

(2) Show that U and U’ are complementary subspaces in V.

(3) Show that 7 is the projection of V onto U along U’.
[For this reason, any endomorphism 7 satisfying 72 = 7 is often called a pro-
jection.]

4.2.7. Let V be the vector space of 3 x 3 magic squares, and let ¢c: V — V be
the endomorphism of Example Show that we have ¢? = ¢, and use the
Exercise to show that V' contains two complementary subspaces, namely
the subspace of all constant squares and the subspace of all the magic squares
of which the row, column, and diagonal sums are 0.

4.2.8. Let V be a vector space and f: V — V an endomorphism. Suppose that f is
nilpotent, that is, there is a positive integer k such that f* = 0. Show that the
linear map id — f is an isomorphism.

4.3. Linear equations

Suppose m,n > 0 are integers and we have elements a;; € F for i € {1,...,m}
and j € {1,...,n}. Consider the system

a1 + 1272 + 0 4+ a1y, = b1
211 + Q29T + 0+ Qo = b2
Am1T1 + QpmaTo + 0+ AT, = bm
of m linear equations in n variables x1,...,x, over the field F. Let f: F" — F™

be the map that sends = (z1,...,x,) € F" to the vector

(@111 + aroT2 + - - - + A1 Ty,
a91T1 + 99T + -+ AonTpy - - -

A1 T1 + QmaTa + -+ -+ Qppy) € F™,

and set b = (b1, by, ..., by) € F™. Then we can rewrite the system of equations as
f(x) = b, to be solved for x € F'™. The solution set equals

{zer : flz)=b}=f"(b)

Since f is a linear map, we can use linear algebra to study these equations.
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‘II..II...I...II..II..II..II..IIll.I..II..II..II..II...I...II..II..II..II..II.III..I.‘
= Definition 4.32. Let f: V' — I¥ be a linear map between two F-vector spaces.
2 The equation
flz) =0,

2 to be solved for x € V| is called a homogeneous linear equation. If V = F™ and
W =Fm (with m > 1), we also speak of a homogeneous system of linear equations.
E (Since as above, the equation consists of m separate equations in F', coming from
= the coordinates of F™.)

If b€ W\ {0}, then the equation

flz)=1b
(again to be solved for x € V) is called an inhomogeneous linear equation, or in
the case V = F™ and W = F™, an inhomogeneous system of linear equations. The

= equation or system of equations is called consistent if it has a solution, that is, if
2 b € im(f).

‘llIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘

With the theory we have built so far, the following result is essentially trivial.

Theorem 4.33. Let f:V — W be a linear map between two F-vector spaces.

(1) The solution set of the homogeneous linear equation f(x) = 0 is the linear
subspace ker f C V.

(2) Let b € W \ {0}. If the inhomogeneous linear equation f(x) = b is
consistent, and a € V is a solution, then the set of all solutions is the set

(4.1) f7'0)={a+z: z€kerf }.

Proof.

(1) By definition, the solution set f~'(0) is exactly the kernel of f.

(2) Let « be any solution and z = z—a. Then f(2) = f(z)—f(a) = b—b =0,
so z € ker f and = a+ z. This shows the inclusion ‘C’ in (4.1]). Con-
versely, if x = a + z for some z € ker f, then

fl@) = fla+2) = fla) + f(z) =b+0 =0,

which proves the other inclusion ‘O’.
OJ

Example 4.34. As before, let R[x] denote the vector space of all real polyno-
mials. Let a,b € R be real numbers, and

X={geR] : gla) =0}
the set of all polynomials that take the value b at a. If we let ev,: R[z] — R
denote the linear map that sends g to g(a), then X is the solution set of the
linear equation ev,(g) = b in the variable g € R[x], so we have X = ev,!(b).

As the constant polynomial b is a solution, Theorem . applied to f = ev,,
yields the (trivial) fact that X = {g+b : g € R[z], g(a) =0}

[~ Example 4.35. Consider the wave equation

>f L0
_ 207

o O0x?
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for f € C*(R x [0,7]), with boundary conditions f(¢,0) = f(t,7) = 0 and
initial conditions f(0,z) = fo(z) and %(0, x) = 0. If we ignore the first initial
condition for a moment, we can consider this as a homogeneous linear equation,
where we let

V ={f €C*Rx[0,n]): ¥t €R: f(t,0) = f(t,7) =0, Yo €]0,7[: %(O,x) =0}
and W = C(R x [0, 7]), and the linear map V' — W is the wave operator

*f 0%
w f — w — C @ .
We can find fairly easily a bunch of solutions using the trick of ‘separating the
variables’” — we look for solutions of the form f(¢,z) = g(¢)h(x). This leads to

an equation

1 g//<t) h//(x)

2 o)~ b))
and the common value of both sides must be constant. The boundary conditions
then force h(z) = sin kz (up to scaling) for some k > 1, and then ¢(t) = cos kct
(again up to scaling). Since we know that the solution set is a linear subspace,
we see that all linear combinations

f(t,x) = Z ay, cos kct sin kx
k=1

are solutions. Such a solution has
n

f(0,x) = Zak sin kz
k=1
so if fp is of this form, we have found a (or the) solution to the original problem.
Otherwise, we have to use some input from Analysis, which tells us that we can
approximate fp by linear combinations as above and that the corresponding
solutions will approximate the solution we are looking for.

Remark 4.36. Suppose f: V — W is a linear map of which you already know
it is an isomorphism with inverse g = f~!. Then for any b € W, the (unique)
solution to the linear equation f(x) = b is of course just z = g(b).

Exercises

4.3.1. For any a,b,c € R, we consider the system
—xr1+22+xT3 = a
201+ x0 — 223 =

T1+2x9 —x3 =

of linear equations in z = (x1, x2, x3).
(1) Show that for a = b = ¢ = 0, the solution set equals

{A1,0,1) : XeR}.

(2) Describe the solution set fora =1,b=1, ¢ = 2.
(3) Describe the solution set for a =1,b =0, ¢ = 0.
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4.4. Characterising linear maps

In this section, we let n denote a non-negative integer, and we study the linear
maps with F™ as domain. As before, we let e, es,..., e, denote the standard
generators of F™.

In Proposition we saw that for every a € F", the scalar product with a gives
a linear map from F" to F. The following proposition shows that all linear maps
from F™ to F are of this form.

Proposition 4.37. Let f: F" — F be a linear map. Then there is a unique vector
a € F™ such that for all x € F™ we have

f(x) = (a,z).
Moreover, this vector a equals (f(e1), f(e2), ..., f(en)).

Proof. Suppose there exists such an element a and write a = (a1, as, ..., a,).
Then for each ¢ with 1 <4 <n we have

flei) =(a,e;) =a1-0+---+a;1-0+a;-14+a;1- 0+ +a, 0=a.

We conclude that a = (f(e1), f(e2), ..., f(en)), so a is completely determined
by f and therefore unique, if it exists.

To show there is indeed an a as claimed, we take

a=(f(er), f(es),. ., flen))

(we have no choice by the above) and show it satisfies f(z) = (a,x) for all
x € F™, as required. Indeed, if we write © = (x1, 29, ..., x,), then we find

f(x):f(.fl-el—i—---—i-l’n'en):xl-f(61)+"'+In'f(€n):<ZL’,CL>:<CL,ZL’>.
Ol

Propositions and give a bijection between the vector space F™ and the
vector space Hom(F™, F') of linear maps from F™ to F. The following proposition
generalises the codomain from F' to a general vector space W: there is a bijection
between W™ and the vector space Hom(F™, W) of linear maps from F" to W
(see Remark [4.40). In Exercise we will see that this bijection is in fact an

isomorphism.

Proposition 4.38. Let W be a vector space over F. Then for every sequence
(wy,wa, ..., wy,) of n vectors in W, there is a unique linear map p: F™ — W such
that for every i € {1,...,n} we have ¢(e;) = w;. Moreover, this map ¢ sends the
element (x1,...,x,) € F™ to xywy + - -+ + T,w,.

Proof. Suppose that ¢ is a linear map such that for every ¢ € {1,...,n} we
have p(e;) = w; . Then for x = (21, x9,...,2,) € F™ we have

<P($) = <P(xlel +oeeet xnen) = xlsﬁ(el) + ot $190(6n) =T1Wy + -+ TpWy,,

so ¢ is completely determined on all z € F™ by the vectors wy, ws, ..., w, and
therefore ¢ is unique, if it exists.

To show there is indeed a ¢ as claimed, we define the function ¢: F™ — W by

o(x) = 2wy + -+ + Tw,
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(we have no choice by the above). One easily checks that ¢ is linear. (Do this!)
For ¢ with 1 <17 < n, we have

gp(ez):Owl—l—+0wz_1+1wl—|—0wz+1—|——|—Own:wz,
so ¢ indeed satisfies the requirements. |

By construction, the image of the map ¢ of Proposition [4.38| consists of all linear
combinations of wy, ws, ..., wy, so it equals L(wy, ..., w,); this implies that ¢ is
surjective if and only if the elements wy, ws, ..., w, generate W.

‘-.II...I...I...I...II..II..II.l.I..II-.II..II..II...I...I...I...II..II..II..II..II-.
* Definition 4.39. For any F-vector space W, and a sequence C' = (wy, wa, ..., wy,)
= of n elements in W, we write ¢ for the linear map : F™ — W associated to C
= as in Proposition

‘.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Remark 4.40. Suppose W = F'. Then for any element a € F", the associated

map ¢,: F" — F sends x € F" to (a,x). Moreover, Proposition is a

»

’l

special case of Proposition [4.38] which becomes clear from the rephrasing of

these propositions in Exercises and [4.4.4]

Exercises

4.4.1. For each of the problems [4.1.7, 4.1.8] [4.1.10} |4.1.11} and parts (3) and (4) of

problem [4.1.4] give a vector space W, an integer n, and a sequence C' € W"
such that the described linear map is @¢.

4.4.2. Let j € {1,...,n} be an integer, and let 7;: F" — F be the projection on

the j-th coordinate (see Example .
(1) For which vector space W, integer m, and a sequence C' € W™ does 7;
equal po?
(2) For which element a € F™ is 7 given by m;(z) = (a,x) for all z € F"?
4.4.3. In this exercise we characterise linear maps of which the codomain is F™.
For 1 <¢ < m,let m;: F™ — F denote the projection on the i-th coordinate,
as in Example Let V be a vector space over F.

(1) Let f: V — F™ be any map. Show that the map f is linear if and only if

for every i, the composition m; o f: V — F' is linear.
(2) Conclude that for any linear maps f1,..., fi: V. — F, the map

Vo F" v (A0), f20),. . ()

is linear.
(3) Show that the associations above yield a bijection

Hom(V, F™) — Hom(V, F)™.

(4) Show that this bijection is an isomorphism.
4.4.4. Prove that the map

F" — Hom(F",F), aw~ (x+ (a,x))

is an isomorphism whose inverse sends the map f € Hom(F", F) to the se-

quence (f(el)7 f(€2)7 s 7f(en))
4.4.5. Let W be a vector space over F. Show that the map

W"™ — Hom(F", W), Cw— ¢c

is an isomorphism whose inverse sends the map f € Hom(F™, W) to the se-

quence (f(el)v f(GQ), cet 7f(en))
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4.4.6. The scalar product on F™ is a map F™ x F" — F', satisfying some conditions.
In this exercise, we will generalise this to FX for any set X. Note that if X is
finite, then FX and F) as in Exercise are equal. In general, we have a
map

FXxFX) 5 F (fg) = (f.9) = fla)g(x),

zeX

where the sum contains only finitely many nonzero terms, because there are
only finitely many = € X with g(z) # 0.
(1) Show that this generalised scalar product satisfies the conditions of Propo-
sition B.111

(2) Show that there is an isomorphism
FX — Hom(FX) | F)

that sends a vector f € FX to the linear map g +— (f, g).

4.4.7. This exercise generalises Proposition Let X be a (not necessarily finite)
set. Consider the subspace FX) of FX as in Exercise and the elements e,
(for x € X) as in Exercise Let W be a vector space over F' and let
C € Map(X,W) = WX be a function from X to W. Set w, = C(z) for each
ze X.
(1) Show that there is a unique linear map ¢c: FX) — W that satisfies
vo(ey) = wy for every € X and that this map is surjective if and only
if the set {w, : = € X} generates W.
(2) Show that there is an isomorphism

WX = Hom(F&X), W)

that sends C' € WX to ¢c.

*4.4.8. This exercise generalises several of the previous exercises. Let V and W be
vector spaces over F, and let X be any set. Let V(&) be as in Exercise
(1) Show that the map

Hom(V, W)X — Hom(V™) W)
fre (o= ) f@) (o)

zeX

is an isomorphism.
(2) Show that the map

Hom(V, W)X — Hom(V, W¥)
frr (v (@ f(2)(v))

is an isomorphism.
(3) Show how Exercises [4.4.3] [4.4.6, and |4.4.7| are special cases of this.

4.5. Isomorphisms

If f: V — W is a isomorphism, then the two vector spaces V and W can for all
practical purposes be identified through f. This is illustrated by the following
proposition.
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Proposition 4.41. Suppose o: V. — V' and »: W — W' are isomorphisms of
vector spaces. Suppose f: V — W is a linear map and set f' = 1o fop~t: V' — W'
Then the diagram

v—L-w

ol

V/ L W/
commutes,  restricts to an isomorphism ker f — ker f', and 1 restricts to an
isomorphism im f — im f’.

Proof. Exercise. O

[ Example 4.42. Take the vector a = (1,1,1) € R3 and set
V =a" = {(21,79,73) €R® : 2y + 29 + 23 =0}

Let ©: V — R? be the isomorphism of Example that sends (x1, 22, x3) to
(w1, m2). Tts inverse ¢! sends (z1,3) to (z1,Te, —11 — x3). Let r: V. — V be
the linear map that sends (zy, o, x3) to (z2,3,21) and set ' = ¢ or o™t
Then r': R? — R? sends the point (z1,23) to (22, =1 — z2). When we identify
V with R? through the map ), the map r corresponds with r’. For example,
just like we have r® = idy,, we also have 7"® = idg2, which can easily be checked
directly as well.

Exercises

4.5.1. Let f: V — V be an endomorphism of a vectorspace V. Let c: V — W be
a linear map. Suppose that f sends kero to itself, that is, f(kero) C kero.
Show that f induces a well-defined endomorphism

frimo —imo
that sends the element o(2) € imo to o(f(z)) for every z € V.

4.5.2. Suppose we have a diagram

vl ow

|,k
Vl _f/> W/
of linear maps that commutes, that is, we have linear maps p: V' — V' and
Y: W —=W'and f: V — W and f': V! — W’ satisfying ¢ o f = f' o .
1) Show that ¢ restricts to a linear map @: ker f — ker f’.
2) Show that 1) restricts to a linear map v: im f — im f’.
3) Show that if ¢ is injective, then so is @.
) Show that if 1 is injective, then so is .
) Show that if ¢ is surjective, then so is ).
) Show that if ¢ is surjective and v is injective, then @ is surjective.
) Give examples that show that neither of the two hypotheses can be left
out of the previous statement.
(8) Prove Proposition [4.41]

4.5.3. Let V be a vector space and o: X — Y any map of sets. Define the map
o*: VY =Map(Y,V) — Map(X,V) = V¥
by o*(f) = foo.

(
(
(
(4
(
(
(

5
6
7
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(1) Show that o™ is a linear map.
(2) Show that if o is injective, then o* is surjective.
(3) Show that if o is surjective, then o* is injective.
(4) Show that if o is bijective, then o* is an isomorphism.
4.5.4.
(1) Suppose a: V! — V is a linear map of vector spaces over F. Show that
for every vector space W over F' there is a linear map

a*: Hom(V, W) — Hom(V', W)
that sends f to foa.

(2) Suppose 3: W — W' is a linear map of vector spaces over F. Show that
for every vector space V over F there is a linear map

Bi: Hom(V, W) — Hom(V, W)

that sends f to B o f.
(3) Check that in Proposition we have

F'= o (™)) = ((p™) o) (/).

4.5.5. Suppose o, a1, a: V' — V and o/: V" — V' are linear maps of vector spaces
over F. Let W be a vector space over F'. With the notation of Exercise 4.5.4]
show that we have the following.

(1) Show that (a0 a/)* = (a/)* o o*.
(2) Show that (aq + a2)* = af + 3.
(3) Show that (Aa)* = X\ -a* for any A € F.

4.5.6. Suppose ,01,82: W — W' and p': W' — W are linear maps of vector
spaces over F. Let V be a vector space over F'. With the notation of Exer-
cise [£.5.4] show that we have the following.

(1) Show that (8 o 8), = . o Bs.
(2) Show that (81 + B2)« = (B1)« + (B2)s-
(3) Show that (A3)« = A - B, for any A € F.

4.5.7. Suppose ¢: V. — V' and ¢: W — W' are isomorphisms of vector spaces.
Show that the linear map

(o™ H* 0 1py: Hom(V, W) — Hom(V', W),
which sends f to ¢ o f o ¢!, is an isomorphism (see Proposition and

Exercise |4.5.4]).



CHAPTER 5

Matrices

For this chapter, let m and n denote non-negative integers. Unless explicitly men-

tioned otherwise, the standard generators ey, es, . . ., €, are the standard generators
of F™".

Before we give the definition of a matrix in Section we give some motivation
for that definition. Let ¢: F™ — F™ be a linear map. By Proposition this
map ¢ is uniquely determined by the images w; = @(eq),...,w, = ¢(e,) in F™
of the n standard generators of F". If C' = (wy,...,w,) is the sequence of these
images, then ¢ equals p¢ as in Definition

From a different viewpoint, we can interpret ¢: F™ — F™ as a sequence of m
linear maps @1, P2, ..., Ym: F* — F, one for each coordinate of F™, so that ¢ is

given by (cf. Exercise [4.4.3))

2 (91(2), - om(2)-
Each of the m maps ¢;: F™ — F' is given by z — (v;, z) for some v; € F" (see
Proposition [4.37)), so ¢ is determined by the m vectors vy, ..., v, € F™.
We will see in Proposition that if we write the n vectors wy,...,w, € F™ as

columns next to each other, then we obtain the same array of m x n elements of F’
as when we write the m vectors vy,...,v,, € F™ as rows underneath each other!

In other words, for every i € {1,...,m} and every j € {1,...,n}, the i-th coordi-

nate of w; is equal to the j-th coordinate of v;; this element equals ¢;(e;) and it

is in the i-th row and the j-th column of the array just described. The map
A:{Ll,....om} x{l,...,n} = F

that sends (i, ) to this element ¢;(e;) is called a matrix (see Definition [5.1]), often
written as the array

A(1,1)  A(1,2) -+ A(l,n)
A(2,1)  A(2,2) --- A(2,n) ) <A<Z j))
A(T';L, 1) A(n;a, 2) - A(Tﬁ, n) Sism,1<j<

described above. By abuse of language, we will also refer to such an array as a
matrix.

87
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5.1. Definition of matrices

PYAL AL LR RN RRRRRERNENRRRRRRERNNRENRERRERERERERRERRERNENNRERRRRNNLNNNNRRRRERENNNNRRRRNNNNNDN VY
! Definition 5.1. Let F' be a field and m,n non-negative integers. An m X n i
matriz over F' is a function

A A{l,...,m} x{1,...,n} = F,

often written as an array

11 A2 - Qip
Q1 Ag2 - Qap

A= . . .| = (@ijhicismagi<n
Am1 Am2 - Qmn

f entries or coefficients a;; = A(i,j) € F.

.-IIIIIIIIIIIIIIIIIIIIIIIIIII
YEEEEEEEEEEEEEEENEEEENEEEEEER

By abuse of language, we will often identify a matrix with its associated array and
vice versa.

For i € {1,...,m}, the vector (a;1, a;a, ..., a;) is a row of A, which is an element
of F™, and for j € {1,...,n}, the vector

alj
Csz

amj
is called a column of A, which is an element of F, be it written vertically here.

If we denote the j-th column by w; (for 1 < j < n), then we also write A as

A=w wy -+ w,
. |

where the vertical lines above and below w; indicate that w; is a vector that makes
up the whole j-th column of the matrix. A similar notation can be used to indicate
which rows the matrix A consists of.

The set of all m X n matrices with entries in F' is denoted by Mat(m x n, F).
Note that as a boundary case, m = 0 or n = 0 (or both) is allowed; in this case
Mat(m x n, F') has only one element, which is an empty matrix.

If m = n, we sometimes write Mat(n, F') for Mat(n x n, F'). The matrix

01 -~ 0
I=L=|. . . . |=0yh<ijon-

is called the identity matrix.
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5.2. Matrix associated to a linear map

Proposition 5.2. Let p: F™ — F™ be a linear map. For 1 <i < m, let v; € F"
be the vector for which the linear map p; = mjop: F™ — F is given by x +— (v;, ).
For1<j<mn, setw; =p(e;) € F™. Then the m x n matric

wl w2 PR wn
with wy, ..., w, as columns equals the matriz

with vy, ...,V as rows.

Proof. Consider any indices 1 <7 < m and 1 < 7 <n. The entry in row ¢ and
column j of the first matrix is the i-th coordinate of w; = ¢(e;), so this entry
equals (m; o p)(e;) = @i(ej) = (v;,e;), which is the j-th coordinate of v;, and
thus the entry in row ¢ and column j of the second matrix. The equality of the
two matrices follows. OJ

Remark 5.3. Note that if ¢: F™ — F™ is a linear map, then the linear map
p; = m 0 @: F" — F used in Proposition is the map obtained from ¢ by
only considering the i-th coordinate of the image in F".

Example 5.4. Let ¢: R* — R3 be given by

(131, T2, T3, I4) — (xl + X9 — 3$3 + 21’4, —2.%‘1 + 3ZE3 — 5ZL’4, 7.731 + 3[1)2 - 2ZI}3 + 61’4)
and for 1 < j <4, set w; = ¢(e;) € R*. Then we have

1 1 -3 2
w1 = —2 , W = 0 , W3 = 3 3 Wy = -5 5
7 3 —2 6

where we have already conveniently written wq,ws, ws, wy vertically. As in
Proposition [5.2] for 1 < i < 3, we let v; € R* denote the vector for which the
linear map ¢; = m; 0 p: R* — R is given by x — (v;,x). For i = 1 we have
o1((x1, 29, w3, 24)) = a1 + T2 — 3wz + 224, s0 v1 = (1,1,—3,2). Similarly, we
obtain
v = (1,1,-3,2),
vg = (—2,0,3,-5),
vy = (7,3,-2,6).
Indeed, we find
o 11 -3 2 —v1—
w1 Wy W3 W4 = -2 0 3 -5 = —UV9y—
| ] 7T 3 -2 6 —vU3—
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For the rest of this section, let ¢: F — F™ be a linear map and let the vectors
Viy.ooy Uy € F"and wy, ..., w, € F™ be as in Proposition [5.2] Let

11 Q12 - Qip —U1—

Q21 Q22 -+  Q2p | | | —U2—
L ' . |

Am1 Am2 - Amn —Um—

be the matrix associated to ¢ as in Proposition [5.2] Then for every vector

x
x
xr = ,2 e F",
Ty,
the image ¢(x) can be written, by definition of vy, ..., v, and wy, ..., w,, as
<U17 l’>
<1}27 I>
p(r) = : and  o(x) = vw1 + . .. + 2w,
(Vm, T)

(see Proposition |4.38)). If we write out either expression, we obtain

111 + a1 + - - - + A1pTy
(211 + Q92T9 + - -+ + A9y, Ty

(5.1) p(x) =
Am1T1 + Am2T2 + -+ AmnTn

Note that here we have written ¢(x) vertically, just like we may write the columns
wy, ..., w, vertically. This way the coordinates (v;, ) are written underneath
each other, analogous to how the rows v; are written underneath each other in the
matrix A. We will see later, in Remark [5.19, why in this context it is convenient
to also write x vertically.

5.3. The product of a matrix and a vector

In the previous section, we started with a linear map ¢ and saw that we may
associate a matrix to it. Conversely, we will see that every matrix defines a linear
map. Motivated by , we define the product of any matrix A € Mat(m x n, F')
and a vector x € F" as follows.

‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘

: Definition 5.5. For any matrix

a1; Q12 - Qin o
A21 Qg2 -+ Q2p T2

A= , ] ) € Mat(m x n, F) and vector z=1| | € F"
Am1 Qm2 - Amn Tp

we define the product Az as

aiy Qi o Qg 1 1171 + A12T9 + + -+ + A1, Ty

Qo1 Qg2 -+ Q2 To A21T1 + A22T9 + + + + + A2, T
Ax = =

Am1 Am2 - Amn Tp Am1T1 4 Am2T2 S eoe g AmnTn

4IEEEEEEEEEEEEEEEEEEEEEEEEEEEEER

.IIIIIIIIIIIlllIlllIlllIlllIlllIllllllllIIIIIIIIIIIIIIIIIlllIlllIlllllllllllllllllll’.
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Note that here again, we have written x and Ax vertically.
Analogous to the previous section, if we let
v = (a1, @iy - -« Qi)

be the i-th row of A (for 1 <i < m), then we can write Az as

—v— (v, )
52) Ay —v:2— e <v2:x> |
— U — (U, )

so the entries of Ax are the scalar products of x with the row vectors of A. If we
let

agj
U)j =

amj
denote the j-th column of A (for 1 < j < n), then we can write Ax as

T

| | .
(5.3) Ar = |w, wy -+ w, :2 = w1 + Tows + ... + Tpwy,

n

so Az is the linear combination of the column vectors of A with the entries of z
as coefficients. Note that Ae; = w;.

[ Remark 5.6. Both points of view on the multiplication will prove useful: the
coordinates of Ax being the scalar products of « with the rows of A on one hand,
and Ax being a linear combination of the columns of A on the other hand.

[ Example 5.7. We have

3 2 1 2 3:242-(-2)+1-(-1) 1
-1 2 7 2= (-1)-2+2-(-2)+7-(-1) | =1]-13
-3 5 =2/ \—1 (=3)-2+4+5-(=2)+(=2)-(=1) —14

Verify that the result does indeed correspond with the three scalar products of
the vector (2, —2,—1) with the rows of the 3 x 3 matrix. Also verify that the
result equals the right linear combination of the columns.

Exercises

5.3.1. For the given matrix A and the vector z, determine Azx.

(1)
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W
w

A= 3 =2 and a::<_§>.

|
—_
—_

5.4. Linear maps associated to matrices

‘-..............-............................................-l.......................
: Definition 5.8. To any matrix A € Mat(m x n, F) we associate the function &
= fu: F" — F™ given by

fa(z) = Az

= for all x € F™.

‘.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.

Lemma 5.9. Let A be an m X n matriz over F with columns wy, ..., w, € F™.
Let fa: F™ — F™ be the function associated to A. Then we have fa(e;) = w; for
all1 < j<mn, and fa equals pc as in Deﬁm’tion with C = (wy, ..., wy).

Proof. For every x = (x1,...,x,) € F", we have
fa(x) = zqwr + ... + zw, = @c(x),

so we obtain f4 = ¢¢. In particular, we have fa(e;) = w; forall 1 <j<n. O

Note that Lemma implies that for any m x n matrix A, the map f4 is linear
and the j-th column of A equals f4(e;) for any j € {1,...,n}. In fact, by Propo-
sition [4.38} the function f4: F™ — F™ is the unique linear map sending e; to the
j-th column of A.

Clearly, the linear map f; associated to the matrix [ = I, is the identity map
Fr— Fm.

[ Example 5.10. Let A € Mat(3 x 4,R) be the matrix
3 2 0 -1
1 -2 5 =3
0o 1 4 7
Then the map f4 sends

il 31’1 —|—23§2 —XTy

332 e R* to r1 —2xs +br3 —3z4 | € R3.

xg To  +4rs +Tx4

4

Proposition 5.11. Let I be a field and m,n non-negative integers. Suppose
f: F™ — F™ is a linear map. Then there is a unique matriz A € Mat(m X n, F)
with f = fa.

Proof. Let A be the matrix associated to f as in Proposition [5.2], that is, define
w; = f(e;) for 1 < j < n, and let A be the matrix of which the j-th column
is w; for each j. Then fa(e;) = Ae; = w; = f(e;) for all j, so f = fa by
Proposition Furthermore, any m x n matrix A" with f4 = f has its j-th
column equal to A'e; = fas(e;) = f(e;) = w; for all j, so A" = A. This finishes
the proof. O
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[ Example 5.12. Let p: R? — R? be the rotation about the origin (0, 0) over an
angle 6. From Exercise [4.1.7] we know that p is given by

x\\ [(xcost —ysind
p y) /) \xsinf+ycosf) -
We conclude that p corresponds to the matrix
cosf) —sind
sinff  cosf ) -
[ Example 5.13. Let s = s;: R? — R? be the reflection in the line L given by
y = 2x. Then s is linear and we can determine a 2 x 2 matrix A such that

s = fa. By Lemma 5.9 the columns of A are the images fa(e1) = s(e1) and

fa(e2) = s(ez). Note that the vector a = (2,—1) is a normal of L. For any

vector v € R?, the reflection of v in L is s(v) = v — 2\a with A = 222? (see

(1.11) and Figure [1.18 where H plays the role of our L). We find

qu:q—2%'a:<_% and 3@”:@‘2'%'a:(@’
5

4

5
A_(z
5

Proposition [5.11| shows that the map
(5.4) Mat(m x n, F') — Hom(F", F™), A fa

so we get

urw
SRS
N——

is a bijection. Therefore, one often identifies a matrix A with the linear map fx
that the matrix induces. In this way we may refer to the kernel and image of fx
as the kernel and image of A and we write ker A = ker f4 and im A = im f4.

Exercises

5.4.1. For each of the linear maps of the form f: F™ — F™ of the exercises of
Section give a matrix M such that f is given by

r— Mzx.
5.4.2. Given the matrix
-4 -3 0 -3
M = 2 2 -3 -1
0o -3 1 —1
and the linear map f: R®™ — R™ x — Max for the corresponding m and n.
What are m and n? Give vectors wy, ..., w, such that f is also given by
f((x17x27 e ,an)) =Wy + -+ TpWn.

5.4.3. Determine the matrix M for which fy;: R? — R3 is reflection in the plane
given by x + 2y — 2z = 0.
5.4.4. Given the following linear maps R™ — R™, determine a matrix A such that
the map is also given by = — Azx.
(1) f:R3=RY (2,y,2) = Br+2y—z,~x—y+2z,0— 2,9+ 2),
) g: RS = R3, (2,y,2) = (+2y—32,20 —y+z, 2 +y+ 2),
) bR = R2 (m,y,2) = x-(1,2)+y-(2,—-1)+2z-(-1,3),
) 5 RZ = R3, v ((v,wr), (v, w2), (v, w3)), with wy = (1, 1), wa = (2,3)
and ws = (—2,4).

2
(3
(4
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5.5. Addition and multiplication of matrices

We know that Hom(F", F™) has the structure of a vector space (see Lemma [4.19)).
We can ‘transport’ this structure to Mat(m X n, F') using the identification ([5.4))
of matrices and linear maps. The bijection (5.4 then becomes an isomorphism

(see Exercise [5.5.11]).

P e e e e e e e e e e e L e e E e e e e EEEECECECEEEETS
: Definition 5.14. For A, B € Mat(m x n, F), we define A + B to be the matrix :
= corresponding to the hnear map fa + fp sending x to Ax + Bx. Similarly, for i :
= \ € F, we define M\A to be the matrix corresponding to the linear map A f Sendmg .
2 to A Az, so that fa,p = fa+ fg and faa = Afa.

It is a trivial verification to see that (a;;)i; + (bij)i; = (a;; + bij)i;, that is,
that addition of matrices is done coefficient-wise. Similarly, we see easily that
A-(aij)ij = (Aaiz)i ;. With this addition and scalar multiplication, Mat(m x n, F')
becomes an F-vector space, and it is clear that it is ‘the same’ as (that is, iso-
morphic to) F™" — the only difference is the arrangement of the coefficients in
an array instead of in a sequence.

By Lemma [4.3] the composition of two linear maps is again linear. How is this
reflected in terms of matrices?

‘IIIIIIIIIIIIIIIIIIlllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII..
i Definition 5.15. Let A € Mat(l x m, F)) and B € Mat(m x n,F). Then B}
: gives a linear map fg: F™* — F™, and A gives a linear map f4: F™ — F'. We :
: define the pmduct AB to be the matrix corresponding to the composite linear =

.map fao fg: Fr 18 pm T4 ploSo AB will be a matrix in Mat(l x n, F). E

'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Remark 5.16. Note that for the product AB to exist, the number of columns
of A has to equal the number of rows of B.

By Definition the product AB satisfies fag = fa © f5, so we have
(5.5) (AB)z = fap(x) = fa(fs(z)) = A(Bz)

for all z € F". To express AB in terms of A and B, we let v, vs,...,v; denote
the rows of A and wy,ws, ..., w, the columns of B. The relation holds in
particular for z = ey, the k-th standard vector of F. Note that (AB)e; and Bey,
are the k-th column of AB and B, respectively. Since the latter is w;, we find
that the k-th column of AB equals

<U1awk>
Vo, W
(AB)ey, = A(Bey,) = Awy, = vz : 2
<Ul7wk>
We conclude
oy — o | (v, wy)y (v, wa) -+ (v, wy)
— Vo — U,w U7w ttt ,U7wn
AB = ,2 wyp Wz s Wy | = <2.1> <2.2> <2. >
’ ’ ’ . . .

—U;— <Ul, ’w1> <U[, 'w2> te <Ul7 wn>

In other words, the (i,k)-th entry in the i-th row and the k-th column of the
product AB is the scalar product (v;, wy) of the i-th row of A and the k-th row
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of B. With
a1 Az . Qim bii bia -+ bin
Q21 Q22 - Q2m byt by -+ Doy
aip Qi o bni bma c byn
we get
b1k
bak
v; = (@1, Ao, - - -, Qi) and we=1 . |,
bmk

so in terms of the entries of A and B, the (i, k)-th entry c¢;; of the product AB
equals

m
cit, = (Ui, W) = anbig + aiobog + - -+ + Qi b, = E a;i;bji .
j=1

If we write the matrix A on the left of AB and the matrix B above AB, then the
(i, k)-th entry ¢y of AB is the scalar product of the i-th row of A next to this
entry and the k-th column of B above the entry.

byt bz - bip
(5 6) by bay -+ Doy B
bml bm2 e bmn
11 A1z - Qim €11 Ci2 -+ Cip
Q21 QA22 -+ Q2m €21 Cog -+ Cop
A= = AB
an Qi - A cn C2 0 Cp

[ Example 5.17. To compute the product AB for the matrices

2 4 6
1 3 5 7 8§ 10 12
A(g 11 13 15) and - B=14y 16 18"
20 22 24
we write them (on scratch paper) diagonally with respect to each other.
2 4 6
8§ 10 12
14 16 18
20 22 24
1 3 5 7 . 268 .
(o) (07 )

The product AB is a matrix with as many rows as A and as many columns as

B, so it is a 2 x 3 matrix. The (1,2)-th entry of AB, for instance, is the scalar

product of the first row of A and the second column of B, which equals
((1,3,5,7),(4,10,16,22)) =1-4+3-10+5- 16 + 7 - 22 = 268.

The other entries are computed similarly and we find

236 268 300
AB = <588 684 780)'
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[ Remark 5.18. The identity matrices act as a multiplicative identity:
I,A=A=AI, for Ae Mat(mxn,F).

[~ Remark 5.19. Suppose A is an m X n matrix and x € F™ is a vector. If we
write x vertically and identify it with an n x 1 matrix, then the product A - x
of the matrix A and the vector z, as described in Section corresponds with
the matrix multiplication described in this section (assuming we also identify
Az with an m x 1 matrix). This is why in this context it is convenient to write
both x and Az vertically.

Proposition 5.20. The matriz multiplication is associative: for A € Mat(kx(, F')
and B € Mat(l x m, F') and C € Mat(m x n, F'), we have

A(BC) = (AB)C.

Proof. The left-hand side is the unique matrix associated to the composition
fao(fpo fc), while the right-hand side is the unique matrix associated to the

associativity of composition. In other words, we have

fawey = fao fee = fao(feo fo) = (fao [B)o fo = fapo fo = funec,
so A(BC) = (AB)C by Proposition [5.11] O

composition (fa o fg) o fo. These composite maps are the same because of

Proposition 5.21. The matriz multiplication is distributive with respect to addi-
tion:

AB+C)=AB+ AC for Ae Mat(l xm,F), B,C € Mat(m x n, F);
(A+ B)C = AC+ BC for A, B € Mat(l x m, F), C € Mat(m x n, F).

I: Proof. Exercise. O

If A is an m x n matrix, then for both the product AB and the product BA
to exist, the matrix B has to be an n x m matrix. However, even if AB and
BA both exist, we do not necessarily have AB = BA. In other words, matrix
multiplication is not commutative in general. Furthermore, AB = 0 (where 0
denotes a zero matriz of suitable size) does not imply that A =0 or B = 0. For a
counterexample (to both properties), consider (over a field of characteristic # 2)

1 1 01
A—<O O> and B—(O 1).

0 2 0 0
= (024 (0 0)

Then

~

: Definition 5.22. A matrix A € Mat(m x n, F) is called invertible if the linear
= map fu corresponding to A is an isomorphism. The matrix corresponding to the
: inverse linear map f;* is called the inverse of A and is denoted A~!.

u
4EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE NN NN NN EEEEEEEEEEEEEEEEEEEEEER

Note that the matrix associated to f;' is unique by Proposition , and we have
far = fi'. We will see in Exercise and Corollary that if the m x n

matrix A is invertible, then m = n, so A is in fact a square matrix.

YEEEEEEEER
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Lemma 5.23. Let A be an m X n matriz and B an n X m matriz over F. If
AB =1,,, then fa: F" — F™ is surjective and fg: F™ — F™ is injective.

Proof. The composition fs o fg = fap = f1,, is the identity and therefore both
injective and surjective. It follows that f4 is surjective and fp is injective. [J

Remark 5.24. If matrices A and B satisfty AB = [,,, as in Lemma [5.23] then
A is called a left inverse of B, and B is called a right inverse of A.

If A is an invertible m x n matrix, then we have AA™! = I,, and A~'A = 1I,, so
A~1is both a left and a right inverse of A. The following proposition shows that
A~1 is uniquely determined by this property.

Proposition 5.25. A matriz A € Mat(m x n, F) is invertible if and only if there
exist matrices B and C' such that AB = I,,, and CA = I,,. Any such matrices (if
they both exist) satisfy B=C = A™%.

Proof. The “only if’ part is obvious, as we can take B = C = A7 if A is
invertible. For the “if”-part, suppose that there exist matrices B and C such
that AB = I,, and CA = I,. Then by Lemma [5.23] applied to both identi-
ties, the linear map f4: F™ — F™ is both injective and surjective, and there-
fore an isomorphism, so A is invertible. From f4 o fg = fap = idpm and
fco fa = fca = idpn, we conclude that fg and fo are the inverse of f4, so
B=C=A" O

Proposition 5.26. Suppose A and B are invertible matrices for which the product
AB exists. Then AB is also invertible, and (AB)™' = B~YA~1. (Note the reversal
of the factors!)

Proof. Suppose A is an [ X m matrix and B is an m X n matrix. Then AB is an
[ x n matrix. Set M = B™'A~!. Then M(AB) = B"'A™'AB = B™'B = I,.
We also have (AB)M = ABB™'A™!' = AA™' = I;. Hence, M is indeed the
inverse of the matrix AB. OJ
: Notation 5.27. Let A € Mat(n, F) be a square matrix. For any non-negative
= integer k, we write A" for the product A-A--- A of k copies of A. If A is invertible .
E and k is a negative integer then A* denotes the matrix (A=1)=*. :

YEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER

The usual rule A = AF . Al holds for all integers k,[, as long as all these
powers are well defined (exercise). Note that because matrix multiplication is not
commutative, we do not have (AB)* = A*B* in general.

Exercises

5.5.1. If matrices A and B have a product AB that is invertible, does this imply
that A and B are invertible? Cf. Exercise [8.4.4

5.5.2. Prove Proposition

5.5.3. Let A € Mat(n, F') be a square matrix.
(1) Show that for any non-negative integers k, [ we have A¥Tl = AF . AL,
(2) Show that if A is invertible, the same holds for any integers k,I.
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(3) Show that for every non-negative integer k, we have

Jar = fao fao---0fa.

k

(4) Show that if A is invertible, the for every negative integer k, we have
far=filofslo o fyl
—k

5.5.4. Let p: R? — R? be rotation around 0 over an angle «, cf. Exercise In
Example [5.12| we showed that the matrix

cosa —sinao
A, =1 .
sino  cos«

satisfies p(v) = Ayv for all v € R2. Show that for all o, 3 € R we have

cos(a+ ) = cosacos 3 — sin asin 3,
sin(a + ) = sin acos  + cos asin 5.

5.5.5. For which i,j € {1,...,5} does the product of the real matrices A; and A;
exist and in which order?

1 1 1 2 -1 1 —4
Al:(—l —2 —1)’ A2z(3—12 4)

2 3 4 -1 -3 1 _9
As=1| -1 0 2 |, As= 2 =2 |, A5:<_3 2).
3 2 1 1 1
Determine those products.
5.5.6. For each i € {1,,...,5}, we define the linear map f; by =z — A;x with A; as

in Exercise [5.9.9]
(1) What are the domains and codomains of these functions?
(2) Which pairs of these maps can be composed and which product of the
matrices belongs to each possible composition?
(3) Is there an order in which you can compose all maps, and if so, which
product of matrices corresponds to this composition, and what are its
domain and codomain?

5.5.7. Take the linear maps f and g of Exercise and call the corresponding
matrices A and B. In which order can you compose f and g? Write the
composition in the same manner that f and g are given by substituting one in
the other. Multiply the matrices A and B (in the appropriate order) and verify
that this product does indeed correspond with the composition of the linear
maps.

5.5.8. Let A € Mat(l x m, F) and B € Mat(m x n, F) be matrices over F. Show
that the product AB € Mat(l X n, F') can be described as follows.

(1) The j-th column of AB is the linear combination of the columns of A with
the entries of the j-th column of B as coefficients.

(2) The i-th row of AB is the linear combination of the rows of B with the
entries of the i-th row of A as coefficients.

5.5.9. Suppose that A, B are matrices for which the product AB exists.
(1) Show that we have ker B C ker AB.
(2) Show that we have im AB C im A.

5.5.10. Give two matrices A and B that are not invertible, for which AB is an identity
matrix.

5.5.11. Let F be a field and m, n non-negative integers. Show that the map
Mat(m x n, F') — Hom(F", F™)
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of that sends A to f4 is an isomorphism. (The fact that this map is linear
is almost true by definition, as we defined the addition and scalar product of
matrices in terms of the addition and scalar product of the functions that are
associated to them.)

5.5.12. Let F be a field and m,n non-negative integers. Some of the previous two
sections can be summarized by the following diagram.

(F™M™ —— Mat(m x n, F') <— (F™)"

T~ 7

Hom(F™, F™)

Describe a natural isomorphism for each arrow, making the diagram commu-
tative.

5.5.13. (Infinite matrices) As defined, an m x n matrix over a field F' is a map from
the set {1,2,...,m} x {1,2,...,n} to F (sending (4, 7) to the (i, j)-th entry of
the associated array in row 7 and column 7). In general, for sets X and Y, we
define an X X Y matrix over F to be a map X xY — F. In other words, we
set Mat(X x Y, F) = Map(X x Y, F).

(1) Show that for each M € Mat(X x Y, F), there is a linear map

fur FO S FX g (20 Y M(z,y) - g(y)
yey
(2) Describe the map above both in terms of “row vectors” and “column
vectors” as in Section [5.1] cf. Exercise [4.4.6
(3) Show that there is an isomorphism

Mat(X x Y, F) — Hom(FY) F¥X)

that sends a matrix M to the linear map fj,.
Note that, for any set W, two infinite matrices N € Mat(W x X, F') and
M € Mat(X x Y, F) can, in general, not be multiplied together, just as the
maps F) — FX and F&) — FW can not be composed.

5.6. Row space, column space, and transpose of a matrix

The following definition introduces the transpose AT of a matrix A, which is the
matrix we get from A by a ‘reflection on the main diagonal.” This associated
matrix occurs naturally in many applications, which can often be explained by

Exercise B.6.1]

: Definition 5.28. Let A = (a;;) € Mat(m x n, F) be a matrix. The transpose of A

]

.
.
u
]
L

s the matrix
AT = (aji)lgjgmlsigm & Mat(n X m, F) .

Example 5.29. For

1 2 3 4
A=1|5 6 7 8
9 10 11 12
we have
1 5 9
T |2 6 10
A = 3 7 11
4 8 12

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEENEEEEENEENEENEEEEEEEEEEEEEEEEEEEEEEEEEEER?
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In the next chapter, we will prove various statements about the rows of matrices.
As the columns of A are the rows of A", we will be able to use the transpose to
conclude the analogs of these statements for columns as well.

Proposition 5.30. Let F' be a field, and I, m,n non-negative integers.

(1) For A, B € Mat(m x n, F') we have (A+ B)T = AT + B'.

(2) For A€ Mat(m xn,F) and \ € F, we have (AA)T =X - AT,

(3) For A € Mat(lxm, F) and B € Mat(m xn, F), we have (AB)" = BT AT
(note the reversal of factors!).

(4) If A € Mat(m x n, F) is invertible, then so is AT and we have
(AN =T

Proof. The first two statements are obvious. For the third, let vy, ..., v; be the
rows of A and wy, ..., w, the columns of B. Then the product AB is the [ x n
matrix whose (i, k)-th entry is (v;, wy). The rows of BT are wy,...,w, and
the columns of AT are vy,...,v;, so the (k,i)-th entry of the product BT AT
equals (wg,v;) = (v;,wy) as well. This shows that (AB)" = BTAT. For a
more abstract proof, see Exercise [5.6.1] The fourth statement follows from the
| third. O
: Definition 5.31. The row space R(A) of an m x n matrix A € Mat(m x n, F) is &
= the subspace of F™ that is generated by the row vectors of A; the column space .
E C(A) is the subspace of F™ generated by the column vectors of A. :
>

NN NN NN NN SN NN NN NN NN NN NSNS E NSNS EEE NN NN NN NN NN NN NN EEEEEEEEEE

Clearly we have R(AT) = C(A) and C(A") = R(A) for every matrix A.

Proposition 5.32. Let A € Mat(m x n, F') be a matriz. Then we have
imA=C(A) C F™,
ker A = (R(A))* c F™,
im(A") = R(A) C F™,
ker(AT) = (C(A))*t c F™.

Proof. From (5.3)), we see that the image im A consists of all linear combinations
of the columns of A, which proves the first equality.

For the second, let vy, ..., v, be the rows of A. Then R(A) = L(vy,...,vy).
The map fa: F" — F™ is then given by fa(x) = ((v1,2),..., (vm,z)) for all
x € F™ (here we have written f4(z) normally instead of vertically). Thus, for
every x € F™ we have fu(z) = 0 if and only if (v;,z) =0 for all 1 <7 < m, so
if and only if x is contained in

{v1,...,om}t = Lvy, ..., 0m) " = (R(A)*
(see Proposition [3.33(2)). We conclude ker A = (R(A))*, as stated.
The last equations follow by applying the first two to A'. O

[ Remark 5.33. Let U C F™ be a subspace of F". We can use Proposi-
tion to reinterpret UL. Let U be generated by the vectors vy, v, . .., Up,.
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Let f: F™" — F™ be the linear map given by

<U1,Qj>
<U27x>

fx) =

(U, 7)

Then the kernel of f equals U+. The map f is also given by x — Mz, where
M is the m x n matrix whose i-th row vector is v; for all ¢ < m.

Remark 5.34. We have expressed the product AB of matrices A and B in
terms of the scalar products of the rows of A and the columns of B. Conversely,
we can interpret the scalar product as product of matrices. Suppose we have
vectors
a=(ay,as,...,a,) and b= (b1,ba,...,b,)

in F™. We can think of a and b as n x 1 matrices (implicitly using that F™ and
Mat(n x 1, F') are isomorphic). Then the transpose a' is a 1 x n matrix and
the matrix product

by

b
G,T'b:((ll Ay ... an)- :2 :(albl+---+anbn)

bn
is the 1 x 1 matrix whose single entry equals the scalar product (a, b).
Remark 5.35. The vector space ™ is isomorphic to both Mat(n x 1, F') and
Mat(1 x n, F'). In this book, as in Remark if we implicitly identify a vector

r € F" with a matrix, it will be identified with an n x 1 matrix, that is, we
then write x vertically.

Exercises

5.6.1. Let F' be a field and m,n non-negative integers. For each k € {m,n}, let
or: F* — Hom(F*, F) denote the isomorphism that sends the vector a € F*
to the linear map (z +— (a,z)) (see Propositions and and Exer-
cise . To each linear map f € Hom(F", F™), we associate the linear
map f*: Hom(F™, F) — Hom(F"™, F) that sends a to the composition « o f
(see Exercise |4.5.3)), and the linear map T = ¢, ' o f* 0y : F™ — F™. (The
notation f' used in this exercise is not standard.)

Hom(F™, F') AN Hom(F", F)

al Je

rm m
fT
Let A be an m X n matrix with rows vy,...,vm,, and let fa: F™* — F™ be the
associated linear map. Let j € {1,...,m}.

(1) Show that ¢, sends the j-th standard generator e; to the projection map
7 F™ — F onto the j-th coordinate.

(2) Show that f} o ¢y, sends e; to the map F™ — F that sends € F" to
(vj, ).

(3) Show that f sends e; to v;.
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4) Show that f) is the map associated to the transpose AT of A, that is,
A

fi=far
(5) Use Exercise to prove Proposition [5.30}

5.6.2. Suppose M € Mat(m x n, F') is a matrix and = € F™ and y € F™ are vectors.

Show that we have
(Ma,y) = (x, MTy).

5.6.3. For
-2

W N =
—t

and b= 4
4 3

compute the matrix products (a')-band a- (b").



CHAPTER 6

Computations with matrices

Matrices are very suitable for doing computations. Many applications require the
understanding of the kernel of some matrix A. For example, the system

aj1ry + aprs 4+ -+ apr, = b
917  + agers + -+ 4+ agr, = by
Am1T1 + AmaZa2 + -+ QppTy, = bm

of linear equations from the beginning of Section can be written as Az = b
with

a1; Qa2 - Q1p by
Q21 Q22 -+ Q2 by

A= ] ] " € Mat(m x n, F) and b=| . | € F™
am1 Am2 - Amn bm

and the vector
a1

T2
T =

Tn
of unknowns. The map f: F™ — F™ that was described in the beginning of
Section |4.3|is the map f4: F™ — F™ that sends x to Az. The solution set equals

{xeF" : Ax=0b}=f;'(b),
and if a € F™ satisfies A -a = b, then by Theorem this set equals
{a+z : z€kerA}.

In patricular, for b = 0, the solution set equals ker A.

If we replace A by a matrix A’ that has the same row space, that is, R(A) = R(A’),
then by Proposition we also have ker A = ker A’. Our goal is to choose A’
of a special form (the row echelon form of Section that makes it easy to
compute the kernel of A’ (and thus the kernel of A). Exercise [3.4.9 gives us three
operations that we can use on the rows of A to get from A to A’ in small steps
without changing the row space. These are described in Section [6.1]

As in the previous chapter, we let m and n denote non-negative integers.

6.1. Elementary row and column operations

The main tool for computations with matrices are the so-called ‘elementary row
and column operations,” described in Definition [6.2] We first give a motiva-
tion/analogue in terms of systems of linear equations.

103
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[ Example 6.1. Consider the system

— X2 + I3 =0
2]}1 + 4.1'2 — 6[173 = 0
3371 — T2 — 2.1'3 = 0

of linear equations over R. To solve the system, we first choose an equation
that involves x1 in order to express x; in terms of the other variables, say the
second equation. It yields x1 = —2x9 + 3x3. We use this to eliminate the
variable x; from the other equations, either by substituting —2x, + 3x3 for xq,
or, equivalently, adding a multiple of the expression 2z, + 4x5 — 623 from the
second equation to the other equations, where the multiple is chosen such that
the variable x; cancels out. By doing this, the first equation stays the same, that
is, —x9+x3 = 0, while the third gives —7x5+4 7z3 = 0. These last two equations
are equivalent, but if we had not realised that, we could use the first of these
two to eliminate xo from the the second: this would give 0 = 0, showing that
the second is indeed trivially satisfied when the first one is. A careful reader
checks that this shows not only that any solution of the original system is also
a solution of the system

33'1+2(132—3£IZ'3:0
Ty — X3 =0

but also the other way around: every solution to this system is also a solution to
the original system. From the second system we can easily describe all solutions.
If © = (x1,29,x3) is a solution, then the second equation allows us to express
2o in terms of x3, that is, x9 = x3, while the first equation lets us express x;
in terms of x5 and x3, namely 1 = —2x5 + 3x3 = —2x3 + 3x3 = x3, SO We get
xr = (x3,23,23) = x3 - (1,1,1). Hence the solution set is generated by (1,1,1).

If we write
0 -1 1 1
A=12 4 -6 and r=|x2 |,
3 -1 -2 T3

then the original system is equivalent to the homogeneous linear equation Ax = 0,
so the solution set is ker A. The second system is equivalent to the equation
A’z = 0 with

1 2 -3
A=101 -1
00 O

The steps we took to get from the original system to the second, can be phrased
in terms of matrices as follows. First switch the first two rows of A, so that the
first row has a nonzero element in the first column. Then multiply the (new)
first row by %, so that this nonzero element becomes 1. After this, subtract
appropriate multiples of the first row from the other rows, so that the other
rows have a 0 in the first column. This corresponds to eliminating z; from the
other equations. After these steps, we obtain the matrix

1 2 -3
0 -1 1
0o -7 7

We then leave the first row as is, and choose one of the other rows that has
a nonzero element in the second column, say the second row. We scale it so
that its first nonzero element is 1, and then subtract appropriate multiples of
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it from the rows below it (only the third row remains) in order to create zeros
in the second column of those rows. After doing this, we do indeed obtain the
matrix A’.

Note that also finding the solution set can be done as easily as above, as the
shape of A" makes it easy to determine generators for its kernel as follows. The
nonzero rows have a 1 as their first nonzero coordinate, and from bottom to
top, each nonzero row can be used to express the coordinate corresponding
to the column that contains this 1, in terms of the later coordinates. So for
x = (21,29, x3) € ker A’ we find again x5 = x3 and x; = —2x9 + 323 = 3.

The example above uses so-called Gaussian elimination to solve a system of linear
equations. In Section 8.5 we will see how to do this in general. In terms of matrices,
we used three elementary operations that we now define.

.'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII..

: Definition 6.2. Let A be a matrix with entries in a field F. We say that we &
= perform an elementary row operation on A, if we

(1) multiply a row of A by some A € F'\ {0}, or

(2) add a scalar multiple of a row of A to another (not the same) row of A,
or

(3) interchange two rows of A.

= We call two matrices A and A’ row equivalent if A’ can be obtained from A by a
= sequence of elementary row operations.
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Note that the third type of operation is redundant, since it can be achieved by a
sequence of operations of the first two types (exercise).

Let F be a field and m a positive integer. Let E;; be the m x m matrix over F' of
which the only nonzero entry is a 1 in row ¢ and column j. For 1 <14, 57 < m with
1 # 7 and \ € F, we define the elementary m x m matrices

My(\) = I, + \Ey;,
Nij = Im + Ez’j + Eji - El — Ejj-

One easily verifies that if A is an m x n matrix, then multiplying the i-th row of A
by A amounts to replacing A by L;(A) - A, while adding A times the j-th row of A
to the i-th row of A amounts to replacing A by M;;()\) - A and switching the i-th
and the j-th row amounts to replacing A by N;; - A.

The elementary matrices are invertible, which corresponds to the fact that all
elementary row operations are invertible by an elementary row operation of the
same type. Indeed, we have

Li(A) - LiO‘il) = Ip, M;;(N) - My (=X) = Ly, and ij =1,.
This implies that row equivalence is indeed an equivalence.

We define elementary column operations and column equivalence in a similar way,
replacing the word ‘row’ by ‘column’ each time it appears. While each row op-
eration on a matrix A € Mat(m x n, F') corresponds to multiplying A by an
elementary m x m matrix M from the left, yielding M A, each column operation
corresponds to multiplying A by an elementary n x n matrix N from the right,
yielding AN.



106 6. COMPUTATIONS WITH MATRICES

The following proposition shows that the elementary row operations do not change
the row space and the kernel of a matrix.

Proposition 6.3. If A and A" are row equivalent matrices, then we have

R(A) = R(A) and ker A = ker A’

I: Proof. Exercise [6.1.1] O

Proposition 6.4. Suppose A and A’ are row equivalent m X n matrices. If A’ is
obtained from A by a certain sequence of elementary row operations, then there is
an invertible m x m matriz B, depending only on the sequence, such that A’ = BA.

Similarly, if A and A" are column equivalent, then there is an invertible n x n ma-
trix C such that A" = AC.

Proof. Let A € Mat(m x n, F). Let By, Bs, ..., B, be the elementary matrices
corresponding to the row operations we have performed (in that order) on A to
obtain A’, then

A' =B, (Byy++ (Ba(BiA)) -+ ) = (BB, 1+ ByBy)A,

and B = B,B,_; - -- ByB is invertible as it is a product of invertible matrices.
The statement on column operations is proved in the same way, or by applying
the result on row operations to the transpose AT, O]

Proposition 6.5. Suppose A € Mat(m x n, F') is a matriz. Let A’ be a matrix
obtained from A by applying a sequence of elementary row and column operations.
Then the following are true.

(1) If the sequence contains only row operations, then there is an isomorphism
Y F™ — F™ depending only on the sequence, with far =1 o fy.

(2) If the sequence contains only column operations, then there is an isomor-
phism ¢: F™ — F", depending only on the sequence, with far = fa 0 .

(3) There exist an isomorphism ¢: F" — F", depending only on the subse-
quence of column operations, and an isomorphism 1 : F™ — F™, depend-
ing only on the subsequence of row operations, with fa = 1) o fa 0, so
that the diagram

"
F"—— F™
far
18 commutative.
I: Proof. Exercise. O

Corollary 6.6. Let A and A’ be row equivalent matrices. Then fa is injective if
and only if fa is injective, and f4 is surjective if and only if far is surjective.

Proof. By Proposition [6.5] there is an isomorphism ¢ with f4 = 1o f4. Indeed,
the composition is surjective or injective if and only if f4 is, cf. Proposition [4.41]

O
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Exercises

6.1.1. (1) Let vy,v2,...,v,;, € R™ be m vectors and consider the m x n matrix A
whose rows are these vectors. Let A’ be a matrix that is obtained from A
by an elementary row operation. Show that for the rows v}, v, ..., v, of
A" we have L(vi,...,vm) = L(v},...,v},) (cf. Exercise[3.4.9).

(2) Prove Proposition (use Proposition [5.32)).

6.1.2. Show that column equivalent matrices have the same column space, cf. Propo-
sition

6.1.3. In the following sequence of matrices, each is obtained from the previous by
one or two elementary row operations. Find, for each 1 < ¢ < 9, a matrix
B; such that A; = B;A;—1. Also find a matrix B such that 49 = BAy. You
may write B as a product of other matrices without actually performing the

multiplication.
2 5 4 -3 1 1 3 -2 2 1
1 3 -2 2 1 2 5 4 -3 1
Ao = 0 4 -1 0 3 A= 0 4 -1 0 3
-1 2 2 3 1 12 2 3 1
1 3 -2 2 1 1 3 -2 2 1
0 -1 8 -7 -1 0 -1 8 -7 -1
=1y 4 1 o0 3 As=1y o 31 —28 —1
05 0 5 2 0 0 40 —-30 -3
1 3 -2 2 1 1 3 -2 2 1
0 -1 8 -7 -1 0 -1 8 -7 -1
A=y o 31 _28 _1 B=1g 0 4 —2 ;5
0 0 9 -2 -2 0 9 -2 -2
1 3 -2 2 1 1 2 2 1
0 -1 8 -7 -1 0 -1 8 -7 -1
Ag = 0 0 4 -2 5 Ar = 0 0 1 42 —12
0 0 1 42 —12 0 0 4 -22 5
1 3 -2 2 1 1 3 -2 2 1
0 -1 8 -7 -1 01 -8 7 1
=19 o 1 42 _12 =100 1 12 _12
0 0 0 —190 53 00 0 190 —53

6.1.4. Show that row operations commute with column operations. In other words,
if A is a matrix and A’ is the matrix obtained from A by first applying a
certain row operation and then a certain column operation, then applying the
two operations in the opposite order to A yields the same matrix A’.

6.1.5. Prove Proposition

6.1.6. Is Corollary also true for column equivalent matrices A and A’? What
about matrices A and A’ that can be obtained from each other by a sequence
of row or column operations?

6.2. Row echelon form

If we want to find generators for the kernel of an m x n matrix A or, equivalently,
its associated linear map f4: F™™ — F™, then according to Proposition [6.3 we may
replace A by any row equivalent matrix.
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[ Example 6.7. We want generators for the kernel of the real matrix

-1 2 11
A= 1 -1 10
2 =3 01
We leave it to the reader to check that A is row equivalent to the matrix
1 030
A=101 20
0001

(Start by multiplying the first row of A by —1 to obtain v; = (1,—2,—1,—1) as
first row and subtract v; and 2v; from the second and third row, respectively.)
Hence ker A = ker A’ by Proposition [6.3] Suppose © = (1,29, x5, 24) € ker A,
Then we have

10 30 - 1 + 3x3 0
Ar=(01 2 0 =22t 2es | =0
0001 ° 4 0
Ty
This yields three equations, namely
Ty + 3.1'3 = 0,
) + 2[L’3 = 0,
Ty = 0.
It follows (using these equations from bottom to top) that x4 = 0 and xy = —2x3
and x; = —3w3, so z = x3 - (—3,—2,1,0). Hence, the vector (—3,—2,1,0)

generates the kernels of A" and A.

The matrix A’ of Example and the matrix A" of Example have a shape
that makes it ecasy to find generators for their kernels. Indeed, for x € R? or
r € R? (for Example and , respectively), each of the rows of A’ gives a
linear equation in the coordinates of x; the shape of A’ allows us to use the i-th
row (if it is nonzero) to express one of the coordinates, say xj,, in terms of other
coordinates, while the equations associated to all lower rows do not involve this
coordinate z;;,.

This description of the shape of the two matrices A’ of Example and Exam-
ple [6.7| shows that they are in row echelon form, as defined in Definition In
this section we will explain how to find, for any matrix A, a matrix in row echelon
form that is row equivalent to A. In the next section we will see in full generality
how to obtain generators for the kernel from the row echelon form.

CL AR LR LR LR RN RRRERENERERERERENERERRERRERERENERRERENENERERRRENLNNRNNRERRERERENLNRRRRNLNLVY

Definition 6.8. A matrix is said to be in row echelon form when its nonzero rows
(if they exist) are on top and its zero rows (if they exist) on the bottom and,
» moreover, the first nonzero entry in each nonzero row, the so-called pivot of that
E row, is farther to the right than the pivots in the rows aboveEl
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Example 6.9. The matrix Ag of Exercise is in row echelon form. The
following real matrices are all in row echelon form as well, with the last one

ISome books require the pivots to be equal to 1 for a matrix to be in row echelon form. We
do not require this.

Cammnm
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describing the most general shape with all pivots equal to 1.

1 4 -2 4 3 (1);1_72‘21 01 11
02 7 2 5 00 3 1 001 1
00 0 1 —1 00 0 -1 0001
00 0 0 O 00 0 0 0000
0---0 1 =« % ok k- *
2 l0o---0 0 0---0 1 x- * -

=}
=)}
O e
]
]
=}
*
*

r .0 0 0---
r+110---0 0 0---0 0 0---0 0 0---0

it Jaoo-- o Jr

To make the matrix A = (a;;);; in most general shape with all pivots equal to 1
more precise, note that there are integers 0 <r < mand1 < j; < jo < - < j. <n
where 7 is the number of nonzero rows and, for each 1 < ¢ < r, the number j;
denotes the column of the pivot in row ¢, so that we have a;; =0ifi > ror (i <r
and j < j;), and we have a;;, =1 for 1 <i <r.

Proposition shows how every matrix can be brought into row echelon form
by a sequence of elementary row operations, following the ideas of Example [6.1]
The following example demonstrates all the required steps.

[ Example 6.10. Consider the matrix

00 -2 4 3 -3
01 0 2 2 -3
A=1092 3 20 _1

02 0 4 0 -10

The first column has no nonzero entries, so we look at the next column. We
pick a row in which the second column contains a nonzero element, say the last
row. We switch that row with the first to obtain the matrix

Ry (002 0 4 0 —10
R, 1001 0 2 2 =3
Ry 10 2 3 =20 -1
R, \0O O -2 4 3 -3

Note that we have indicated how the rows of this matrix depend on the rows of
the previous matrix. We now scale the first row to make its pivot equal to 1,
that is, we multiply it by % This yields

SRy [001 0 2 0 =5
01 0 2 2 -3
Ry |02 3 —20 -1
00 -2 4 3 -3
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To make the entries under the pivot in the first row zero, we subtract the first
row from the second row and twice the first row from the third row. This gives

R, (O01 0 2 0 =5
Ry—Ry [OO0 O 0 2 2
Ry —2R;, |0 0 3 -6 0 9
Ry \O 0 -2 4 3 -3

We now leave this first row as is. We proceed to the next (third) column, and
choose a row in which the corresponding element is nonzero, say the third row.
We switch it with the second row to obtain

R, (001 0 2 0 =5
Ry; 100 3 -6 0 9
R, 100 0 0 2 2
Ry, \O O -2 4 3 =3

We scale the new second row such that its pivot becomes 1, that is, we multiply
it by %, which yields

0 2
1 =2
0 0
00 -2 4 3 -3

Note that we no longer indicate it if a row is unchanged from the previous
matrix. To make the entries under this pivot zero, we add twice the second row
to the last row. This gives

1
stz

o oo

o O =

N OO
w

010 2 0 -5
001 -20 3
000 0 2 2

Ry+2R, \O 0 O 0 3 3

We leave the second row as is, and proceed with the next column. This column
has no nonzero elements in the remaining two rows, so we immediately continue
with the next (fifth) column. The third row already contains a nonzero element
in the fifth column, so we just scale this row to make the pivot 1, that is, we
multiply it by %, and we obtain

010 2 0 =5
001 -20 3
1Ry |00 0 0 1 1
000 0 3 3

To make the entries under this third pivot zero, we subtract three times the
third row from the last and get

010 2 0 =5
001 -20 3|
000 0 1 1|4

R,—3R; \0 00O 0 0 0

Since the remaining rows (only the fourth is left
Indeed, A’ is in row echelon form.

~—

are all zero, we are done.

The following procedure describes precisely how to bring a matrix into row echelon
form in general. The input is a matrix A and the output is a matrix in row echelon
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form that is row equivalent to A. This algorithm is the key to most computations
with matrices. It makes all pivots equal to 1.

Proposition 6.11 (Row Echelon Form Algorithm). Let A € Mat(m X n, F')
be a matriz. The following procedure applies successive elementary row operations
to A and transforms it into a matriz A" in row echelon form.

1.
2.

Set A=A, r =0 and jo = 0. Write A" = (aj;)i;-

[At this point, aj; = 0 if (i > r and j < j.) or (1 < i <randl1 < j < j;)
Also, a;ji =1for1<i<r)]

If the (r + 1)st up to the m-th rows of A" are zero, then stop.

. Find the smallest j such that there is some aj; # 0 with r < i < m. Replace r

by r+ 1, set j, = j, and interchange the r-th and the i-th row of A" if r # i.
Note that 3, > j._1.

. Multiply the r-th row of A" by (ay; )~".
. For each i =r+1,...,m, add —a;; times the r-th row of A’ to the i-th row

J

of A’

. Go to Step 2.

Proof. The only changes that are done to A’ are elementary row operations
of the third, first and second kinds in steps 3, 4 and 5, respectively. Since in
each pass through the loop, r increases, and we have to stop when r = m, the
procedure certainly terminates. We have to show that when it stops, A’ is in
row echelon form.

We check that the claim made at the beginning of step 2 is always correct. It is
trivially satisfied when we reach step 2 for the first time. We now assume it is
correct when we are in step 2 and show that it is again true when we come back
to step 2. Since the first r rows are not changed in the loop, the part of the
statement referring to them is not affected. In step 3, we increase r and find j,
(for the new r) such that aj; = 0if i > 7 and j < j,. By our assumption, we
must have j,. > j,_1. The following actions in steps 3 and 4 have the effect of
producing an entry with value 1 at position (r,j,). In step 5, we achieve that
/

a;; = 0 for i > r. So aj; = 0 when (i > r and j < j,) and when (i = r and

j < jr). This shows that the condition in step 2 is again satisfied.

So at the end of the algorithm, the statement in step 2 is true. Also, we have
seen that 0 < j; < js < -+ < J,, hence A’ has row echelon form when the
procedure is finished. O

Example 6.12. Consider the following real matrix.

1 2 3
A=14 5 6
789

Let us bring it into row echelon form.

Since the upper left entry is nonzero, we have j; = 1. We subtract 4 times the
first row from the second and 7 times the first row from the third. This leads
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to
1 2 3
A=10 -3 -6
0 —6 —12

Now we divide the second row by —3 and then add 6 times the new second row
to the third. This gives

Al/ —

OO =
[an il )
O N W

which is in row echelon form.

Example 6.13. In Examples 6.7 and [6.10] the matrix A’ is a matrix in

row echelon form that is row equivalent to A.

Remark 6.14. The row space of A in Example is spanned by its three
rows. By Proposition the row spaces of A and A” are the same, so this space
is also spanned by the two nonzero rows of A”. We will see in the next chapter
that the space can not be generated by fewer elements. More generally, the
number of nonzero rows in a matrix in row echelon form is the minimal number

of vectors needed to span its row space (see Theorem and Proposition [8.14]).

Example 6.15 (Avoiding denominators). The algorithm above may introduce
more denominators than needed. For instance, it transforms the matrix

22 5
9 2
22 5 1 2 1 2
22, 22
(32)~02)~( %)

Instead of immediately dividing the first row by 22, we could first subtract a
multiple of the second row from the first. We can continue to decrease the num-
bers in the first column by adding multiples of one row to the other. Eventually
we end up with a 1 in the column, or, in general, with the greatest common
divisor of the numbers involved.

22 5\  Ri-2R, (4 1) | R, (4 1
9 2 Ry, \9 2 Ry —2R; \1 0
o R (10 R, (1 0

R, \4 1 Ry — 4R, \O 1)

We see that the 2 x 2 identity matrix is also a row echelon form for the original
matrix.

in two rounds as

Note that in Example we indicated the row operations by writing on the
left of each row of a matrix, the linear combination of the rows of the previous
matrix that this row is equal to. This is necessary, because we do not follow the
deterministic algorithm.

If you like living on the edge and taking risks, then you could write down the result
of several row operations as one step, as long as you make sure it is the result
of doing the operations one after another, not at the same time. For example,
by applying the appropriate sequence of switching two rows, you can get any
permutation of the rows. (Can you prove this?) You can also take one row v;
and add multiples of it to various other rows, as long as you keep v; as a row
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in the new matrix. That way you only make steps that are reversible, either by
permuting the rows back, or by subtracting the appropriate multiples of v; from
the other rows.

r_ A & &8 R _ N _ &R _NR_ N _&R_HN_N_N_N_R_HN_N§R_§_NR_§_§B_R_J§_§R_ &R _N_&§_§_§_§_ 1R &8 &R _§_§_§R_J§_§R_ B} /4
I Warning 6.16. Make sure you do not accidentally perform two operations at the
g same timel If you start with the matrix

()

and add the first row to the second, while at the same time adding the second row
to the first, you end up with

4 7

4 7

which clearly does not have the same row space as A, so something has gone
wrong. If you do it right, and first add the first row to the second, and then the
second row to the first, we get

A 1 2 - Ry (1 2 - Ri+Ry (5 9
BRCEE Ro+Ry \4 7 Ry \4 7)°
‘What do you get if you perform these two operations in the opposite order?

‘---

We give one more example, where we avoid denominators all the way, except for
the last step.

[ Example 6.17.
3 5 2 2 Rs 1 3 —4 3
1 3 —4 3 - R, 3 5 2 2
2 -2 5 -1 Rs 2 -2 5 -1
-1 3 1 -3 Ry \—-1 3 1 -3
R /1 3 -4 3 R, (/1 3 —-4 3
Ry —3R; |0 —4 14 -7 . R, |0 —4 14 -7
Rs —2R; |0 -8 13 -7 Rs |0 -8 13 -7
Ri+R, \O 6 -3 0 Ri+R, \O 2 11 -7
R, /1 3 —4 3 R, /1 3 —4 3
- R, |0 2 11 -7 R, |0 2 11 -7
R; |0 -8 13 -7 Rs+4Ry |0 O 57 —-35
Ry, \O —4 14 -7 Ri+2Ry, \O 0 36 -21
R, /1 3 —4 3 R, (1 3 —4 3
- R, |0 2 11 -7 - R, 10 2 11 -7
Rs— Ry [0 0O 21 -—-14 Ry O 0 21 —14
Ry, \0O 0 36 -21 Ry—R; \O O 15 -7
R, /1 3 —4 3 R, /1 3 —4 3
- R, 10 2 11 -7 - R, |0 2 11 -7
Rs— Ry, |O O 6 -7 R; |00 6 -7
Ry, \0O 0 15 -7 Ri—2R; \0 0 3 7
R, /1 3 —4 3 R, (1 3 —4 3
- R, |0 2 11 -7 - R, 10 2 11 -7
Ry 10 0 3 7 R; |0 0 3 7
R; \O 0 6 —7 R,—2R; \0O 0 0 -—-21
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R, /1 3 —4 3
1 17
- twloo i 7
343 3
i
—5;8 \0 0 0 1
Exercises

6.2.1. Find a row echelon form for each of the matrices in Exercise [5.5.5

6.3. Generators for the kernel

If we want to compute generators for the kernel of a matrix A € Mat(m x n, F),
then, according to Proposition|[6.3] we may replace A by any row equivalent matrix.
In particular, it suffices to understand how to determine generators for the kernel
of matrices in row echelon form. We start with an example.

[ Example 6.18. Suppose M is the matrix (over R)

@ 2 -1 0 2 1 -3
o o 1O -1 2 -1 2
o 0o o o @O 1 1 |
0 0 0 0 0 0 0

which is already in row echelon form with its pivots circled. Let vy, v9, v3 denote

its nonzero rows, which generate the row space R(M). Suppose the vector

x = (1, %9, T3, Tq, Ty, Tg, T7) 1S contained in

ker M = R(M)* ={zx € R" : (v;,z) =0 fori=1,2,3}.

Then the coordinates x,x3, x5, which belong to the columns with a pivot,
are uniquely determined by the coordinates xs, x4, ¢, x7, which belong to the
columns without a pivot. Indeed, starting with the lowest nonzero row, the
equation (vs,z) = 0 gives x5 + xg + 27 = 0, so

Ts = —Tg — X7.
The equation (ve,z) = 0 then gives x5 — x4 + 2v5 — x6 + 227, SO
x3 =14 — 2(—xe — x7) + T6 — 227 = T4 + 3.
Finally, the equation (v, ) = 0 gives
r1 = =229 + (x4 + 3wg) — 2(—x6 — x7) — 26 + 3x7 = =29 + x4 + dx6 + H27.

Moreover, any choice for the values s, 24, x4, x7, with these corresponding val-
ues for x1, x3, x5, does indeed give an element of the kernel ker M, as the equa-
tions (v;,x) = 0 for 1 < i < 3 are automatically satisfied. With g = x9, r = 24,
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s = xg, and t = x7, we may write

X1 —2q+1r+4s+ 5t —2 1 4 5
T q 1 0 0 0
T3 r—+3s 0 1 3 0
r=|z4| = r =q| O | +r|1|+s| O | +t] O
Ts —s—t 0 0 -1 -1
Tg S 0 0 1 0
T t 0 0 0 1
= qws + 1wy + swg + twry,
where

1 0 0 0

Wo = O ) Wy = 1 ) We = 0 ) Wy = 0

0 0 1 0

0 0 0 1

This shows that the kernel ker M is generated by ws, wy, wg, wy, that is, we
have ker M = L(ws,wy, wg, wy). In each wy, we circled the coordinates that
correspond to the columns of M with a pivot. Note that the non-circled coor-
dinates in each wy, are all 0, except for one, the k-th coordinate, which equals 1.
Conversely, for each of the columns of M without pivot, there is exactly one wy
with 1 for the (non-circled) coordinate corresponding to that column and 0 for
all other coordinates belonging to a column without a pivot.

This could also be used to find ws, wy, wg, wy directly: choose any column with-
out a pivot, say the k-th, and set the k-th coordinate of a vector w € R” equal
to 1, then set all other coordinates corresponding to columns without pivot
equal to 0, and compute the remaining coordinates. For instance, for the sixth
column, which has no pivot, we get a vector w of which the sixth entry is 1,
and all other entries corresponding to columns without pivots are 0, that is,

g
I
O x O % O %

The entries that correspond to columns with a pivot (so the first, third, and
fifth) can now be computed using the equations (v;, w) = 0, starting with ¢ = 3
and going down to ¢ = 1. We find w = wg in this example.

The following proposition states that we can find generators for the kernel of any
matrix in row echelon form in the same manner. In Proposition we will see
that the generators constructed in Proposition [6.19|actually form a so-called basis
of the kernel.
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Proposition 6.19. Let A € Mat(m x n, F') be a matriz in row echelon form with
r nonzero rows and let j; < jo < ... < j, be the indices of the columns with a
pivot. Then for each 1 < k < n with k & {j1,72,---,7r}, there is a unique vector
wy, € ker A such that

(1) the k-th entry of wy equals 1, and
(2) the l-th entry of wy equals 0 for all 1 <1 <n with | & {k,j1,jo,--,jr}-

Furthermore, the l-th entry of wy equals O for all | with k <1 <n, and the n —r
vectors wy, (for 1 <k <n with k & {ji1, jo, ..., jr}) generate the kernel ker A.

I: Proof. The proof is completely analogous to Example and is left to the
reader. OJ

We can now also check efficiently whether the map associated to a matrix is
injective.

Proposition 6.20. Let A € Mat(m x n, F') be a matriz and A" a row equivalent
matrix in row echelon form. Then the associated map fa: F™ — F™ is injective
if and only if A" has n nonzero rows or, equivalently, if and only if each column
of A" contains a pivot.

Proof. By Proposition [6.6], the map f,4 is injective if and only if f4/ is injective,
so it suffices to do the case A = A’. By Lemmal[4.7], the map f, is injective if and
only if the kernel ker f4 = ker A is zero, which, according to Proposition [6.19]
happens if and only if each of the n columns of A has a pivot, so if and only if
there are exactly n nonzero rows. 0

The following proposition explains which columns in a row echelon form of a
matrix contain pivots.

Proposition 6.21. Suppose A and A’ are row equivalent m X n matrices with
A" in row echelon form. Then for every k € {1,...,n}, the k-th column of A’
contains a piwot if and only if the k-th column of A is not a linear combination of
the previous columns of A.

Proof. Let F be a field that A and A’ are matrices over. Suppose the column
vectors of an m x n matrix B over F' are denoted by vy, vs,...,v,. Then the
k-th column v, of B is a linear combination of the previous columns if and only
if there are \q,..., A\g_1 such that vy = \jv; +-- -+ Ap_1vp_1, that is, such that
the element
(=M1, =g, o, —Aeo1,1,0,...,0)
n—k

is contained in the kernel of B. As A and A’ have the same kernel by Proposi-
tion [6.3] the A-th column of A is a linear combination of the previous columns
of A if and only if the k-th column of A’ is a linear combination of the previous
columns of A’. Thus, we have reduced to the case A = A'.

Let vy, vs,...,v, denote the columns of A. If the k-th column v, has a pivot,
say in the ¢-th row, then the previous columns vy,...,v,_; have a 0 on that
row, so clearly v is not a linear combination of vq,...,v,_;. For the converse,

if the k-th column does not contain a pivot, then by Proposition there is
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an element w;, € ker A whose k-th entry equals 1 and whose [-th entry equals 0
for £ < | < n. By the above, that implies that v, is indeed a linear combination
of V1,V2y...,V_1. O

Exercises

6.3.1. Prove Proposition
6.3.2. Give generators for the kernels of each of the matrices in Exercise [5.5.5
6.3.3. Give generators for the kernel of the matrix A in Example

6.3.4. 1 Determine a row echelon form for the following matrices over C and give
generators for their kernels.

241 1 1+4 303
2 1-31 3—51 230
3 3 1
-1 0 0 1 2 Lo -1
0 2 2 =2
2 1 —1 0 2
0 0 0 -1 0 23 ! 0
-2 0 2 1
6.3.5. Let A € Mat(m x n, F)) be a matrix and f4: F™ — F™ the associated linear

map.
(1) Show that if f4 is injective, then m > n.
(2) Show that if A is invertible, then m = n (cf. Corollary [3.9).

6.3.6. Consider the real matrix

5 —4 -2 2

1 | -4 -1 -4 4
A‘?'—2—452
2 4 2 5

The map fa: R* — R* is the reflection in a hyperplane H C R*. Determine H.

6.4. Reduced row echelon form

While the row echelon form of a matrix is not unique, we will see that the reduced
row echelon form below is (see Corollary [6.25]).

Definition 6.22. A matrix A = (a;;) € Mat(m x n, F) is in reduced row echelon &

= form, if it is in row echelon form and in addition all pivots equal 1 and we have =

4EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER

a;j, = 0for all 1 <k <r and i # k. This means that the entries above the pivots a
are zero as well.
0---0 0 0---0 1 *---%x O

A=10---0 0 0---0 0 0---0 1 s---%
0---0 0 0---0 0 0---0 0 0---0

0---0 0 0---0 0 0---0 0 0---0

4EEEEEEEEEEEEEEEEEEEEEEEEER

It is clear that every matrix can be transformed into reduced row echelon form by
a sequence of elementary row operations — we only have to change Step 5 of the
algorithm to
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5 Foreach i =1,...,r —1,r+1,...,m, add —aj; times the r-th row of A’ to
the i-th row of A’.

Proposition 6.23. Suppose that A € Mat(m x n, F') is a matriz in reduced row
echelon form. Then the nonzero rows of A are uniquely determined by the row
space R(A).

Proof. Let r be the number of nonzero rows of A and let j; < js < ... < j, be
the numbers of the columns with a pivot. Let vy, vo, ..., v, be the nonzero rows
of A. Then the ji-th, jo-th, ..., j.-th entries of the linear combination

AMvr + Aovg + -+ Ao,

are exactly the coefficients Ay, A9, ..., A.. This implies that the nonzero vector in
R(A) with the most starting zeros is obtained by taking Ay = ... = \,_1 =0, so
the vector v, is the unique nonzero vector in R(A) with the most starting zeros
of which the first nonzero entry equals 1. Thus the row space R(A) determines
v, and j, uniquely. Similarly, v,_; is the unique nonzero vector in R(A) with the
most starting zeros of which the j,-th entry equals 0 and the first nonzero entry
equals 1. This also uniquely determines j,._;. By (downward) induction, v; is
the unique nonzero vector in R(A) with the most starting zeros of which the
Jix1-th, ..., 7,-th entries equal 0 and the first nonzero entry, the j;-th, equals 1.
This process yields exactly the r nonzero rows of A and no more, as there are
no nonzero vectors in R(A) of which the ji-th, jo-th, ..., j.-th entries are zero.
This means that also r is determined uniquely by R(A). O

Corollary 6.24. Let A, A" € Mat(m x n, F') be two matrices. Then the following
statements are equivalent.

(1) The matrices A and A" are row equivalent.

(2) The row spaces R(A) and R(A") are equal.

(3) For any matrices B and B’ in reduced row echelon form that are row
equivalent to A and A’, respectively, we have B = B’.

Proof. If A and A’ are row equivalent, then the row spaces R(A) and R(A’)
are the same by Proposition [6.3] which proves (1) = (2). For (2) = (3),
suppose that the row spaces R(A) and R(A’) are equal. Let B and B’ be any
matrices in reduced row echelon form with B and B’ row equivalent to A and
A', respectively. By Proposition [6.3) we have R(B) = R(A) and R(B') = R(4’),
so we conclude R(B) = R(B’). Therefore, by Proposition the nonzero
rows of B and B’ coincide, and as the matrices have the same size, they also
have the same number of zero rows. This yields B = B’. The implication (3)
= (1) follows from the fact that if B = B’ is row equivalent to both A and A’,
then A and A’ are row equivalent. O

Corollary 6.25. The reduced row echelon form is unique in the sense that if a
matriz A is row equivalent to two matrices B, B" that are both in reduced row
echelon form, then B = B’.

I: Proof. This follows from Corollary by taking A = A'. OJ

In other words, the m x n matrices in reduced row echelon form give a complete
system of representatives of the row equivalence classes.




6.4. REDUCED ROW ECHELON FORM 119

Remark 6.26. It follows from Corollary that the number r of nonzero rows
in the reduced row echelon form of a matrix A is an invariant of A. It equals
the number of nonzero rows in any row echelon form of A. We will see later
that this number r equals the so-called rank of the matrix A, cf. Section 8.2

The computation of generators of the kernel of a matrix A is easier when A is
in reduced row echelon form. The reduced row echelon form for the matrix M of

Example for instance, is
o -1 o -4 -5

1) 2

o 0o @O -1 0o -3 0
o 0 0o 0o @O 1 1
o 0 o0 o0 0 0 O
The circled entries of wg of Example [6.18| are exactly the negatives of the elements
—4,—3,1 in the nonzero rows and the sixth column. A similar statement holds for
the other generators ws, wy, and wr. In terms of Proposition|6.19, with A = (a;;);
in reduced row echelon form: if 1 <k <n and k & {j1,72,...,J:}, then the [-th
entry of wy, is given by Proposition for l € {j1, 2, ---,Jr}, while the j;-th entry
of wy, is —ay, for 1 <4 < r; this yields wy, = e — 22:1 a;iej,. This is summarized
in the next proposition.

As for Proposition [6.19] we will see in Proposition that the generators con-
structed in Proposition [6.27 actually form a so-called basis of the kernel.

Proposition 6.27. If A = (a;;) € Mat(m x n, F) is a matriz in reduced row ech-
elon form with r nonzero rows and pivots in the columns numbered 7, < ... < j,,
then the kernel ker(A) is generated by the n — r elements

Wy = € — Zaikejiu fO’/’kG{1,...,”}\{j1,...,jr},

1<i<lr
Ji<k

where ey, ..., e, are the standard generators of F".

I: Proof. We leave it as an exercise to show that this follows from Proposition [6.19]
0

Proposition [6.27] gives a very efficient way of computing the kernel of a matrix.
First bring it into reduced row echelon form using elementary row operations,
and then write down generators for the kernel according to the given recipe, one
generator for each column without pivot.

Exercises

6.4.1. Redo Exercises and using the reduced row echelon form.







CHAPTER 7

Linear independence and dimension

7.1. Linear independence

This section, like all others, has a large overlap with Stoll’s notes [S], in particular
with its chapter 6, which in turn follows essentially Chapter 3 in Jénich’s book [JJ.

In the context of looking at linear hulls, it is a natural question whether we really
need all the given vectors in order to generate their linear hull. Also (maybe in
order to reduce waste. .. ), it is interesting to consider minimal generating sets.
These questions lead to the notions of linear independence and basis.

‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘

: Deﬁmtlon 7.1. Let V be an F-vector space, and vy, vs,...,v, € V. We say that :
o vl, Vg, ..., U, are linearly independent, if for all A\j, Ao, ..., A, € F, the equality
)\1@1+)\202+"'+)\nvn:0

- =X, = 0. (“The zero vector cannot be written as a
= nontrivial linear combination of vy, ..., V)
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In a similar way we can define linear independence for arbitrary collections of
elements of V. If [ is any index set (not necessarily finite) and for each i € I
we have an element v; € V', then we write the collection of all these elements
as (v;)ier- The element i is called the index or label of v;. Elements may occur
multiple times, so for ¢, j € I with ¢ # j, we may have v; = v;. For a more precise
definition of (labeled) collections, see Appendix
SRR NN AN AR AN NN RN AR RN EE RN REREEEERREREEEEREEEEEEEEEEREREERE,
: Definition 7.2. A collection (v;)ier of elements in V' is linearly independent if for :
2 every finite subset S C I, the finite collection (v;);cg is linearly independent, that & :
= is, for all (finite) collectlons (Ai)ies of scalars in F, the equality Y, ¢ \iv; = 03
iimplies Mi=0forallieS. g
Note that for finite index sets I = {1,2,...,n}, Definitions [7.1] and [7.2] are equiv-
alent, so we have no conflicting definitions. As a special case, the empty sequence
or empty collection of vectors is considered to be linearly independent.

If we want to refer to the field of scalars F', we say that the given vectors are
F-linearly independent or linearly independent over F.

If v1,v,...,v, (resp., (v;)ier) are not linearly independent, then we say that they
are linearly dependent. An equation of the form Ajvy + Agvs + -+ + A\v, = 0 is
called a linear relation among the elements vy, ..., v,; if the scalars A;, Ao, ..., A\,

are all zero, then we call it the trivial relation, otherwise a nontrivial relation.

Example 7.3. Let V' be any vector space. If a collection (v;);c; of elements
of V' contains the element Oy € V', then the collection is linearly dependent.
Furthermore, if there are 4,7 € I with ¢ # j and v; = v, then the collection is
linearly dependent as well.

121
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Example 7.4. Let V be a vector space over a field F'. Then for any v € V', the
one-element sequence v is linearly independent if and only if v # 0. Any two
elements vy, vy € V are linearly dependent if and only if there are s,t € F', not
both 0, such that sv; + tve = 0. This is the case if and only if v; is a multiple
of vy or vy is a multiple of v; (or both), because s # 0 implies v; = —ﬁvg, while
t # 0 implies vy = —3v;.

Example 7.5. For an easy example that the field of scalars matters in the con-
text of linear independence, consider 1,7 € C, where C can be considered as a
real or as a complex vector space. We then have that 1 and ¢ are R-linearly inde-
pendent (essentially by definition of C — 0 = 0-14-0-¢, and this representation
is unique), whereas they are C-linearly dependent — i -1+ (—1) -7 = 0.

Example 7.6. The vectors

Vv = (1,2,3,4), Vg = (5,6,7,8), V3 = (9, 10,11,12)
in R* are linearly dependent, as we have a linear relation v; — 2vy + v3 = 0.
Example 7.7. Let F be a field and V' = F[z]| be the vector space of all poly-
nomials in the variable x over F' (see Example and Appendix @ For each
n € Zxo we have the monomial z™. The collection (2"),ez., is linearly indepen-

dent, because any finite subcollection is contained in (1, 2,22, ..., 2%) for some
d € Z>o and any relation

d d—1
agx” +ag12 "+ -+ ax+ap=0

(as polynomials) implies ag = a4_1 = ... = a3 = ag = 0.

Example 7.8. In C(R), the functions
r+—1, z+——sinz, z+—cosx, x—>sin’z, x— cos’x

2

are linearly dependent, since 1 — sin®x — cos?x = 0 for all x € R.

On the other hand,
r——1, z+——>sinxr, z+—>cosz

are linearly independent. To see this, assume that A 4+ psinz 4+ vcosx = 0 for
all z € R. Plugging in x = 0, we obtain A\+v = 0. For x = 7, we get A —v = 0,
which together imply A = v = 0. Then taking x = 7/2 shows that yu = 0 as
well.

Example 7.9. Consider the vectors
wy = (1,1,1), wy=(1,2,4), ws = (1,3,9)
in R3 and suppose we have A\jw; + Aawy + A3ws = 0. Then we have
A+ A+ A3 =0,
A1+ 20 + 33 =0,
A+ 4 +9A3 = 0.

These equations imply A\; = Ay = A3 = 0 (exercise), so wy, wsy, and ws are
linearly independent.

Recall from Definition that for any sequence C' = (wy, ..., w,) of n elements
in a vector space W over a field F', we have a unique linear map p¢: F™* — W
that sends the j-th standard vector e; to w;; the map ¢¢ sends (ay,...,a,) € F"
to ajwy + - - - + apwy,.
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Proposition 7.10. Suppose that W is a vector space over the field F' and suppose
that C' = (wy,ws,...,w,) a sequence of n vectors in W. Then the elements
Wy, Wy, . . ., wy, are linearly independent if and only if ker oo = {0}.

Proof. The kernel of ¢ consists of all the n-tuples (Aq,...,\,) that satisfy
AMwy + -+ + Aw, = 0, so indeed, we have ker oo = {0} if and only if the
elements wy, ws, ..., w, are linearly independent. (]

In fact, the proof shows that the nontrivial linear relations on wy,...,w, corre-
spond exactly with the nonzero elements of the kernel of p¢. A statement similar
to Proposition holds for arbitrary collections (Exercise [7.1.9). For W = F™,
we have the following corollary.

Corollary 7.11. Let F' be a field and m a non-negative integer. Then any vectors
Wy, Wa, ..., W, € F™ are linearly independent if and only if the m X n matriz that
has wy, ws, ..., w, as columns has kernel {0}.

Proof. The linear map F™ — F™ that sends e; to w; € F™ corresponds to
the described matrix by Lemma [5.9 and Proposition [5.11} so this follows from

Proposition [7.10] O

Example 7.12. Let w;,ws, w3 € R? be as in Example [7.9. Then the map
R?® — R3 that sends e; to w; corresponds to the matrix

1 11
1 2 3
149

that has wy, wo, w3 as columns. It is easily checked that the kernel of this matrix
is zero, so it follows again that the vectors w;, ws, w3 are linear independent.
If we add the vector wy = (1,4, 16), then the vectors wy, wsy, w3, w, are linearly
independent if and only if the matrix

111 1

1 2 3 4

1 4 9 16
has kernel zero. Its reduced row echelon form is

1 00 1

010 -3

001 3

so the kernel is spanned by (—1,3,—3,1) and we find the linear relation
—wy + 3’(1]2 — 3’(1]3 +wy = 0.

We conclude that the vectors wy, ws, w3, wy are linearly dependent. Of course,
we could have already concluded that from the fact that the matrix with
wy, We, w3, ws as columns has more columns than rows, so not every column
in the reduced row echelon form could have a pivot, cf. Proposition [6.20]

Lemma 7.13. Let f: V — W be a linear map of vector spaces. Then any vectors
V1, V2, ..., Uy €V are linearly independent if their images f(v1), f(v2),..., f(vn)
are. If f is injective, then the converse holds as well.
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Proof. Take any sequence C' = (v, v, ...,v,) of vectors in V. Then, by Propo-
sition the map pc: F™ — V sending e; to v; for 1 < j < n is injective
if and only if vy, vs,...,v, are linearly independent. Similarly, the composi-
tion f o @c: F™ — W, which sends e; to f(v;), is injective if and only if
f(v1), f(v2),..., f(v,) are linearly independent. Therefore, the first statement
follows from the fact that if f o p¢ is injective, then so is ¢c. The second
statement follows from the fact that if f is injective, then ¢ is injective if and
only if the composition f o ¢¢ is. 0J

Alternative proof. Take any vectors vy, vs,...,v, € V. Any nontrivial relation
Ay + -+ - 4+ A\u, = 0 implies a nontrivial relation

)\1f<v1)++/\nf<vn> :f<)\1vl+"‘+)\nvn) :f(()) :07
so if the elements vy, v, ..., v, are linearly dependent, then so are the elements

f(v1), f(ve),..., f(v,). This is equivalent to the first statement.

Suppose that f is injective. Take linearly independent vectors vy,...,v, € V.
Any linear relation

Af(or) + -+ Aaf(vn) =0
implies f(v) = 0 with v = A\jv; 4+ - -+ A0, so v € ker f = {0} and thus v = 0.

Since vy, ..., v, are linearly independent, this implies Ay = ... = A\, = 0, which
implies that the elements f(vy), ..., f(v,) are linearly independent as well. This
proves the second statement. (]

From the finite case, it follows immediately that Lemma holds for arbitrary
collections as well (exercise).

Example 7.14. Let V = R[z| be the vector space of all real polynomials,
containing the elements f; = 2% — 2 — 3, fo = 2>+ 4, and f3 = 2° + 2 + 1.
These polynomials all lie in the subspace R|x]3 of all polynomials of degree at
most 3, so to check for linear independence, we may check it within R[z]3. This
is obvious, but it also follows from Lemmal[7.13] with f taken to be the inclusion
R[z|3 — Rz] sending any polynomial p to itself.

The linear map c: R[x]3 — R* that sends any polynomial azx® + asz® + ayz + ag
to the sequence (ag, a1, as, az) of its coefficients is injective (in fact, an isomor-
phism), so by Lemma [7.13] the polynomials fi, f2, and f3 are linearly indepen-
dent if and only if ¢(f1), c(f2), and ¢(f3) are. The matrix that has these vectors
as columns is

4 1

0 1

1 117
1 00

which is easily checked to have zero kernel, so ¢(f1), ¢(f2), and ¢(f3) are linearly
independent by Corollary [7.11] and therefore, so are f1, fo, and f5.

Note that if we had looked for explicit A1, Ao, A3 with A1 f1 + Aofo + A3 f3 = 0,
then collecting similar powers of x gives

(=3A1 +4Xs + A3) + (A1 + A3)x + (A2 + Ag)z® 4+ Az’ = 0.
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Each of the coefficients has to equal 0, which gives four equations, expressed by
the equation

A1

M . )\2 — O

Az
for the same matrix M. As we have seen before, we have ker M = {0}, so the
only solution is A\; = Ay = A3 = 0, and we conclude again that f;, fo, and f3 are
linearly independent.

Proposition 7.15. Let V' be a vector space.

(1) For any vectors vy,vs,...,v, €V, the following statements are equivalent.
(a) The vectors vy, vs, ..., v, are linearly dependent.
(b) One of the vectors is a linear combination of the previous ones, that
is, there is a j € {1,2,...,n} with v; € L(vy,...,v;_1).
(c) One of the vectors is a linear combination of the others, that is, there
isaje{l,2,...,n} withv; € L(v1,...,0-1,Vj41,- -, Un)-
(2) An infinite sequence vy, vq,vs, ... of vectors in V is linearly dependent if
and only if one of the vectors is a linear combination of the previous ones.
(3) Suppose I is any index set. Then a collection (v;);er of vectors in V is
linearly dependent if and only if one of the vectors is a linear combination
of (finitely many of ) the others.

Proof. We start with (1). Let us first assume that vy, v, ..., v, are linearly
dependent. Then there are scalars Ai, Ag, ..., A,, not all zero, such that

AU+ Aovg + -+ Au, = 0.
Let j be the largest index such that A; # 0. Then
v; = =X (Mv 44 Ajmvion) € Livy, - vm)

This proves the implication (a) = (b). The implication (b) = (c) is trivial. For
the implication (c) = (a), assume that v, is a linear combination of the others:
Vj = MU+ A vm + AU o A,

for some Ai, Ao, ..., Aj—1, Ajp1, ..o, An. Then
MU+ A0 — U F AU+ A0, =0
so the given vectors are linearly dependent. This proves part (1).

For (2) and (3), we recall that a collection (v;);cs is linearly dependent if and
only if for some finite subset S C I, the finite subcollection (v;);cs is linearly
dependent. For part (2) we finish the proof by noting that for every finite set
S, there is an integer n such that we have S C {1,2...,n}, so we can apply
the equivalence (a) < (b) of part (1). For part (3) we can just number the
elements of S by 1,2,...,n = |S|, and then apply the equivalence (a) < (c) of
part (1). O

Example 7.16. Consider the real polynomials
fi=1 fo=a+2 fy=a2>—20+3, fi=22"—22>+5

inside the real vector space R[z| (cf. Example and Appendix [D]). The
degree of each polynomial is higher than the degree of all the previous ones,
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so none of the polynomials is a linear combination of the previous ones and we
conclude by Proposition that the polynomials are linearly independent.

[ Example 7.17. Take the vectors

v =(1,2,1,—-1,2,1,0),

Vg = (07 17 17 Oa _17 _27 3)7

vs = (0,0,0,3,3,—1,2),

vy = (0,0,0,0,0,6,4)
in Q7. We consider them in opposite order, so v4,vs,vs,v;. Then for each
vector, the first coordinate that is nonzero (namely the sixth, fourth, second,
and first coordinate respectively), is zero for all previous vectors. This implies

that no vector is a linear combination of the previous ones, so the vectors are
linearly independent by Proposition [7.15]

Exercises

7.1.1. Which of the following sequences of vectors in R? are linearly independent?
(1) ((1,2,3),(2,1,-1),(-1,1,1) ),
(2) ((1,3,2),(1,1,1),(-1,3,1)).

7.1.2. Are the real polynomials 3,z — 1, 2% — 3z +2,2* — 32 + 13,27 — 2 + 14 linearly
independent?

7.1.3. Are the complex polynomials 27 — 2z + 1, 522, 22 — 523, 2, 2% — 3z linearly
independent?

7.1.4. Are the vectors
vy = (1,4,2,3,5),
vy =(—-1,7,2,3,6),
vy = (4,2,3,-3,4),
v = (2,-3,1,4,2),
vs = (6,5,3,—2,—4),
ve = (1,-7,3,2,5)

in R? linearly independent? (Hint: do not start a huge computation)

7.1.5. Phrase and prove a version of part (2) of Proposition for any collection
of vectors indexed by a totally ordered set I.

7.1.6. Let V be a vector space, I an index set, and (v;);cs a collection of elements
of V. Let j € I be an index and suppose that the subcollection (v;);ecp\ (5} is
linearly independent. Prove that the whole collection (v;);er is linearly inde-
pendent if and only if we have

vi & L(vi)ien(5)-
7.1.7. Let V = Map(R, R) be the vector space of all functions from R to R. Let Z

denote the set of all closed intervals [a, b] in R. For each interval I € Z, we let
hr denote the function given by

oy = 1 TEEL
N7 N0 it gl

Is the collection (h 1) linearly independent?

1€l
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7.1.8. Let n > 0 be an integer and ay, . . . , a, € Rreal numbers. Let fy, ..., f, € C(R)
be continuous functions that satisfy

fi(aj):{l if j <1,

0 otherwise.

Show that the functions fy, f1, ..., fn are linearly independent.

7.1.9. Suppose W is a vector space over a field F', containing a (possibly infinite)
collection (w;);csr of elements. Let ¢: FUO) 5 W be the unique linear map
sending the standard vector e; to w; for all i € I (see Exercise .

(1) Show that the collection (w;)er is linearly independent if and only if ¢ is
injective. This is a generalisation of Proposition
(2) Show that the collection (w;);c; generates W if and only if ¢ is surjective.
This is a reformulation of Exercise 4.4.71
7.1.10. State and prove a generalisation of Lemma for arbitrary collections of
vectors.

7.2. Bases

.‘lIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.:
: Definition 7.18. Let V' be a vector space. A basis is a collection (v;);es of vectors i
:in V that is linearly independent and generates V, that is, V = L((vi)ie 1).
n

Y EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER

u
]
L

L 4

In particular, a finite sequence (v, v, ..., v,) of elements of V' is a basis for V' if
and only if vy, vy, ..., v, are linearly independent, and they generate V. We also
say that the elements vy, vy, ..., v, form a basis for V.

Note that the elements of a basis (vq,vs, ..., v,) have a specific order. Also in the
general case of arbitrary labeled collections, a basis (v;);c; has a similar structure:
for each index 7 € I, we know which element is the i-th element.

[ Remark 7.19. Technically, we have not defined the notation L((vi)ie 1) used
in Definition [7.18] as we only defined the span of sets and finite sequences in
Definition [3.24] not of (labeled) collections. Of course, though, the notation
L((v,»)ie 1) stands for the set of all linear combinations of finite subcollections
(v;)ies with S C I finite. This equals the span of the set {v; : ¢ € I} of elements
in the collection (cf. Remark [3.25).

[~ Example 7.20. The most basic example of a basis is the canonical basis or
standard basis of F™. This is E = (e, e, ...,€,), where

er = (1,0,0,...,0,0)
es = (0,1,0,...,0,0)

e, = (0,0,0,...,0,1).

The standard generators ey, ..., e, are therefore also called standard basis vec-
tors.

[ Example 7.21. Let X be a finite set and F' a field. For each x € X, we define

the function f,: X — F that sends = to 1 and every other element of X to 0.

Then the collection (f,)cx is a basis for the vector space F*X. Compare this
to the previous example. See Exercise for infinite sets.
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Proposition 7.22 (Basis of row space and kernel). Let A € Mat(m x n, F)
be a matriz in row echelon form with r nonzero rows. Then these r rows form a
basis for the row space R(A). The n —r elements wy (for all 1 < k <n for which
the k-th column contains no pivot) of Proposition (or Proposition if A

is in reduced row echelon form) form a basis of the kernel of A.

Proof. Consider the r nonzero rows from bottom to top. Then, just as in
Example [7.17], for each row, the first coordinate that is nonzero, is zero for all
previous rows. This implies that no row is a linear combination of the previous
ones, so the vectors are linearly independent by Proposition [7.15] These r rows
generate the row space by definition, so they form a basis for R(A).

For each k with 1 < k < n, for which the k-th column of A contains no pivot,
the element w; has a 1 on the k-th coordinate, where all the other n —r — 1
elements have a 0. This implies that none of the wy, is a linear combination of
the others, so by Proposition[7.15] these n—r elements are linearly independent.
They generate the kernel by Proposition m (or , so they form a basis for

| ker A. O
[ Remark 7.23 (Basis of U and U* using rows). We can use Proposition [7.22]
to find a basis of a subspace U of F™ generated by elements vy, vy, ..., v,,. First
we let A denote the m x n matrix of which the rows are v{,vs,...,0,,. Then

we apply a sequence of elementary row operations to A to obtain a matrix A’
that is in row echelon form. Since the row spaces R(A) and R(A’) are equal
by Proposition the nonzero rows of A’ form a basis for R(A") = R(A) =U
by Proposition [7.22 Moreover, the subspace U+ equals ker A = ker A’ by
Propositions and , so Proposition also gives a basis for U+.

Remark puts generators of a subspace U C F™ as rows in a matrix in order to
find a basis for U and U*. In Proposition we will describe a method to find
a basis for U that puts generators of U as columns in a matrix. We first phrase a
useful lemma.

Lemma 7.24. Suppose V' is a vector space with elements vy, va, ..., v, € V. Let
I C {1,2,...,n} be the set of all i for which v; is not a linear combination of
v1,...,0i_1. Then the collection (v;)ies is a basis for L(vy,va, ..., v,).

Proof. Set U = L((vi)ier) C L(vi,v,...,v,). By induction we show that
L(vy,vg,...,v;) C U for all integers 0 < j < n. For j = 0 this is trivial, as we
have L(vy,vs,...,v;) = L(0) = {0}. For 0 < j < n we have two cases. In the
case j € I we clearly have v; € U. For j ¢ I, the vector v; is by definition a
linear combination of vy, ...,v;_1, so we have v; € L(vy,...,v,_1) C U by the
induction hypothesis. For j = n we obtain U = L(vq,vs, ...,v,). It remains to
show that the collection (v;);es is linearly independent, which follows from part

(1) or from Proposition O
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[ Example 7.25. Consider the matrix

11 2 134 0
01 -1212 0
A=100 0 1 0 2 =371,
00 0 001 1
00 0 0O0O0 O

which is in row echelon form. By Proposition [6.21], the columns with a pivot,
that is, the first, second, fourth, and sixth, are exactly the columns that are
not a linear combination of the previous columns of A. From Lemma we
conclude that these four columns form a basis for the column space C'(A) of A.

We can combine Proposition and Lemma to make a method to determine
a basis for the column space of a matrix.

Proposition 7.26 (Basis of column space). Let A be an m x n matriz over
a field F with columns wy, ..., w,. Let A" be a matrixz in row echelon form that
is row equivalent to A. Let I C {1,...,n} be the set of all indices of columns
of A" with a pivot. Then the collection (w;);c; is a basis for the column space

C(A) = L(wy,...,w,) of A.

Proof. By Proposition the collection (w;);er consists of those columns w;
of A that are not a linear combination of the previous columns of A. By
Lemma [7.24] this implies that this collection (w;);es is a basis for the space

L(wy,...,w,) = C(A). O
[ Remark 7.27 (Basis of U using columns). We can use Proposition to
determine a basis of a subspace U of F'™ generated by elements wy, ws, . .., w,.
First we let A denote the m x n matrix of which the columns are wy, wo, ..., w,.

Then we apply a sequence of elementary row operations to A to obtain a matrix
A’ that is in row echelon form, and we let I denote the set of all indices ¢ with
1 <i < n for which the i-th column of A’ contains a pivot. Then the collection
(w;)ier s a basis for U = C(A).

An advantage of this method is that the basis we find consists entirely of vectors
that we started with.

A summary of the idea behind this is the following. Note that row operations
may change the column space, but the kernel is preserved, which means that
linear relations among the columns of a matrix B are preserved among the
columns of a row equivalent matrix B’ (and vice versa). If B’ is a matrix in
row echelon form, the existence of linear relations can be read off easily from
the pivots.
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[ Example 7.28. Let us determine a basis for the subspace U C R* generated

by

(1,0,2, 1),
=(0,1,0,2),

(1,2,2,3),
(
= (

1,-1,0,1),
0,3,2,2).

The 4 x 5 matrix B with these vectors as columns has reduced row echelon form

1010 1
0120 2
0001 -1
0000 O

The pivots are contained in columns 1, 2, and 4, so the first, second, and fourth
column of B form a basis (vy, vg,v4) for U. From the reduced row echelon form
we can also read off the linear relations v3 = v; + 2vy and vs = v + 2vy — vy,
which correspond to the generators (1,2,—1,0,0) and (1,2,0,—1,—1) of the
kernel (cf. Proposition or [6.27)).

Recall from Definition [4.39] as in the previous section, that for any sequence

C = (wy,...,w,) of n elements in a vector space W over a field F, we have a
unique linear map ¢ : F — W that sends the j-th standard vector e; to wj;; the
map ¢ sends (al, RN ,an) € F" to aqwy + - - - + apwy,.

Proposition 7.29. Let W be a vector space over the field F' and C' = (wy, ..., wy,)
a sequence of n vectors in W. Then C is a basis for W if and only if the map
po: F™" — W s an isomorphism.

A

Proof. The map ¢ is injective if and only if wy, . .., w, are linearly independent
by Proposition|7.10, The map ¢¢ is surjective if and only if wy, . .., w, generate
W (see the remark below Proposition [4.38). The statement follows. 0J

statement similar to Proposition holds for arbitrary collections (Exer-

cise [7.2.6)).

From Proposition above, we see that the elements of a basis for V' form a
minimal generating set of V in the sense that we cannot leave out some element
and still have a generating set. Lemma|7.30]states a consequence that makes bases
special among all generating sets.

Lemma 7.30. Suppose V' is an F-vector space. Then a sequence (vi, vy, ..., 0y)
of elements in 'V is a basis for V if and only if for every v € V', there are unique
scalars Ay, Aa, ..., A\, € F' such that

V= AU+ AUz + -+ ApUp

Proof. Set C' = (v, vs,...,v,). Then by Proposition [7.29, the sequence C' is
basis for V' if and only if ¢ is an isomorphism. On the other hand, o is
surjective if and only if for every v € V', there are scalars A\, Ag,..., A\, € F
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such that

V= A\U1 + AU + - -+ 4+ A\ Uy,
and @¢ is injective if and only if such scalars are unique, if they exist. It follows
that ¢¢ is bijective if and only if there are unique scalars satisfying the given
equation. This proves the lemma. O

Alternative proof. Suppose that the sequence (vy,vs,...,v,) is a basis for V.
The existence of (A1, Aa, ..., A,) € F™ such that

V= AU+ AUy + -+ Ay,

follows from the fact that vy, vy, ..., v, generate V.

To show uniqueness, assume that (u1, po, ..., pu,) € F™ also satisfy
V= {1V1 + UoU2 + - -+ + LnpUp .

Taking the difference, we obtain

0= (A — p)vr + (Ao — p2)va + -+ 4+ (A — fin) Vs -

Since vy, v9, ..., v, are linearly independent, it follows that

M—pr =X —po="-=X\ — i, =0,
that is, (A1,...,An) = (f1, ..., in). This shows that the sequence (Ai,...,\,)
was indeed unique. The converse is left as an exercise. |

A statement similar to Lemma holds for arbitrary collections (Exercise|7.2.7)).

Proposition 7.31. Let V and W be vector spaces, f: V — W a linear map, and
let vy,...,v, € V be vectors that generate V. Then

(1) f is surjective if and only if L(f(v1),..., f(v,)) = W.
Assume that vy, ..., v, form a basis for V.. Then

(2) f is ingective if and only if f(v1),..., f(v,) are linearly independent,
(3) f is an isomorphism if and only if f(v1),..., f(v,) is a basis of W.

Proof. Set C' = (v1,vs,...,v,) and D = (f(v1), f(v2),..., f(v,)). Then the
linear maps pco: F™ — V and ¢p: F™ — W are related by ¢p = f o ¢¢. Since
the elements vy, ..., v, € V generate V', the map ¢¢ is surjective. We conclude
that f is surjective if and only if ¢p is surjective, which is the case if and only
if L(f(v1),..., f(v,)) = W. This proves (1). For (2), we note that ¢¢ is an
isomorphism, because C' is a basis for V. We conclude that f is injective if
and only if ¢p is injective, which is the case if and only if f(vy),..., f(v,) are
linearly independent. Statement (3) follows from (1) and (2). O

Just as for Lemma [7.30] we can also give an alternative proof straight from the
definitions of ‘generating’ and ‘linearly independent’, without making use of the
maps ¢c and ¢p. We leave this to the reader.

The following corollary follows directly from part (3) of Proposition and
implies that if f: V — W is an isomorphism, then vy, v, ..., v, € V form a basis
for V' if and only if their images f(v1), f(ve),. .., f(v,) form a basis for W.
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Corollary 7.32. Let f: V — W be a linear map of vector spaces and vy, v, ..., v,
elements of V.. Then any two of the following three statements together imply the
third.

(1) The map f is an isomorphism.
(2) The elements vy,vs, ..., v, form a basis for V.

(3) The elements f(vy), f(vae),..., f(vy) form a basis for W.

Proof. If (2) holds, then (1) and (3) are equivalent by part (3) of Proposi-
tion [7.31] This proves the implications (1) 4+ (2) = (3) and (2) + (3) = (1).
Applying the first of these implications to f~!, we deduce the remaining impli-
cation (1) + (3) = (2). O

Lemma Proposition [7.31] and Corollary also hold for arbitrary collec-
tions (see Exercises [7.2.2] [7.2.10] and [7.2.11]).

Exercises

7.2.1. Determine a basis for the subspaces of R™ generated by
(1) v1 =(1,3),v2 = (2,1),v3 = (1,1),

(2) v1 = (1,3,1), 00 = (2,1,2),v3 = (1,1,1),
(3) V1 = (1,3, 1),1)2 = (3, 1,3),1}3 = (1, 1, 1),
(4) v1 =(1,2,3),v2 = (4,5,6),v3 = (7,8,9),
(5) v = (1,2,3,4),v0 = (4,3,2,1),v3 = (1, —1,1, —1),

7.2.2. Finish the alternative proof of Lemma, [7.30

7.2.3. For each of the matrices of Exercise [6.3.4] select some columns that form a
basis for the column space of that matrix.

7.2.4. Consider the real polynomials
fl = $2 +1,
fo=a% 241z,

f3:1‘4+$—7,

f4:374—6,
fs =2 +2,
f6:x2+x.

and the vectorspace U C R[z] they generate. Select some polynomials that
form a basis for U.

7.2.5. This exercise generalises Example Let X be any set and F' a field. For
each x € X, we define the function f,: X — F that sends x to 1 and every
other element of X to 0.

(1) Give an example where the collection (f;)zcx is not a basis for FX.
(2) Show that the collection (fy)zex is a basis of the vector space F(X).

7.2.6. State and prove a generalisation of Proposition for arbitrary collections
of vectors, cf. Exercises and

7.2.7. State and prove an analog of Lemma for arbitrary collections (v;);es of
vectors in V.

7.2.8. (1) Use Proposition to prove the following generalisation of Proposi-
tion [4.38] itself: “Let V and W be vector spaces over a field F', and let
B = (v1,vg,...,v,) be abasis for V. Then for every sequence wy, . . ., wy, of
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vectors in W there is a unique linear map f: V' — W such that f(v;) = w;
for all j € {1,...,n}.”

(2) Also state and prove an analog for arbitrary collections (v;);c; (basis for
V) and (w;);cr (general elements in W).

7.2.9. (1) Prove a version of Lemma for infinite sequences vy, vo, vs, . . ..

(2) What about sequences (v;)icz = ...,v_1,v0,01,... that are infinite in
both directions, with the hypothesis that I consist of all ¢ € Z for which
v; is not a linear combination of the previous elements?

The last exercises relate linear independence and generating on one hand to injec-
tivity and surjectivity on the other. They are related to Lemmas [7.13] Proposi-
tion and Corollary [7.32] Some parts require the existence of a basis. Appen-
dix [ shows that using Zorn’s Lemma one can indeed prove that all vector spaces
have a basis (cf. Warning . In these exercises, however, we will include it as
an explicit hypothesis whenever it is needed.

7.2.10. State and prove an analog of Proposition for an arbitrary collection
(vi)ier of vectors in V' (also follows from Exercises [7.2.12] [7.2.13] and |7.2.14]).

7.2.11. State and prove an analog of Corollary for arbitrary collections (v;);er
of vectors in V.

7.2.12. Let f: V — W be a linear map. Show that the following are equivalent.

(1) The map f is injective.

(2) For every non-negative integer n and every sequence vy,...,v, € V of
linearly independent vectors, the images f(v1),..., f(v,) are linearly in-
dependent in W.

(3) For every collection (v;)ies of linearly independent vectors in V', the col-
lection (f(v;))ier of images is linearly independent in W.

Show that if V' has a (not necessarily finite) basis, then these statements are
also equivalent to the following.

(4) For all bases (v;)icr for V, the collection (f(v;))icr of images is linearly
independent in W.

(5) There exists a basis (v;)ier for V for which the collection (f(v;))ier of
images is linearly independent in W.

7.2.13. Let f: V — W be a linear map. Show that the following are equivalent.
(1) The map f is surjective.
(2) For every collection (v;);c; of vectors that generates the space V, the
collection (f(v;))ier of their images generates W.
(3) There is a collection (v;);er of vectors in V' for which the collection (f(v;))ier
of their images generates W.
Explain why the analog for finite sequences is missing among these statements
by giving an example of a linear map f: V — W that is not surjective, but
such that for all sequences vy, vs, ..., v, of elements in V that generate V', the
images f(v1), f(v2),..., f(vn) generate W.
7.2.14. Let f: V — W be a linear map and assume V has a (not necessarily finite)
basis. Then the following are equivalent.
(1) The map f is an isomorphism.
(2) For every basis (v;);cr for V, the collection (f(v;))icr is a basis for W.
(3) There exists a basis (v;);er for V' for which the collection (f(v;))ier is a
basis for W.

7.3. The basis extension theorem and dimension

Proposition [7.29| says that if vy, vs, ..., v, form a basis for a vector space V', then
V' is isomorphic to the standard vector space F", so we can express everything
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in V in terms of F". Since we seem to know “everything” about a vector space
as soon as we know a basis, it makes sense to use bases to measure the “size”
of vector spaces. In order for this to make sense, we need to know that any two
bases of a given vector space have the same size. The key to this (and many other
important results) is the following.

Theorem 7.33 (Basis Extension Theorem). Let V' be a vector space, and let

V1., U, W1, ..., ws €V be vectors such that vy, ..., v, are linearly independent
and V- = L(vy,...,vp,wy,...,ws). Let I C {1,...,s} be the set of indices i for
which w; is not a linear combination of vy, ..., v, wy,...,wi_1. Then vy, vq, ..., 0,

and (w;);es together form a basis for V.

Proof. Because vy, vs,...,v, are linearly independent, none of them are linear
combinations of the other r — 1 of them. Hence, this follows immediately from
applying Lemma to the elements vy, ve, ..., v, Wy, Wa, ..., ws. O

The Basis Extension Theorem says that if we have a bunch of vectors that is
‘too small’ (vy,...,v, linearly independent, but not necessarily generating) and
a larger bunch of vectors that is ‘too large’ (vy,...,v,, wy,...,w, generating but
not necessarily linearly independent), then there is a basis in between: by adding
suitably chosen vectors from wy, ..., ws, we can extend vy, ..., v, to a basis of V.

As we saw in its proof, Theorem is nothing but a special case of Lemma [7.24]
namely the case in which we already know that the first r vectors vy,...,v, are
linearly independent. In a different direction, Proposition is a specialisation
of Lemma as well, namely where we take V' = F™ (and Proposition m
was used to define the set I more explicitly in terms of the columns that contain
pivots). The following common specialisation is an explicit version of the Basis
Extension Theorem for F™.

Corollary 7.34. Let vy,...,v,.,wy,...,ws € F™ be elements such that vy, ..., v,
are linearly independent and set V= L(vy, ..., v, wy,...,ws). Let A be the matriz
with columns vy, ..., v, w1y, ..., w,, let A" be the reduced row echelon form of A,
and let I be the set of all indices 1 < i < s for which the (r + i)-th column of A’
has a pivot. Then vy, vy, ..., v, and (w;);e; together form a basis for V.

Proof. By Proposition|6.21} the collection (w;);es consists exactly of those columns
w; of A that are not a linear combination of the previous columns of A. By
Theorem [7.33] this implies the desired conclusion. O

[ Example 7.35. Consider the vectors
v =(1,1,2) and ve = (—1,2,4)

in R3. We will extend (v1, v2) to a basis for R®. Clearly, the vectors vy, vy, €1, €9, €3
together generate R3, because the standard generators e, €9, e3 already gener-
ate R3 by themselves. We apply Corollary and find that the matrix with
V1, U9, €1, €2, €3 as columns has reduced row echelon form

1o 2 0 1

01 —

o0 0 1 -1

The pivots are in columns 1,2, and 4. Hence, the corresponding vectors vy, vs, €5
| form a basis for R3.
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Example 7.36. Consider the real polynomials f; = 2% — 1, fo = 23 — x, and
f3 = 23 — 222 — x + 1 in the vector space R[x]3 of polynomials of degree at
most 3. It is easy to check that these polynomials are linearly independent. On
the other hand, the monomials 1, z, 2%, x® generate R[xz]3, so certainly

fi, fas f3. 1w 2?2
generate R[z]3. By the Basis Extension Theorem we can extend f, fa, f3 to a
basis by adding suitably chosen monomials. The monomials 1 = fo—2f; — f3 and
12 = fy — f1 — f3 are already contained in L(f1, f2, f3), so adding either of those
to f1, fa, f3 would cause nontrivial linear relations. The element x, however,
is not contained in L(f1, fo, f3), because fi, fa, f3, are linearly independent

(check this). We have

1= fa—2f1—fs, = fo— f1— [, and 2’ = fo+
so the generators 1, z, 2%, x® of R[z]3 are contained in L(f1, f2, f3,z), and there-
fore L(f1, fo, f3,2) = R[z]3, so fi, fa, f3, 2 generate R[z|;3 and form a basis for
R[z]3. We could have also added z® to fi, f2, f3 to obtain a basis.

Example 7.37. Let us revisit the previous example. The linear map

o: R* = Rlz]s, (ap, a1, ag, az) — asx® + asx® + a1x + ag

is an isomorphism, so ¢ and ¢! send linearly independent vectors to linearly

independent vectors (Lemma [7.13]) and bases to bases (Corollary [7.32]). Setting
v; = @ (fi) for i = 1,2,3 and w; = ¢~ (27) for j = 0,1,2,3, we get w; = ¢;

-1 0 1
v = [1) , Vg = _01 , and v3 = :;
0 1 1

We wish to extend vy, v, v3 to a basis of R* by adding suitably chosen elements
from {ey, es, €3, €e4}. In order to do so, we use Proposition and Remark

and put the seven vectors as columns in a matrix

-1 0 1 100
0 -1 -1 010
A:10—2001
0

o 1 1 00
of which the reduced row echelon form equals

100 2 0 —-10
10 1 0 1 1
01 -1 0 —-120
000 0 1 0 1

The pivots in the latter matrix are contained in columns 1, 2, 3, and 5, so by
Proposition and Remark [7.27] the corresponding columns vy, v, v3, e of A
form a basis for C(A) = R After applying ¢, we find that (f1, f2, f3,2) is a
basis for R[z|3, which is exactly the basis we had found before.

_— o O O

Note that it was not a coincidence that the first three columns of the matrix in
row echelon form contained a pivot, because we already knew that the elements
vy, V9, v3 are linearly independent, so none of these is a linear combination of

the previous, cf. Proposition [6.21]
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The Basis Extension Theorem implies another important statement, namely the
Exchange Lemma. It says that if we have two finite bases of a vector space, then
we can trade any vector of our choice in the first basis for a vector in the second
basis in such a way as to still have a basis.

Lemma 7.38 (Exchange Lemma). If vy, ...,v, and wy,...,w, are two bases
of a vector space V, then for each i € {1,2,...,n} there is some j € {1,2,...,m}
such that vy, ..., Vi1, W;, Vi1, ..., Uy 1S again a basis of V.

Proof. Fixi € {1,...,n}and set U = L(v1,...,0i_1,Vi11,---,0Upn). ASV1, ..., Uy
are linearly independent, we have v; ¢ U by the equivalence (a) < (c) of
Proposition[7.15, so U C V. This implies that there is some j € {1,...,m} such
that w; ¢ U (if we had w; € U for all j, then we would have V' C U). Choose
such a j. Then by the equivalence (a) < (b) of Proposition [7.15] the vectors
UL, ..o Vie1, Vitl, - - - Un, w; are linearly independent. We claim that they form
a basis. Indeed, suppose they did not. Then by the Basis Extension Theorem
applied to these n linearly independent vectors and the additional vector v;

(which together generate V'), the elements vq,...,v;_1, Vit1, . .., Uy, w;, v; must

form a basis. However, the vectors in this latter sequence are not linearly

independent, since w; is a linear combination of vy, ..., v, (another application

of Proposition . This proves the claim. 0
Theorem 7.39. If vi,vs,...,v, and wy,ws,...,w,, are two bases of a vector
space V, then n = m.

Proof. Assume, without loss of generality, that n > m. By repeatedly applying
the Exchange Lemma, we can successively replace vy, va, ..., v, by some w; and
still have a basis. Since there are more v’s than w’s, the resulting sequence must
have repetitions and therefore cannot be linearly independent, contradiction.

O

Theorem implies that the following definition makes sense.
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: Definition 7.40. If a vector space V over a field F' has a basis (v1,vs,...,0,),
® then n > 0 is called the dimension of V', written n = dim V' = dimp V, and we say &
= that V is finite-dimensional. If V' does not have a finite basis, then we write =

= dim V = oo and we say that V' is infinite-dimensional. .

n
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|: Example 7.41. The empty sequence is a basis of the zero space, so dim {0} = 0.
|: Example 7.42. The canonical basis of F™ has length n, so dim F" = n.

[ Example 7.43. Any line L in F" that contains 0 is equal to L(a) for some
nonzero a € F". The element a forms a basis for L = L(a), so dim L = 1.

[ Example 7.44. Let F' be a field. The vector space F'[z] of all polynomials in the
variable x with coefficients in F' contains polynomials of arbitrarily high degree.
The polynomials in any finite sequence fi, fo,..., f, have bounded degree, so
they can not generate F'[z]. This shows that no finite sequence of polynomials
can form a basis for F[z], so dim F[x] = co.
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[ Example 7.45. Let F' be a field and d > 0 an integer. Then the monomials
1,z,2%,..., 2% form a basis for the vector space F|x]q of all polynomials of
degree at most d (check this!), so dim Fz]; = d + 1.

[ Example 7.46. Let A be an m X n matrix with row echelon form A’ and let
r be the number of pivots in A’, that is, the number of nonzero rows of A’
Then by Propositions and we have dim R(A) = dim R(4’) = r and
dimker(A) = dimker(A’) = n — r, and thus dim R(A) + dim ker(A) = n]]

Theorem 7.47. Let V' be a vector space containing elements vy, ...,v,.. Then the
following statements hold.

(1) If vi,v9,...,v, are linearly independent, then we have r < dimV with
equality if and only if (vy,...,v,) is a basis for V.
(2) If v1,v9,...,v,. generate V, then we have dimV < r with equality if and

only if (v1,...,v,.) is a basis for V.
(3) If r =dimV, then vq,...,v, are linearly independent if and only if they
generate V.

Proof. For (1), we are done if dim V' = oo, so we assume that dim V' is finite-

dimensional, say dimV = s with a basis wy,ws,...,w, for V. We apply the
Basis Extension Theorem to the sequences vq,...,v, and wy,...,w,. As we
have

V = L(wy,...,ws) = L(vy,...,0.,w1,...,w0;),
we can extend vy,...,v,. to a basis of length s. We immediately conclude
r < s=dimV and equality holds if and only if (vq,...,v,) needs no extension,

that is, it is already a basis.

For (2), we apply the Basis Extension Theorem to the empty sequence and the
sequence vy, ..., v,.. The empty sequence can be extended to a basis by adding
suitably chosen elements from vy, ..., v,. As no element occurs doubly in such
a basis (or it would not be linearly independent), the basis contains at most r
elements, so dimV < r.

If the inequality dim V' < r is an equality, then each v; is included in the basis,

as otherwise some element would occur doubly. This shows that vy, ..., v, are
linearly independent, so (vq,...,v,) is a basis for V. Conversely, if (vy,...,v,)
is a basis for V, then we have dimV = r. Statement (3) follows from (1)
and (2). O

Remark 7.48. Theorem [7.47|2) shows that if V' is a finitely generated vector
space, then V has a finite basis and a finite dimension.

Note that Theorem yields a quite strong existence statement: if V' is a vector
space of dimension dimV" = n, then part (1) of Theorem m guarantees the
existence of a nontrivial linear relation among any r elements vy, vs,...,v, € V
whenever » > n without the need to do any computation. This is very useful in
many applications. On the other hand, it is quite a different matter to actually
find such a relation: the proof is non-constructive and we usually need some
computational method to exhibit an explicit relation.

!This argument uses the row echelon form and Proposition which relies on Proposi-
tion which tells us how to compute generators of the kernel. This proof can therefore be
considered ‘computational’, which is the type of proofs we avoid as much as possible in this
book. A computation-free proof will be given in Theorem m
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Part (1) of Theorem tells us that in a vector space of (finite) dimension n,
the length of a linearly independent sequence of vectors is bounded by n. We can
use this to show in another way that dim F'[z] = oo (see Example [7.44)).

Example 7.49. Let F' be a field. In Example [7.44] we showed that the vec-
tor space Fx] of all polynomials in the variable x with coefficients in F' is
infinite-dimensional by showing that it can not be generated by finitely many
polynomials. Using Theorem [7.47] we can give a new argument using linear
independence. The space F'[z] contains the monomials 1, z, 22, 23, %, ..., which
are linearly independent, see Example [7.7, This means that we can find ar-
bitrarily many linearly independent elements in F|z], so F[z] can not have a
finite basis by Theorem [7.47(1). We conclude, again, dim F[z] = co. Note that
since Fz] = L({z™ : n € Z>¢}), we have shown that the collection (z"),ez., is

a basis of F[x].

With a little more effort, we can also show that the subspace P(R) of R¥ of real
polynomial functions does not have a finite basis either. Note that this follows
from Example if we use the fact that the bijection ¢: R[z] — P(R) from
Remark [3.36]is an isomorphism, which in turn follows from the fact that ¢ is linear,
as we have seen in Exercise |4.1.91 However, for the fact that ¢ is injective we used
Exercise from a later chapter, while the following example is independent
of that.

Example 7.50. Let us consider again the linear subspace P(R) of polynomial
functions in C(R) (the vector space of continuous functions on R), compare
Example |3.35]

PR)={f €C(R):3n € Zsy Jag,...,a, € RVz € R: f(z) = apa"+ - -Fa1x+ap}

Denote as before by f,, the n-th power function: f,(x) = z™. We claim that the
collection (fo, fi1, f2,...) = (fn)nezs, is linearly independent. Recall that this
means that the only way of writing zero (that is, the zero function) as a finite
linear combination of the f; is with all coefficients equal to zero. If we let n
be the largest number such that f,, occurs in the linear combination, then it is
clear that we can write the linear combination as

Mfo+rMfi+--+\fn=0.
We have to show that this is only possible when \g = A\ =--- =\, = 0.
Note that our assumption means that
"+ -+ M+ A =0 for all x € R.

There are various ways to proceed from here. For example, we can make use
of the fact that a polynomial of degree n > 0 can have at most n zeros in R.
This is the theorem that we used without proof in Remark Since there are
infinitely many real numbers, the polynomial above has infinitely many zeros,
hence it must be the zero polynomial.

Another possibility is to use induction on n (which, by the way, is implicit in
the proof above: it is used in proving the statement on zeros of polynomials).
Let us do this in detail. The claim we want to prove is

Vi € Zso Yo, .. An ER ((VmER:)\nx”+---+)\0=O):>/\0:---:)\n:0>.

We now have to establish the induction base: the claim holds for n = 0. This
is easy — let A\g € R and assume that for all x € R, Ay = 0 (the function is
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constant here: it does not depend on x). Since there are real numbers, this
implies A\g = 0.

Next, and this is usually the hard part, we have to do the induction step. We
assume that the claim holds for a given n (this is the induction hypothesis) and
deduce that it then also holds for n 4+ 1. To prove the statement for n + 1, we
have to consider coefficients Ay, ..., A\,11 € R such that for all z € R,

flz) = ™+ Xz 4+ Nz 4 A = 0.

Now we want to use the induction hypothesis, so we have to reduce this to a
statement involving a polynomial of degree at most n. One way of doing that
is to borrow some knowledge from Analysis about differentiation. This tells us
that the derivative of f is zero again, and that it is a polynomial function of
degree < n:

0=f"(z) = (n+1)\p2" + AT N

Now we can apply the induction hypothesis to this polynomial function; it tells
us that (n + 1)\ = nA, = -+ =X =0, hence \; = --- =\, = \yq1 = 0.
So f(z) = Ao is in fact constant, which finally implies Ay = 0 as well (by our
reasoning for the induction base).

This completes the induction step and therefore the whole proof of the fact
that the collection (fy)nez., is linearly independent. From Proposition we
conclude dim P(R) = oc.

Note that since P(R) = L({f, : n € Zx¢}), we have shown that the collection
(fn)nezs, is a basis for P(R).

Example 7.51. We have inclusions
P(R) C C*(R) = [ C"(R) C --- C C*(R) C C'(R) C C(R) C R*.
n=0

Since P(R) contains arbitrarily long sequences of linearly independent functions,
so do all these spaces and therefore they are all infinite-dimensional.

’--------------------------------------

I Warning 7.52. In Examples and we actually found infinite bases for |
I Flz] and P(R) C R¥, but for example for R¥, it is a priori not at all clear that I
I there even exists a collection C' of functions in R¥ that is linearly independent and I
I generates the whole vector space RE. Using Zorn’s Lemma, one can indeed show I
I that all vector spaces do have a basis (see Appendix , but, with the exception |
:of Appendix [E] we will not assume this in this book. By definition, the claim I
g im V' = oo only means that there is no finite basis, and does not directly state :
I that there would exist an infinite basis. i
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The following proposition also justifies the word infinite-dimensional for those
vector spaces that are not finite-dimensional.
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Proposition 7.53. Let V' be a vector space. Then the following statements are
equivalent.

(1) We have dimV = co.

(2) The space V is not finitely generated.

(3) Every sequence vy, ...,v, of n linearly independent elements in V' can
be extended to a sequence vy, ...Un,Uni1,-..,0,. of linearly independent
vectors in V' of arbitrary length r > n.

Proof. The implication (1) = (2) follows from part (2) of Theorem [7.47} if V
were finitely generated, it would have finite dimension. For the implication (2)
= (3), assume that V' is not finitely generated. Let vy,...,v, € V be linearly
independent vectors and set U = L(vy,...,v,). As these n vectors do not
generate V', we have U C V, so there is an element v, ; € V with v, € U.
By Proposition the vectors vy,...,v,,v,.1 are linearly independent. By
induction to r, we can extend vy, ..., v, to a sequence vy,...Un, Upi1, ..., 0, Of
linearly independent vectors in V' of arbitrary length r > n, which proves the
implication (2) = (3). For the final implication (3) = (1), we assume that (3)
holds. This implies that we can extend the empty sequence to a sequence of r
linearly independent vectors in V' for every r > 0. If the dimension of V' were
finite, then for r = dimV + 1 we would get a contradiction with part (1) of
Theorem [7.47] Hence, we conclude dim V' = oo. O

Exercises

7.3.1. Show that the real polynomials f; = 22 +2, fo =222 —3,and fs =23 +2—1
are linearly independent and extend them to a basis for the space R[x]4 of all
real polynomials of degree at most 4. In other words, give polynomials fy, ..., f
for a certain ¢, such that (fi,..., f;) is a basis for R[z]4.

7.3.2. Redo Exercise [7.1.4] using Theorem [7.47}

7.3.3. Let V C R? be the hyperplane V = a* with a = (1,1,1,1).
(1) What is the dimension of V'?
(2) Show that the vectors v; = (2,-3,—1,2) and v2 = (—1,3,2,—4) are
linearly independent and contained in V.
(3) Extend (vi,v2) to a basis for V.

7.3.4. Let V be a finite-dimensional vector space and S C V a subset that gener-
ates V.
(1) Show that there is a finite subset of S that generates V.
(2) Show that there is a finite subset of S of which the elements form a basis

of V.
7.3.5. Let V be a vector space. Suppose there is an integer m such that for all
linearly independent vy, vs,...,v, € V we have r < m. Prove that we have
dimV < m.

7.3.6. This exercise gives three alternative definitions for the dimension of a vector
space. Let V be a vector space.
(1) Show that dim V' equals the supremum (possibly co) of the set of all inte-
gers r for which there exists a sequence

0=V cWVichc..CV,1CV, =V

of subspaces of V', each properly contained in the previous.
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(2) Show that dim V' equals the supremum (possibly co) of the set of all inte-
gers r for which there exists a sequence

V1,02, ..., Ur

of linearly independent elements in V' (note that » = 0 is contained in this
set).

(3) Show that dim V' equals the infimum (possibly co) of the set of all integers r
for which there exists a sequence

U1,V2y...,Up
of elements that generate V' (the infimum of the empty set is co).

The Basis Extension Theorem as stated in Theorem [7.33] uses r linearly indepen-
dent elements and s extra elements to generate V. The General Basis Extension
Theorem of Appendix [E] also deals with infinite collections. It is proved using
Zorn’s Lemma. In the exercises below, we prove some partial generalisations that
do not require Zorn’s Lemma.

7.3.7. Let V be a vector space and (vj);cs a (not necessarily finite) linearly indepen-
dent collection of elements in V', labeled by an index set J. Prove the following
statements.

(1) Let (wi,ws,...,ws) be a sequence of elements of V' such that (v;);cs
and (wi,wy, ..., ws) together generate V. Let I C {1,2,...,s} be the
set of indices i for which w; is not a linear combination of (v;);e; and
(wi,wa,...,wi—1). Then (vj)jc; and (w;);er together form a basis for V.

(2) Let (w;)icz., be an infinite sequence of elements of V' such that (v;)jes
and (w;)iez., together generate V. Let I C Zx>; be the set of indices i
for which w; is not a linear combination of (v;);jecs and (wy, w2, ..., w;—1).
Then (vj)jes and (w;)ier together form a basis for V.

7.3.8. Let V be a vector space with a basis B.

(1) Let v € V be nonzero. Show that we can replace some element of B by v
to obtain a basis B’ of V that contains v.

(2) Let vy,va,...,v, € V be linearly independent. Show that we can re-
place n elements of B by v1,...,v, to obtain a basis B’ of V that contains
Vlye-+yUn.

7.4. Dimensions of subspaces

In the following proposition, and thereafter, we use the usual convention that
n < oo for n € Z.

The following result shows that our intuition that dimension is a measure for the
‘size’ of a vector space is not too far off: larger spaces have larger dimension.

Lemma 7.54. Let U be a linear subspace of the vector space V. Then we have
dimU < dimV. If dimV s finite, then we have equality if and only if U =V

Note that in the case that dim V' is finite, the statement also implies the existence
of a finite basis of U.

Proof. There is nothing to show if dimV = oco. So let us assume dimV = n
for some integer n. If uq,...,u, € U are linearly independent, then » < n by
Theorem [7.47(1). From Proposition [7.53 applied to U, we conclude that the
dimension of U is not infinite, say dim U = m. Applying the same argument to
a basis (uq,...,uy) for U gives m < n, so dimU < dim V.
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To prove the second part, first assume U # V and consider a basis B of U.
It can be extended to a basis for V' by the Basis Extension Theorem [7.33
Since B does not generate V| at least one element has to be added, which implies
dim U < dim V. Conversely, obviously if U = V| then we have dimU = dim V.

O

Now we have the following nice formula relating the dimensions of subspaces Uy,
U, of a vector space V to the dimension of their intersection U; N Us and their
sum U; + U,. We use the convention that co + n = n + 00 = oo + 0o = oo for
n e ZZO'

|

Theorem 7.55. Let Uy and Us be linear subspaces of a vector space V. Then

Proof. First note that the statement is trivially true when U; or Us is infinite-
dimensional, since then both sides are co. So we can assume that U; and U,
are both finite-dimensional.

We use the Basis Extension Theorem [7.33|again. Since U; is finite-dimensional,
we know by Lemma that its subspace U1NUy C U is also finite-dimensional.
Let (v1,...,v,) be a basis for U; N U,. Using the Basis Extension Theorem, we

can extend it on the one hand to a basis (vy,...,v,,wy,...,w,) for U; and on
the other hand to a basis (vy,..., v, z1,...,2;) for Us. We claim that then
(U1, .o, Upy W1,y ., We, T, ..., Ty) 1S & basis for Uy 4+ Us. It is clear that these

vectors generate U; + U, (since they are obtained by putting generating sets
of Uy and of Uy together, see Lemma [3.41]). So it remains to show that they are
linearly independent. Consider a general linear relation

AMvr -+ N w4 psws vy -+ = 0.
Then for z = vyx; + - -+ + vy, € Uy we also have
Z2=—=ANU1— = ANV — qwy — - — psws € Uy,
so z € Uy N Uy, which implies that
Z=0qv; + -+ U,

for suitable oy, since vy, ..., v, is a basis of U; N U,. Since z has unique coeffi-
cients with respect to the basis (vy,...,v,,x1,...,2;) for Uy (see Lemma ,
we find o; = 0 for 1 <4 <randv; =0 for 1 < j <t Since z also has unique

coefficients with respect to the basis (vq, ..., v, wy,...,w,) for Uy, we also find
pj=0for1<j<sand \; = —a; =0for 1 <¢ <.
We conclude that (v, ..., v, w1, ..., ws x1,...,x;) is indeed a linearly indepen-

dent sequence and therefore a basis for U;+Us,. So we get dim(U;4-Us) = r+s+t,
dim(U; NU;) = r, dimU; = r 4 s and dim Uy = r + ¢, from which the claim
follows. O

Remark 7.56. Note the analogy with the formula
HXUY)+#XNY)=#X +#Y

for the number of elements in a set. However, there is no analogue of the
corresponding formula for three sets:

H(XUYUZ) = #X+H#Y +H#HZ—#(XNY ) —#(XNZ)—# Y NZ)+#(XNYNZ).
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It is an exercise to find a vector space V and linear subspaces Uy, Uy, Uz C V
such that
d1m(U1 + U2 + Ug) + d1m(U1 N Ug) + dlm(U1 N U3) + dlm(UQ N Ug)

For given dimensions of U; and U,, we see that if the intersection U; N U, is
relatively small, then the sum U; + U, is relatively big, and vice versa.

Note that if U; N Uy = {0}, then we simply have dim(U; + Us) = dim U; + dim Uy
(and conversely). Complementary subspaces (see Definition [3.42)) give an espe-
cially nice case.

Proposition 7.57. IfU; and Uy are complementary subspaces in a vector space V.,
then we have

dim U; + dim Uy = dim V.

Proof. Follows immediately from Theorem and the fact that U; NU, = {0}
and Uy + Uy, = V. O

Example 7.58. Let a € R" be nonzero and H the hyperplane H = a*. By Ex-
ample we have dim(L(a)) = 1. The subspaces L(a) and H are complemen-
tary subspaces in F™ by Corollary [3.45] so Proposition [7.57]yields dim H = n—1.
In Example [8.21] we will see that the same holds for a hyperplane over any field
F.

Example 7.59. Let L and V be a line and a plane in R?, both containing 0,
so that they are subspaces. Then dim L = 1 and dim V' = 2. By Theorem [7.55]
we have
dim(LNV)4+dim(L+V)=1+2=3.

From dim(L + V) > dimV = 2, we find that there are two possibilities. The
first possibility is dim(L+V) = 3 and dim(LNV') = 0, which means L+V = R?
and LNV = {0}. The second is dim(L+ V) =2 and dim(LNV) =1 =dim L,
which implies L NV = L, so L is contained in V' in this case.

We can use the Basis Extension Theorem to show the existence of complementary
subspaces in finite-dimensional vector spaces.

Proposition 7.60. Let V' be a finite-dimensional vector space. If U C V is a
linear subspace, then there is a linear subspace U’ C V that is complementary
to U.

Proof. The subspace U is finite-dimensional by Proposition say with basis
Uy, ..., Uy,. By the Basis Extension Theorem [7.33] we can extend this to a
basis u1, ..., Up,v1,...,v, of V. Let U = L(vy,...,v,). Then we clearly have

V = U+ U’ (Lemma|3.41). But we also have UNU’ = {0}: if v € UNU’, then
V=AUt AUy = U1+ g Un

for some coefficients Ay, ..., A, and puq, ..., p@,, which gives
AUy 4 - F AUy — 01 — -0 — Uy =0 — v = 0.
But uy, ..., Uy, vy, ...,v, are linearly independent, so this relation yields
M=...=Ap=l1=...= Uy =0,

and hence v = 0. O
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Example 7.61. Given U C V, there usually are many complementary sub-
spaces. For example, consider V = R? and U = {(z,0) : z € R}. What are its
complementary subspaces U’? We have dimV = 2 and dim U = 1, so we must
have dim U’ = 1 as well. Let v’ = (2’,3/') be a basis of U’. Then ¢’ # 0 (otherwise
0 # v € UNU’). Then we can scale v’ by 1/y/ (replacing v, 2’, y' by iu’, /Y1,
respectively) to obtain a basis for U’ of the form v = (2/,1), and U’ = L(u)
then is a complementary subspace for every 2’ € R — note that U + U’ = R? as
every elements (x,y) can be written as (z,y) = (z —y2’,0) +y(a’,1) e U+ U".

Remark 7.62. For any two subspaces U; and U, of a vector space V', we have
dim(U; +U,) < dim V by Lemma[7.54] If V is finite-dimensional, then together
with Theorem this implies the inequality

Example 7.63. Let a;,a; € R™ be nonzero and H; the hyperplane H; = {a;}*
for i = 1,2. Then dim H; = n — 1 by Example [7.58, so we have

n—1=dim H,; > dim(H; N Hy) > dim H; + dim Hy — dimR" = n — 2.

Now there are two cases, namely dim(H,NHy) = n—2 and dim(H;NHy) = n—1.
In the former case we have dim(H; + Hy) = n, so H; + Hy = R" by Lemma
In the latter we have H; N Hy, = H; and thus H; C H,; by symmetry we
obtain H, = Hy = H; + H,. For R?® we conclude that two different planes that
both contain 0 intersect in a subspace of dimension 1, that is, a line.

Exercises

7.4.1. (1) Let U C F™ be a subspace of dimension dimU = 1. Show that U is a
line.
(2) Let U C F™ be a subspace of dimension dim U = n — 1. Show that U is a
hyperplane. (See Example for a clean proof.)
7.4.2. Let d > 1 be an integer, and for any r € R, let U, C R[z]|4 be the kernel of
the evaluation map R[z]; — R that sends f to f(r).
(1) Prove dim U, = d and give a basis for U,.
(2) Prove that for r,s € R with r # s, we have dim(U, NUs) = d — 1 and give
a basis for U, N Us.
(3) Prove that U, + Us = R[z]4.
7.4.3. Let Uy,Uy be subspaces of a finite-dimensional vector space V satisfying
Uy NUy = {0} and dimU; 4+ dimUs > dimV. Show that U; and Uy are
complementary subspaces.

7.4.4. Find a vector space V and linear subspaces Uy, Us, Us C V such that
dim(U1 + Uy + Ug) + dim(U1 N UQ) + dim(U1 N Ug) + dim(U2 N Ug)
# dim Uy 4+ dim Uy + dim Us + dim(U1 NU; N Ug) .

(See Remark )

7.4.5. Let V be a vector space of dimension dimV = 10. Let Uy C V and Uy C V
be subspaces of dimensions dimU; = 6 and dim U, = 7, respectively. Prove
that the intersection U; N Us is not zero.

7.4.6. Let F be a finite field, and consider the F-vector space P(F) C F¥ of poly-
nomial functions as defined in Appendix [D] Show that dimp P(F) is finite.
This is in contrast with Example [7.50, which deals with infinite fields. It is
also in contrast with Example [7.44] which deals with polynomials instead of

polynomial functions (cf Warning .
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7.4.7. Let F be a finite field. Show that the map ¢: Flz] — F¥ of Exercise
is not injective, cf. Exercise
[Remark: one can show that if ¢ = |F|, then the kernel of ¢ consists of all
polynomials that are a multiple of 27 — z.]






CHAPTER 8

Ranks

8.1. The rank of a linear map

There is an important result that relates the dimensions of the kernel, image and
domain of a linear map.
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= Definition 8.1. Let f: V' — W be a linear map. Then we call the dimension of =
= the image of f the rank of f: rk(f) = dimim(f).
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Lemma 8.2. Let f : V. — W be a linear map. If f is surjective, then we have
rk f =dimW. If W is finite-dimensional, then the converse is true as well.

Proof. The map f is surjective if and only if the inclusion im f C W is an
equality, so this follows from Lemma [7.54] O

Theorem 8.3 (Dimension Formula for Linear Maps). Let f : V — W be a
linear map. Then
dimker(f) +rk(f) =dim V.

Proof. First we consider the case that V' is finite-dimensional. By Proposi-
tion there is a complementary subspace U of ker(f) in V' and we have
dimker f + dim U = dim V' by Proposition [7.57]

Let f': U — im(f) be the restriction of f to U. We will show that f’ is an
isomorphism. Note that ker(f’) = ker(f) N U = {0}, so f’ is injective. To
show that f’ is also surjective, take w € im(f). Then there is v € V' such that
f(v) = w. We can write v = « + v with v’ € ker(f) and u € U (see Lemma

. Now
fw)=flu)=flo—u)=fv)— f)=w—-0=w,

so we have w € im(f’) as well. This implies that f’ is surjective and thus an
isomorphism. Since isomorphisms send bases to bases (see Corollary [7.32)), we
conclude dim U = dimim(f) = rk f and therefore

dimV = dimker f + dim U = dimker f 4 rk f.

Now consider the case dim V' = co. If rk f = oo, then we are done, so assume
rk f = n for some integer n. Let r be any positive integer. Let U C V be any r-
dimensional subspace of V', which exists because we can take r linearly indepen-
dent elements vy, ...,v, € V (see Proposition and set U = L(vy,...,v,).
Let f': U — im f be the linear map given by restricting f to U. Then by the
finite-dimensional case, we have

dimker f > dimker f/ = dimU — 1k f' > dimU — dimim f = r — n,

147
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where the two inequalities follow from the inclusion ker f/ C ker f and the
inclusion im f/ C im f, respectively. Since r was an arbitrary positive integer,
we conclude dimker f = oo, which proves the dimension formula for linear
maps. [l

For a proof working directly with bases, see Chapter 4 in Jénich’s book [J].

Example 8.4. Let k < n be positive integers, and F'[z],_; and F[z], the vector
spaces of polynomials over I’ of degree at most n — k and n, respectively. Let
ag,Qg, ..., € F be distinct elements, and set p = (z—ay)(x — ) - - - (2 — ag).
The map T': Flz|,_x — F[x], that sends an element f to f - p is linear and
clearly injective, so the rank of T" equals

tkT = dim Fz],—, —dimkerT = (n —k+1)—0=n—k+ 1.

The (n — k+ 1)-dimensional image of T" consists of all polynomials in F[z],, that
are multiples of p.

Let S: F[z], — F* be the linear map that sends the polynomial f € F[z], to
the sequence (f(cu), f(a2),..., f(ox)). Then for each 1 < i < k, the map S
sends the polynomial p; = p/(x — a;) to a nonzero multiple of ¢; € F*, so these
k images are linearly independent and thus rk S = dimim S > k. Of course
we also have dimim S < k, as im S is a subspace of F*. Thus rk.S = k and
dimker S = dim Flz], —tkS =n+1—k.

Clearly, the kernel ker S of S contains the image im 7T of T', and as they both have
dimension n — k + 1, we conclude ker S = imT'. This shows that a polynomial
f satisfies f(a1) = f(ae) = ... = f(ag) = 0 if and only if f is a multiple of p.

Corollary 8.5. Let f: V — W be a linear map between finite-dimensional vector
spaces with Aim'V = dim W. Then the following statements are equivalent.

(1) The map f is injective.
(2) The map f is surjective.
(3) The map f is an isomorphism.

B Proof. Note that f is injective if and only if dimker f = 0 (Lemma[d.7)) and f is
surjective if and only if rk(f) = dim W = dim V' (Lemma[8.2)). By Theorem 8.3

these two statements are equivalent. O

[ Example 8.6. Let T': F|x],, — F[z], be the linear map that sends a polynomial

fto f+ f', where f’is the derivative of f. Since f’ has smaller degree than f,

we have deg T'(f) = deg(f + f') = deg f. This shows that the only polynomial

fwith T(f) =0, is f =0, so T is injective and therefore, it is surjective. This

proves, without explicit computations, that for every polynomial g, there is a
polynomial f with f + f' = g.

Proposition 8.7. Suppose f: V — W s a linear map of vector spaces. Then the
following statements hold.

(1) If f is injective, then dimV < dim W.

(2) If f is surjective, then dimV > dim W'.
(3) If f is an isomorphism, then dimV = dim .
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Proof. If f is injective, then dimker f = 0, so Theorem yields
dimV = dimim f < dim W,

where the inequality follows from the inclusion im f C W. If f is surjective,
then im f = W, so Theorem yields dim V' = dim W + dim ker f > dim W.
Implication (3) follows from (1) and (2). It also follows from the fact that
isomorphisms send bases to bases (see Corollary . [

[ Example 8.8. We conclude, just from the dimensions, that the 3 x 4 matrix
A of Example induces a linear map F* — F3 that is not injective.

In Exercise we could already prove that invertible matrices are square by
using Proposition [6.20, which relied on the row echelon form. Instead of those
computational arguments, we can now give a nicer proof.

Corollary 8.9. Every invertible matriz is a square matriz.

Proof. Suppose an m x n matrix A over F is invertible. Then the associated
map fa: F" — F™ is an isomorphism, so we get m = dim F" = dim F" = n
by Proposition O

Proposition [8.7/(3) shows that if V' and W are isomorphic, then dim V' = dim .
The next proposition shows that the converse also holds if V' and W are finite-
dimensional. Together, these results show that essentially (‘up to isomorphism’),
there is only one F-vector space of any given dimension n (namely F™, cf. Propo-

sition |7.29)).

Proposition 8.10. IfV and W are finite-dimensional vector spaces over the same
field F with dimV = dim W, then V' and W are isomorphic.

Proof. 1f we have dimW = dimV = n, then V has a basis B = (v1,...,v,)
and W has a basis C = (wq,...,w,), so pp: F* = V and po: F* — W are
isomorphisms by Proposition and the composition ¢ o 50]_31 V. —-Wisan
isomorphism. O

In particular, we see that if V' is an F-vector space of dimension dim V' = n, then V
is isomorphic to F™; indeed, an isomorphism is given by ¢p for any basis B for V.
Note, however, that in general there is no natural (or canonical) isomorphism
V 5 F". The choice of isomorphism is equivalent to the choice of a basis, and
there are many bases of V. In particular, we may want to choose different bases
for V for different purposes, so it does not make sense to identify V with F™ in a
specific way.

Exercises

8.1.1. Is the statement of Corollary true without the assumption that V and W
be finite-dimensional? If not, then give a counterexample and show where in
the proof of Corollary [8.5] finite-dimensionality is used.

8.1.2. Let n be a positive integer and F'[z], the vector space of polynomials over F'
of degree at most n. Assume a1, q9,...,an+1 € F are distinct elements. Let
S: F[x], — F"! be the function given by

S(f) = (f(a1)7f(062)7 e 7f(04n+1))
as in Example (for k=n+1).
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(1) Show that S is indeed a linear map as stated in Example

(2) Show that S is surjective (cf. Example [3.4).

(3) Show that S is an isomorphism.

(4) Show that for every i € {1,...,n + 1}, there is a unique polynomial
fi € Flz], such that fi(a;) =1ifi=j and fi(o;) = 0if i # j.

(5) Show that fi, fa,..., fn+1 form a basis for F[x],.

(6) The polynomials fi,..., fny1 are called Lagrange polynomials. Give an
explicit expression for them in terms of the elements ay, a9, ..., apy1.

8.1.3. Let n be a positive integer and T': R[z],, — R[z], the map that sends f to

xf’, where f’ is the derivative of f. Show that T is a linear map and determine
the rank of T'.

8.1.4. Let f: U — V and g: V — W be linear maps of vector spaces.
(1) Show that we have rk(g o f) < rk f with equality if (but not only if) g is
injective.
(2) Show that we have rk(g o f) < rk g with equality if (but not only if) f is
surjective.
8.1.5. This exercise generalises Exercise Let f:U — V and g: V — W be
linear maps of vector spaces.
(1) Show that rk(g o f) < rk f with equality if and only if rk(g o f) = oo or
kergNim f = {0}.
(2) Show that rk(g o f) < rkg with equality if and only if rk(g o f) = oo or
kerg+im f = V.

8.2. The rank of a matrix

.‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.‘

: Definition 8.11. Let A € Mat(m x n, F). Then the rank rk A of A is the rank =
= of the associated linear map fa: F™" — F™.

R R AR AR R RARERERRERRRERAREY
Recall that for a matrix A € Mat(m x n, F'), the image of f4 equals the column
space C(A) C F™ of A (see Proposition [5.32)). Therefore, tk A = dim C'(A) < m,
with equality if and only if C(A) = F™ (see Lemma [7.54)). Since the image
im f4 = C(A) is generated by the n columns of A, we also have rk A < n by part
(2) of Theorem [7.47] Hence, we have rk A < min{m,n}.

By this definition, the rank of A is the same as the column rank of A, that is, the
dimension of the column space C'(A) C F™ of A. We can as well define the row
rank of A to be the dimension of the row space R(A) C F™ of A. Part (3) of the
following theorem tells us that these additional notions are not really necessary,
as the row rank of any matrix equals the column rank.

Theorem 8.12. Let A € Mat(m xn, F') be a matriz. Then the following are true.

(1) We have dimker A + dim C(A) = n.
(2) We have dimker A + dim R(A) = n.
(3) We have dim C(A) = dim R(A).

Part (2) was already proved computationally (that is, using a row echelon form
and Proposition [7.22) which uses Proposition [6.19)) in Example [7.46 We will give

several proofs of this important theorem. All except for the second alternative
proof include a new computation-free proof of part (2).

Proof. Clearly, any two of the three statements imply the third. Statement
(1) is true because it is a restatement of Theorem [8.3] so statements (2) and
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(3) are equivalent. After repeatedly deleting from A some row that is a linear
combination of the other rows, thus not changing the row space, we obtain an
r x n matrix A’ of which the rows are linearly independent. As the row spaces
R(A’) and R(A) are equal, we have ker A = ker A by Proposition [5.32] and
therefore dim C(A’) = dim C(A) by statement (1). The r rows of A’ form a
basis of the row space R(A’), so we have r = dim R(A"). The column space
C(A') is contained in F7", so we find

dim C(A) =dim C(A") < dim F" = r = dim R(A’) = dim R(A).
By symmetry, or applying the same argument to AT, we also get the opposite

inequality dim R(A) < dim C'(A), so statement (3), and thus also (2), follows.
0J

First alternative proof. Again, any two of the three statements imply the third.
Statement (1) is true because it is a restatement of Theorem [8.3] so statements
(2) and (3) are equivalent.

Applying elementary row operations to A does not change ker A and R(A) (see
Proposition[6.3)), so the truth of statement (2) is invariant under row operations,
and therefore so is the truth of statement (3). Since statement (3) is symmetric
in the rows and columns, the truth of both statements is also invariant under
elementary column operations.

Using row and column operations, we can transform A into a matrix A" of which
all entries are zero, except for some ones along the diagonal. For example, we
could first use row operations to find the reduced row echelon form of A, then
apply some permutation of the columns so that all pivots are along the diagonal,
and finally apply column operations to make all non-diagonal entries zero; then
A’ would have the form of a block matrix

(i)

It is clear that the row rank and column rank of A’ both equal the number of
ones along the diagonal, which proves statement (3) and therefore also (2). O

Second alternative proof. Statement (1) is true because it is a restatement of
Theorem [8.3] Statement (2) is proved Example Statement (3) follows
from (1) and (2). O

Third alternative proof. Assume A’ is as in the first proof. We now only give

an alternative proof of one step of the first proof, namely that the equality
ker A" = ker A implies dim C(A’) = dim C(A).

So assume ker A’ = ker A. Then the linear relations among the columns of A’
correspond exactly with the linear relations among the columns of A. This
means that for any maximal linearly independent subset of the columns of A
(and thus a basis of the column space C'(A)), the corresponding columns of A’

form a maximal linearly independent subset of the columns of A’, (and thus a
basis of C'(A’)). This yields dim C(A’) = dim C(A). O

|: Remark 8.13. Statement (3) of Theorem can be stated as tk A =tk AT.

Remark 8.14. By statement (3) of Theorem the rank of a matrix A
equals the row rank of A, which also equals the number of nonzero rows in a
row equivalent matrix A’ that is in row echelon form by Proposition |7.22}
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[ Remark 8.15. The first proof, with the argument for the implication
ker A =kerA = dimC(A") =dimC(A)

replaced by the argument in the third alternative proof, gives a proof of state-
ment (3) that does not depend on (1). The second alternative proof contains a
direct proof of statement (2). Together they imply (1), which gives an alterna-
tive proof of the dimension formula for linear maps between vector spaces F™
and F™. Since every finite-dimensional vector space over F' is isomorphic to
F™ for some integer n (Proposition , we get a new proof of the dimension
formula for general finite-dimensional vector spaces from Proposition [4.41]

Remark 8.16. In Proposition [7.22] we found that for an m x n matrix A in
row echelon form with 7 nonzero rows, the n—r elements wy, of Proposition [6.19)
form a basis of the kernel ker A by showing that they are linearly independent
and they generate ker A.  Theorem statement (2), shows independently
that the dimension of the kernel equals n — r (independent as long as we do
not use the second alternative proof). Using this and Theorem [7.47, we find
that in order to reprove that the w; form a basis for ker A, it would suffices to
show only one of the two: either that they are linearly independent or that they
generate ker A.

Example 8.17. Consider the matrix

1 2 3
A=14 5 6
78 9
over R. The reduced row echelon form of A is
1 0 -1
A=101 2],
00 O

which has two nonzero rows, so we find rk(A) = 2.

Proposition 8.18. For any m x n matriz A we have ker A = {0} if and only if
rk A =n.

[ Proof. This follows immediately from Theorem 8.3 O

[~ Remark 8.19. Corollary states that n vectors wy, ws, ..., w, € F™ are
linearly independent if and only if the m x n matrix A of which the columns
are wi, Wy, . .., w, has kernel ker A = {0}. By Proposition this is the case
if and only if tk A = n. As we have tkA = tk AT by Theorem [8.12, we may
also check that the rank of A", which has the n vectors as rows, equals n (cf.

Remark [7.23)).

Proposition 8.20. Let F' be a field, n a positive integer, and U a subspace of F™.
Then dimU + dim U+ =n and (UL)L =U.

Proof. By Lemma there is a finite basis vy, vs,...,v, for U. Let A be
the 7 X n matrix of which the rows are vy, vy,...,v,.. Then R(A) = U and
ker A = U by Proposition [5.32] The first equality follows immediately from
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Theorem [8.12] statement (2). It implies
dim(UH)* =n —dimU* =n — (n — dimU) = dim U,

and since U is contained in (U+)* (Proposition [3.33)), we conclude (U+)t = U
| from Lemma [7.54] O

[ Example 8.21. Let a € F™ be nonzero and set H = at = L(a)t. By Exam-
ple [7.43] we have dim L(a) = 1, so we find dim H = n — dim L(a) =n — 1.

[ Example 8.22. Let U C F" be a subspace of dimension n — 1. Then U~ has

dimension 1, so there is a nonzero element a € U+ with U+ = L(a). Then
U= (UY)* = L(a)* = at, so U is a hyperplane (cf. Exercise [7.4.1)).

As in Example we can think of any element a € F™ as an equation for the
hyperplane at (see Definition [3.12)). Similarly, the elements of a subset S C F"
correspond to equations for the subspace S+ (See Definition [3.16]).

Suppose v1,vs, ..., v, € F™ generate a subspace U C F", and write V = U*.
Then we have {vy,..., v}t =V, so vy,...,v, correspond to equations for V in
this sense. Recall from Remark that the space V' is equal to the kernel of the
m X n matrix M that has vy, vs,...,v,, as rows. After finding a row equivalent

matrix M’ in row echelon form, we can use Proposition to find a set S of

generators for ker M’ = ker M = V. This way we go from equations to generators
for V.

To go from generators to equations, we switch our point of view to U, for which
vy, Vs, . .., Uy, are generators. By Proposition [8.20] the set S can be viewed as a
set of equations for U, in the sense that St = L(S9)* = (UL)+ =U.

[ Example 8.23. Take U C R* generated by v; = (1,0,1,0) and v, = (1,1,1,0).
The kernel of the 2 x 4 matrix

1 010
1 110
with v; and vy is generated by w; = (0,0,0,1) and wy = (1,0,—1,0). We

conclude that w; and wy correspond to equations for U in the sense that
{U)l, U)Q}J' =U.

Corollary 8.24. Let U be a subspace of R". Then U and U+ are complementary
subspaces.

[7.55] and Proposition we then find
dim(U + U+) =dimU + dim U+ — dim(UNU*) =n —0 =n,

so from Lemma we conclude U + U+ = R™ and U and U+ are complemen-
tary spaces. O

For any subset U C R", we call U+ the orthogonal complement of U.

Proof. Suppose x € U N U, so that we have (z,x) = 0. Because we work over
R, we conclude z = 0, so we have U N U+ = {0}. From the dimension formula

e B R N B N N &R &N &R _ &R _ R _N_§R_§B _§R _§N_ &R _§N_ &N _§N &R &R &R _§B_ &R _ R _§_§N_§R_§N_§N_§N_§N_ &R _§N_§R _§B_§ 4

I Warning 8.25. For some fields F', such as F5 and C, there exist subspaces U C F™ 1

: with U N U+ # {0}, so Corollary is not true over general fields.
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Exercises

8.2.1. Determine the rank of the matrices in Exercises [5.5.4] and [5.5.5]
8.2.2. Determine the rank of the matrices in Exercise [6.3.4]

8.2.3. Determine the rank of the linear maps and matrices of the exercises of Sec-

tion [5.4]
8.2.4. Show that for any subset S of F, we have L(S) = (S*)~* (cf. Propositionm
and Remark (3.34).

8.2.5. For the matrices A in Exercise compute a basis for (ker A)* and (im A)~+
and determine the dimensions of these spaces.

8.2.6. Let [, m,n be non-negative integers. Suppose that A is an [ x m matrix and
B is an m x n matrix, so that the product AB exists. Prove the following
statements (cf. Exercise [8.1.4).

(1) We have rk AB < rk A with equality if (but not only if) rk B = m.
(2) We have rk AB < rk B with equality if (but not only if) rk A = m.
(3) We have rk AB = rk A if B is invertible.
(4) We have rk AB = rk B if A is invertible.

8.3. Computing intersections

Proposition 8.26. Suppose F is a field and Uy, Uy C F™ are subspaces. Then we

have
UnNUy= U +UH)T and (UNU)*t =Ui + Us-.

Proof. In Proposition we have already seen that St NT+ = (SUT)?* for
all subsets S, T C F". For S = U{* and T = U;- we obtain

1
UNUz = (U)" N (Uy)" = (Ur UUy)" = (LUT UUy))~ = (Up +Uz),

where the first equality follows from Proposition [8.20] the second and third from
Proposition [3.33) (part (4) and (2)), and the last from the definition of sums of
subspaces (Definition [3.37). This proves the first identity of the proposition.
Applying (_)* to both sides gives the second identity by Proposition [8.20, [

Proposition expresses taking intersections in terms of taking sums and or-
thogonal subspaces. If we view Ut as a set of equations for the subspace U, as
we did in the previous section, then Proposition follows from the fact that if
U, and U, are subspaces, each given by a set of linear equations, then the union
of these sets is a set of equations for the intersection U; N Us,.

This allows us to explicitly compute generators for the intersection Uy N Uy if we
know generators for the subspaces U; (or U) and U, (or Us-). Indeed, we already
know how to take sums and orthogonal subspaces: if we have generating subsets
S1 and S, for two subspaces Vi and V5 of F™, then the union S7 U Sy generates
Vi + V5 by Lemma |3.41, and if vy, vy,...,v, € F™ generate a subspace V C F",
then V+ is the kernel of the matrix whose rows are vy, vs, ..., v, by Proposition
and we can compute generators for this kernel with Proposition |[6.19]
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[ Example 8.27. Let U C R® be generated by the elements
u = (1,3,1,2,2),
ug = (—1,2,-2,3,2),
ug = (3,2,0,—1,—4),
and V' C R® by the elements
vy = (—2,0,—-6,3,—2),
ve = (1,2,-3,1,-3),
vy = (—1,0,-3,—-2,—1).
To determine generators for the intersection U NV, we use the identity
Unv = U4Vt

The subspaces U+ and V* equal the kernels of the matrices

1 3 1 2 2 -2 0 -6 3 =2
M=1|-12 -2 3 2 and N=[1 2 -3 1 =31,
3 2 0 -1 -4 -1 0 -3 -2 -1

respectively, where the rows of M are wuy,us,us and those of N are vy, vy, vs.
The reduced row echelon forms of M and N are

100 -1 -2 10 3 0 1
M=1010 1 1 and N=[|01 -3 0 -2,
001 0 1 00 0 1 0

respectively. The dimensions of U and V' equal the number of nonzero rows in
M and N, respectively, so dim U = dim V' = 3. By Proposition[6.27] the kernels
ker M' = ker M = U+ and ker N’ = ker N = V* are generated by {w,,ws} and
{3, x5} respectively, with

1 2 -3 —1
-1 -1 3 2
Wy = 0 y Wy = —1 3 T3 = 1 > Ty = 0
1 0 0 0
0 1 0 1

Therefore, the subspace U+ + V' is generated by wa, ws, T3, 5, so the subspace
UNV = (Ut + V4L is the kernel of the matrix

1 -1 0
2 -1 -1
-3 3 1
-1 2 0

which has wy, ws, x3, x5 as rows. The reduced row echelon form of this matrix
is

10
01
A= 0 0]”
01

10021
, 101 011
A= 0013 0}
00000
so the kernel ker A = ker A" = U NV is generated by the vectors (now not

written as column vectors)
2y = (_27_17_37170) and 25 = (_1,_1,0,0,1).
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Note that the row space of the last matrix equals U+ + V*, so even without
computing its kernel explicitly, we find dim(U+ + V+) = 3 and thus

dim(UNV) = dim(U* +VHt =5 —dim(U*+ +V+) =2
by Proposition [8.20L We also conclude
dim(U+V)=dimU +dimV —dim(UNV)=3+3-2=4.

Indeed, U and V' are both contained in the 4-dimensional hyperplane H with
normal a = (2,-1,—1,0,1), so U+ V = H. This is of course easier to verify
immediately than through the computation we just did.

There is a different way to compute the intersection of two subspaces, based on
the equality

UnUy=UH'"NUy={ueclU, : ul U}

[ Example 8.28. Let U and V' be as in Example |8.27] Just as in Example |8.27
we first determine that U+ = ker M is generated by wy and ws. This shows

UNV=UHrNV={weV : (v,w) = (v,ws) =0}

Every v € V' can be written as v = A\jv; + A\avg + A3v3 for some A, Ay, A3 € R.
In terms of the \;, the equation (v,wy) =0 (for k = 4,5) is equivalent to

0 = (A1 + Aava + Agvs, wi) = A (v1, wi) + A2 (va, wi) + A3(vs, wy),

so the two equations (v, w,) = (v,ws) = 0 are equivalent to (Ay, Ao, A3) lying in
the kernel of the matrix

<U1,’UJ4> <U2,’UJ4> <U3,’UJ4> _ 1 0 —3

(v, ws) (Vo ws)  (v3, ws) 00 0)°
It turns out (as the bottom row is zero) that ws is orthogonal to V' and this
matrix is already in reduced row echelon form. Its kernel is generated by (0, 1,0)
and (3,0, 1), which correspond to the vectors 0-v; + 1 vy + 0 -v3 = vy and

3-v1+0-vy+1-v3 =3v; +v3. We conclude that U NV is generated by vy and
3v1 + v3.

Remark 8.29. The method you choose to compute an intersection U; N Us
obviously depends on whether you have generators for U; or equations (that
is, generators for U;-), and whether you want generators for the intersection or
equations. Also, if U; requires many generators, then U only needs few, so it is
worth considering a method where you can do the bulk of the computation with
U instead of U;. Another point to consider is that the method of Example m
yields generators for U; NU, that are given as explicit linear combinations of the
generators of U; and/or Us, which in some applications is an advantage. The
big advantage of the method of Example [8.27]is that it always yields a minimal
number of generators, regardless of whether the number of given generators for
U; and Us is minimal.

Exercises

8.3.1. Compute the intersection U NV with U and V as in Example [8.27] with the
method of Example but with the roles of U and V reversed.

8.3.2. Let F = Fy be the field of two elements. Let U C F? be the subspace
generated by

(1,1,1,1), (1,1,0,0), and (0,1,1,0),
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and let V C F* be the subspace generated by
(1,1,1,0) and (0,1,1,1).

Find generators for the intersection U NV.

8.3.3. Take two subspaces of R® generated by four elements and compute generators
for the intersection.

8.4. Inverses of matrices

Recall that every invertible matrix is square by Corollary [8.9] Proposition [5.25]
shows that a matrix is invertible if and only if it has both a right and a left inverse.
The following lemma implies that a square matrix A has a left inverse if and only if
it has a right inverse, in which case A is invertible and these left and right inverses
both equal A~1.

Lemma 8.30. Let A be an n x n matrix over F'. Then the following statements
are equivalent.

(1) The matriz A is invertible.

) The map fa is injective.

) The map fa is surjective.

) We have ker A = ker f4 = {0}.

) We have rk A =1k fa = n.

) There exists an n X n matriz B such that AB = I,,.
(7) There exists an n X n matriz B such that BA = I,,.

Moreover, if a matriz B as in (6) or (7) exists, then we have B = A

Proof. By definition, the matrix A is invertible when f4: F™ — F™ is an isomor-
phism. Hence, Corollary [8.5]shows that the first three statements are equivalent.
Lemmas and show that statements (2) and (3) are equivalent with (4)
and (5), respectively. Clearly, statement (1) implies statements (6) and (7),
as we may take B = A~!. We finish the proof that all seven statements are
equivalent by noting that the implication (6) = (3) and the implication (7) =
(2) both follow from Lemma [5.23] Suppose a matrix B as in (6) exists. Then
A is invertible by statement (1). From Proposition with C' = A~ we
then conclude B = A~!. If a matrix B as in (7) exists, then taking the trans-
pose yields ATBT = (BA)"T = I,, which by the previous arguments means
B'=(AT)1=(A"1)T,s0o B=A"1 O

Remark 8.31. Lemmal8.30]is analogous to the situation for functions. Suppose
f: X — Y is a function between sets X and Y. If f is a bijection, then any
left inverse g, that is, a function g: ¥ — X with go f = idx, is the inverse of
f; and any right inverse h, that is, a function h: Y — X with f o h = idy, is
the inverse of f. Moreover, if X and Y are finite sets of the same size, then f
is injective if and only if it is surjective.

In this section, we will give a method to check whether a square matrix is invertible,
and, if so, to compute the inverse.
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Lemma 8.32. Let A, B,C' be matrices satisfying AB = C. Let A" be the ma-
triz obtained from A by a sequence of elementary row operations, and let C' be
the matriz obtained from C' by the same sequence of operations. Then we have

AB=C".

Proof. By Proposition [6.4] there is an invertible matrix M, depending only on
the applied sequence of row operations, such that A" = MA and ¢/ = MC.
We immediately see A'B = (MA)B = M(AB) = MC = C'. Alternatively, the
identity A’B = C” also follows easily from the fact that the entries of C' are the
scalar products of the rows of A and the columns of B, and the fact that the
scalar product is linear in its variables. O

Lemma [8.32] states that if we start with a product AB = C', written as

bii bz - by,
(8 1) bay  bag - by, B
bml bm2 e bmn
ailr aig - Qim €11 Ci2 -+ Cip
Ag1 A2z -+ Qom C21 Co2 - Cop
A — — C
an Qi - Qup i C2 - Cp

as in (5.6), and we perform an elementary row operation on the two bottom
matrices A and C simultaneously, then we obtain the matrices A" and C’ and,
together with B, these resulting matrices depict the equality A'B = C".

Given the matrices A and C, one might be interested in finding a matrix B such
that AB = C, if such B exists. If A is invertible, then such a B does exist, as
we have B = A™Y(AB) = A7'C. If A™! is known, then the matrix B is readily
computed by multiplying A~! with C. The following proposition gives a criterion
for A being invertible and, if so, for determining A~'C efficiently if the inverse
A~1is not yet known.

Proposition 8.33. A matriz A € Mat(n, F) is invertible if and only if its reduced
row echelon form is the identity matriz I,,. Suppose I, is obtained from A by a
sequence of elementary row operations. Then A™1 is obtained from I,, by the same
sequence of operations. More generally, for any matrix C' with n rows, the matriz
A7IC is obtained from C by the same sequence of operations.

Proof. If A is invertible, then f, is injective, and by Proposition we con-
clude that any row echelon form of A has n nonzero rows, so every row has a
pivot and all pivots are on the diagonal; it follows that the reduced row echelon
form is the identity matrix. Conversely, suppose that the reduced row eche-
lon form of A is the identity matrix I,,. Then by Proposition there is an
invertible matrix B, such that I, = BA, so A is invertible by Lemma [8.30
Applying Lemma to the products A- A~ = I, and A- (A7'C) = C and
the sequence of elementary row operations that transform A into I,,, yields the
last two statements. OJ

Here is a visual interpretation of Proposition [8.33, If we write X = A~1C for A
and C' as in Proposition [8.33] then we can depict the equality AX = C as in (8.1
by
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X
A C

Applying elementary row operations to the combined matrix yields
a combined matrix of matrices A" and C’ that satisfy A’X = C’ by
Lemma [8.32] depicted as follows.

X X
A © ~ A

In particular, if we obtain A’ = I, then we have C' = A’X =1X = X.

X X
LA]C - X

Therefore, if a priori we do not yet know the matrix X = A7'C, then we can find X

by writing down the combined matrix and applying row operations until
the left part of the combined matrix equals I. The right part then automatically

equals X = A~1C.
[ Example 8.34. Let us see how to invert the following real matrix

1 11
A=1|1 2 4
139

We perform the row operations on A and on I in parallel, as above.

11 1(1 00 1 11/1 00
1 2 4(0 10 ~ 013 -110
13 9/0 01 0 2 8/-1 01
10 =212 —-120
~ 01 3|-1 1 0
00 2|1 =21
1003 -3 1
~ 010—%4—%
001%—1%
So
3 -3 1
At=1[-2 4 -2
1 1 1
2 2

[~ Remark 8.35. This inversion procedure will also tell us whether a matrix A
is invertible or not. Namely, if at some point in the computation of the row
echelon form, the lower part of the next column has no non-zero entries, then
the reduced row echelon form of A is not the identity, so the matrix is not
invertible by Proposition [3.33]

|

Corollary 8.36. If A € Mat(m, F) is invertible, then A can be written as a
product of matrices L;(A) (for X # 0) and M;;(X) (fori # j) and N;; of Section[6.1]
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Proof. By Proposition the matrix A can be transformed into I,, by a
sequence of elementary row operations. Let r be the number of operations.
The i-th operation can also be obtained by multiplication from the left by an
elementary matrix B;, which is of the form L;(\) (for A # 0) or M;;(\) (for
i # j) or N;;. We obtain [,, = BA with B = B,B,_;--- B;. Cf. the proof of

Proposition [6.4] O
Example 8.37. Let A be the matrix of Example and b € F? the vector
—1
b= 2
1
Using the inverse A~!, it is easy to find an element x € F'® with Az = b, namely
3 -3 1 -1 —8
r=A"(Az)=A""b = —lg 4 —lg 2 =19
©or 1 9

If we had not know A~! yet, then we can apply Lemma directly to the
product Ax = b and the sequence of row operations that transforms A into I3,
so that we need not compute A~! first. We put A and b in an extended matriz

1 1 1]-1
1 2 4] 2
1 3 91
and transform the left part to I3:
11 1|-1 11 1]-1
1 2 4] 2 ~ 01 3] 3
1 3 9|1 0 2 8] 2
10 -2|-4 1 0 0-=8
~ 01 3|3 ~ 010]9 ,
00 2| -4 00 1]-2
SO
-8
r=19
—2
Exercises
8.4.1. Determine the inverses of the following matrices
-1 -2 -1 -1 2 =2 0 -1 0 1
-3 -1 3 -2 =2 1
) 13 1], 0 -1 0|,
-2 —1) 1 9 0 1 _9 3 -1 -2 =2 0
0 0 -1 -1

8.4.2. Are the matrices

L o —2 1 -2
o4 ) -1 1 -1
1 -1 1

invertible?
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8.4.3. Determine the inverse of those matrices (over R) that are invertible.

0 o 1 -1 1 -2 2
2 1 1 -1
-1 1 0
o 9 2 -1 1 0
0 1 2 1
0 2 -1 1
2 -1 -2 0 2!
11 -1
1 0 -1 2 Lo o
2 2 0 2

8.4.4. Suppose the product AB of square matrices A, B € Mat(n, F) is invertible.
Prove that A and B are also invertible. Cf. Exercise [£.5.11

8.4.5. Suppose M, N are n x n matrices with M N = [I,. Prove that then also
NM = 1I,.

8.4.6. Write the following matrices as a product of elementary matrices (see Sec-

tion [6.1), if possible:

1 -1 0 —1 0 -2 2 3 -2
-1 -2 -1 -1 -1 =2 3 2 2
2 2 1 2 3 3 0 -1 2
8.5. Solving linear equations
As mentioned in the beginning of Chapter [0} the system
a11T1 + 1272 + 0 4+ a1, = bl
211 + Q29T + 0+ Qo = b2
Am1T1 + QpaZ2 + 0+ App®y, = bm
of linear equations over F' can be written as Ar = b with
aip a2 - Qip by
g1 Qg2 - Q2 by
A= ) ) 'n € Mat(m x n, F) and b=\ . | € F™
Am1 Am2 **° Qmp bm

and the vector
o

o)
Tr =

Tn

of unknowns. The solution set is the inverse image f;'(b), where fa: F™ — F™
is the usual map that sends z € F™ to Az € F™.

If b = 0, then the system is homogeneous and the solution set equals ker A, for
which we have seen in Chapter [6] how to find generators.

If b # 0, then the system is inhomogeneous. by Theorem it suffices to do
two things to solve the system: the first is to find a single solution, and if this
exists, the second is to compute ker A. Below we describe an algorithm to do both
at once. For completeness, we also summarise an algorithm for the homogeneous
case.

Algorithm for a homogeneous system. To solve a homogeneous system of
linear equations Ax = 0, use elementary row operations to bring the matrix A
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into (reduced) row echelon form; then read off a basis of the kernel (which is the
solution space) according to Proposition [6.19 (or Proposition for the reduced
row echelon form).

Algorithm for an inhomogeneous system. To solve an inhomogeneous system
of linear equations Ax = b, we do the same as in Example m (though this time
we do not assume A is invertible). Let A° = (A|b) denote the extended matrix of
the system (the matrix A with b attached as an (n+1)-st column). Use elementary
row operations to bring A° into reduced row echelon form. The system is consistent
if and only if b is a linear combination of the columns of A, so if and only if the
last column of A° does not contain a pivot (see Proposition [6.21)). In this case, the
first n coordinates of —w,,1; (in the notation of Proposition [6.27)) give a solution of
the system, but such a solution can also easily be found by solving the equations
corresponding to the nonzero rows of the row echelon form from the bottom up.
A basis of the solution space of the corresponding homogeneous system (needed to
find the complete solution set with Theorem can be read off from the first
n columns of the reduced row echelon form of A°, as these form the reduced row
echelon form of A.

To see that this algorithm is correct, we depict the system, as in Section as

-
LAY
Applying elementary row operations to the combined matrix A° = @ yields
a combined matrix , for which the solution set to the equation A’z = ¥/
is the same as the solution set to the original equation Az = b by Lemma [8.32]
Note that the last column of the row echelon form of A° does not contain a pivot
if and only if the rank of the first n columns equals the rank of all n + 1 columns,
that is, if and only if rk(A) = rk(A°). The latter is equivalent to saying that b is

in the span of the columns of A, which is the image of the linear map f4. The
statement on how to find a solution is then easily verified.

The process of solving a system of linear equations by first bringing the correspond-
ing matrix of coefficients into (reduced) row echelon form through elementary row
operations, and then solving the system using the rows of the row echelon form
from bottom to top is called Gaussian elimination. Indeed, when we add a multi-
ple of a row with a pivot in the j-th column to the i-th row in order to make the
(1, j)-entry zero, we are essentially eliminating the j-th variable from the equation
corresponding to the i-th row.

[ Remark 8.38. Of course, if A is an invertible n X n matrix over F', then for any
b € F™, the solution to the equation Az = b is just x = A~'b (cf. Remark [4.36)).

[ Example 8.39. Consider the following system of linear equations:

r + vy + 2z 4+ w = 0
r + 2y + 3z + 4w = 2
r + 3y + 5z + Tw = 4

We will solve it according to the procedure outlined above. The extended ma-
trix is

A° =

—_ = =

1 11
2 3 4
3 5 7

=~ N O
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We transform it into reduced row echelon form.

1 1110 1 1 110
12342 | —[[01 2 3|2
1 35 7|4 0 2 4614

e

1 0 -1
01 2
00 O

-2
3
0

-2
2
0

163

— AO/

Since the last column of A°" does not contain the leading 1 of a row, the sys-
tem is consistent. To find a solution, we find the element w,,; € F° in the
kernel of A as in Proposition [6.19} It has a 1 as last coordinate and a 0
for all other coordinates that correspond to columns without a pivot. Hence,
we have w,;1 = (*,%,0,0,1). Using the nonzero rows of A, we determine
the two remaining unknown coordinates, and we find w,,; = (2,-2,0,0,1).
Proposition would have given this directly.

Hence, following our algorithm, we let a € F* be the vector of the first 4
coordinates of —w, 1, so a solution is given by a = (z,y, z,w) = (-2,2,0,0).
It is easy to check that this is indeed a solution. Alternatively, if we write A°
as (A'|b'), then we could also find a by taking the coordinates corresponding to
columns of A" without pivots to be 0 (so a = (x*,%,0,0)), and solving for the
remaining coordinates using the equation A’a = b, working from the bottom

nonzero row to the top.

The kernel of the non-extended matrix has basis (u,v) with v = (1,-2,1,0)

and v = (2,—3,0,1). So all solutions are given by

('I7y727w) :CL+T‘U+SU:(—2+r+2372—2r—33”{’,3),

for some r and s.

Exercises

8.5.1. For each of the following systems of linear equations over R, find a matrix A
and a vector b, such that the system is equivalent with the equation Az = b in

z. Then describe the full solution set.
2r1+  3xo+ —2x3
3x1+ 2x9+ 2x3

—x9+ 2x3

2x1+  3zo+ —2x3
3r1+ 2x0+ 2x3
—Zo+ 2x3

2r1+  3xo+ —2x3
3x1+ 2x9+ 2x3
—Zo+ 2x3

[an}

3r1+ To+ 2x3+ —2x4

21+ —xo+ 2x3
x1+ 3
—2x1+ —rz2t+ —x3t

Zq

0

W N =

4

8.5.2. The formula for trinitrotoluene (TNT) is C7H5N30g. If it explodes, then the
products of that reaction are No, HoO, CO en C. Determine the balanced

equation:

a'C7H5N306 — b‘N2 + C'Hgo 4+ d-CO + e-C.

8.5.3. Consider the points a = (1,2,1) and b = (2,1,—1) and s = (—1,4,5) in R3.

Set/\:%and,u:%.

(1) Verify that s lies in the plane V' = L(a,b).
(2) Find p € L(a) and q € L(b) such that s = Ap + ug.






CHAPTER 9

Linear maps and matrices

9.1. The matrix associated to a linear map

Proposition [8.10| shows that any finite-dimensional vector space V over a field F
is isomorphic with F™ with n = dim V. For any basis B for V| there is an iso-
morphism ¢p: F" — V (Proposition [7.29). As we have seen in Proposition [£.41]
this means that for all practical purposes, we can identify V and F", though we
should keep in mind that the identification depends on the choice of a basis B.
If we identify a second finite-dimensional vector space W over F' with F™ for
m = dim W (based on a choice of basis for W), then any linear map f: V — W
corresponds with a linear map F™ — ™, which is given by some matrix. The
following definition makes this precise.

N N NN N RN AN A A AN EERENANSEEEEREEREEEEREE,
: Definition 9.1. Let F be a field and V, W finite-dimensional vector spaces over F' :
* with bases B and C , respectively, and dimensions n = dimV and m = dim W.
= Then for every linear map f: V — W, the matriz associated to f with respect to .
s the bases B and C, denoted [f]g, is the unique m X n matrix whose associated .
s function as in Proposition is the linear map (o' o f o pp): F™ — F™ :

A 4

YEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER

In the case V = W and B = C, we also refer to [f]5 as the matrix associated to
f with respect to B.

If we write M = [f]5, then by definition we have

fur =gt o fops.
If we identify the matrix M with the map fy;: F™ — F™ it defines, then we have
the following commutative diagram.

(9.1) v ow

:Tsos :]@c

F’T'L - s Fm
(118
Note that the map go(_jl o fopp: F™ — F™ is nothing but the composition of (1)
the identification of F™ with V', (2) the map f: V — W, and (3) the identification
of W with F™. In other words, if we identify V' with F™ and W with F™, through
the choice of bases B and C' for V' and W, respectively, then the map f: V — W

corresponds with the map F™ — F™ given by the m X n matrix [f]Z.

Example 9.2. For the standard bases F, and E,, for F™ and F", the maps
g, and @ are the identity maps on F™ and F'™, respectively. Hence, for any
linear map f: F™ — F™, the matrix | f]gjn is the matrix associated to f as in

Proposition [5.11} This implies that for any m x n matrix A over F, and its

165
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associated linear map fa: F™ — F™, we have
[falg, = A

[ Example 9.3. Let V be a finite-dimensional vector space over F with basis
B and dimension n. Then the matrix [idy]5 is the matrix whose associated
function F™ — F™ equals gpgl oidy opp = idpn, s0 [idv}g =1,.

Example 9.4. Let R[z]|3 be the vector space of real polynomials of degree at
most 3 with basis B = (1, z, 2%, 2%). Let D: R[z]3 — R[z]3 denote the map that
sends g € R[x]3 to its derivative ¢'.

ap + a1 + ayx?® + asx® R[z]3 b, R[z]3
T NTS@B N]vg

4 4

(ao, ar, az, a3) R DB R

Consider the composition gogl oD owg. The map pp sends a quadruple
(ag, ay, as,as) to the polynomial g = ag + a1z + asx? + azx®, of which the de-
rivative D(g) = ¢’ equals a; + 2asx + 3azx?, which in turn is identified through
@' with the quadruple (a;,2as,3as,0). This means that the map associated
to the matrix [D]2 sends

(ao, ax, az, az) to (a1,2az, 3a3,0),
so the matrix equals
01 00
5 [0 0 20
D)5 = 000 3
00 00

Example 9.5. Let F' be a field with k£ elements aq,as,...,a, € F and let
n be a positive integer. Let T: F[z], — F* be the linear map that sends
a polynomial g € F|z], to the vector (g(a1),...,g(ax)). We determine the
matrix associated to T' with respect to the basis B = (1, z,2?,...,2") for Flx],
and the standard basis E for F*. Note that pg: F¥ — F¥ is the identity.
Therefore, the composition ¢3! o T o ¢p sends the j-th standard basis vector e;
to
o5 (T(pp(e))) =T ) = (o L ad ' ag ).

By definition of the matrix [T]%, this vector also equals [T]% - e;, that is, the
j-th column of [T)%, cf. Lemma Hence, we find

1 ap o2 -+ af

1 ap a2 -+ of

[T]B . 2 2 2
B _

2 n

1 ap ai -+ af

| Such a matrix is called a Vandermonde matrix.

oSN N N N AN AN A EEE AR AR AN E N NN AN AEANARRERERERRRE,
* Definition 9.6. If V is a vector space over a field F of dimension n with basis &
B = (vq,...,v,), then we say that the n-tuple a = (ai,...,a,) € F" is the
E sequence of coefficients of the vector v = pg(a) = ayvy + - - - + a,v, with respect .
: to B, and we write v = a = 93" (v).

4amEEnm
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Lemma 9.7. Let f: V — W be a linear map, B = (v, vy, ...,v,) a basis for V,
and C' a basis for W. Then for any 1 < j < n, the j-th column of the m X n
matriz [f]8 is the sequence f(vj)c of coefficients of f(v;) with respect to C.

| | |
£l = f(v|1)c f(v|2)c f(v|n)c

Proof. As for any matrix, the j-th column of the matrix [f]Z equals the image
of the j-th standard basis vector e; under the map associated to the matrix. By

definition of [f]Z, this is equal to (o' o fowr)(e;) = o' (f(v;)) = f(vj)e. O

Example 9.8. Indeed, in Example[9.5] the columns are as described in Lemma[9.7]
Also in Example , the j-th element in the basis B is 771, and the j-th col-
umn of [D]3 is the sequence of coefficients of D(z771) = (j —1)2/~2 with respect
to the basis B = (1, z, 22, z%).

Remark 9.9. If we identify [f]2 with the linear map that it induces, then the
commuting diagram ([9.1)) can also be expressed as @' o f = [f]5 o ¢!, that
is, for each v € V' we have

f)e = 1f1¢ v
In words: the sequence of coefficients of f(v) with respect to C' equals the
product of the matrix [f]Z with the sequence of coefficients of v with respect to

B.

Example 9.10. The sequence B = ((z — 1)*, (z — 1)?,2 — 1,1) is a basis for
F[z]3. Let C denote the usual basis (1, z, 22 z*). Then the matrix associated
to the identity map id: F[x]; — F[z]; with respect to the bases B and C' is

1 1 -1 1
5 |3 =2 1 0
ide={_5 1" ¢ o

1 0 0 0

This can be found directly from Lemma (the j-th column contains the
sequence of coefficients of (z — 1)*™7 with respect to C), but the identity

ay(x — 13 +ay(z — 1) +as(x — 1)+ ay

= (—ay + ag — ag + ay) + (3ay — 2as + a3)x + (—3a; + az)r* + a,2°
also shows that [id]Z sends the quadruple (ay, as, as,ay) to

( —ay + ag — as + ay, 3@1 — 2&2 + as, —3@1 + ao, al).
Example 9.11. Let V' C R? be the plane spanned by v; = (1,2,1) and

vy = (1,1,0). Then the vector v3 = (1,—1,1) is a normal to V. Let B be
the basis (v1, vz, v3) of R, and let s = s7: R® — R? denote the reflection in V.

Note that s(v;) = v; for i = 1,2, and s(v3) = —v3. This means that the matrix
associated to s with respect to B is easy to find; we have
10 0

s]E=(0 1 0
00 —1
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Indeed, for any triple a = (ay, as, a3) € R® we have [s]8-a = (a1, az, —as), which

corresponds to the fact that by linearity of s we have

s(pp(a)) = s(ajvr + agve + azvs) = ayv1 + asve — azvs = @p ([5]§ . a) )

Example 9.12. Let B = (vy,v2,v3) be the basis for R? as in Example m
and let E be the standard basis for R?. Then pg: R? — R? is the identity,
which reflects the fact that the sequence of coefficients of a vector v € R3 with
respect to E is the vector v itself. Therefore, the columns of the matrix [id]2
are v, Vs, v3 and we have

11 1
idf=12 1 -1
10 1

Again, we can check for consistency by verifying that for a = (ay,as, a3) we
have

ay + az + ag
id ((,OB(G)) = a1V1 + a9y + asvs = 2&1 + a9 — as = @E([ld]g . CL).
ai + as

Example 9.13. Let E be the standard basis of ™. Then every vector v € F™
is its own sequence of coefficients with respect to E, that is, vg = v. This
makes it easy to determine the matrix [idp«]E for any basis B of F™. Indeed,
let B = (wy,ws,...,w,) be a basis for F™ and let M be the n x n matrix whose

columns are wq, wo, ..., w,. Then we have M = [ian]g by Lemma

As mentioned before, if we use the bases B and C' of the vector spaces V and W to
identify V and W with F™ and F, respectively, then every linear map f: V — W
corresponds to a linear map F™ — F™, which in turn corresponds to an m X n
matrix over I by Proposition [5.11} Exercise [9.1.5 makes this more precise by
showing that this correspondence induces an isomorphism between Hom(V, W)
and Mat(m x n, F'). In particular, we see that dim Hom(V, W) = mn.

Exercises

9.1.1. Let p: R? — R? be the rotation around 0 over an angle of 90 degrees. Let
E = (e1, e2) be the standard basis of R?, and let C' = (v1, v2) be the basis with
vy = (1,1) and vo = (2,1).
(1) Compute ¢z (p(pr(e;))) for i =1and i=2.
(2) Determine the matrix associated to o' o popp (as in Section so with
respect to the standard basis).
(3) Verify that your answer to the previous part equals the matrix [p]g as
described in Lemma [0.7]

9.1.2. Let T: R[z]y — R[z]4 be the linear map given by T(f) = 3f + (x — 2)f".

Determine the matrix [T]g of T with respect to the basis B = (1, z, 2%, 23, x%).

9.1.3. Let F be a field containing k distinct elements aq, as, ..., ar € F. Show that
the square Vandermonde matrix

1 g of .- o/f_l
1 ag a3 --- 0/2671
1 o a% cee o/lz_l

is invertible, cf. Exercise and Example 9.5
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9.1.4. Let V7 be the vector space of 2 x 2 matrices over R and V5 the vector space
of 3 x 2 matrices over R with bases

(G0 (o) (0 G D)

and
10 0 1 00 00 0 0 0 0
C= 0o 0),{o o0}),|1 0,0 1],10 Of,|0 O],
0 0 0 0 0 0 00 10 0 1
respectively. Let T': Vi — V5 be the linear map given by
3 7
TM)=|-1 5| -M.
8 2

Determine [775.

9.1.5. Let B and C be bases for the F-vector spaces V and W of dimensions n
and m, respectively. Show that the map

Hom(V, W) — Mat(m x n, F), f~— [f]2

is an isomorphism (cf. Exercises [4.5.7 and [5.5.11]).

9.2. The matrix associated to the composition of linear maps

Suppose U, V, W are finite-dimensional vector spaces of dimensions dimU = p,
dimV = n, and dim W = m, and with bases A, B, C respectively. Then for any
linear maps g: U — V and f: V — W, we get associated matrices [g]4 and [f]Z.
The two commuative diagrams as in can be combined into one.

(9.2) v—t-v-tow

%T‘PA %’]@B %T@C

FP——s " —— ™
95 [f1é

Proposition 9.14. With the notation as above, we have [f o g|& = [f]Z - [g]5.

i Proof. The commutative diagram above simplifies to the following diagram.

v—1 _w
NTWA NT@C
jas Fm

12 a1

In other words, identifying matrices with the maps they induce, we obtain from
the identities

[fle =vc'ofops and [l =g ogopa,
that
/18- 195 = wc' o (fog) o pa =[f o gl
which proves the statement. O

[ Alternative proof. Suppose u € U is any element. We apply Remark twice.
By first multiplying the matrix [g]4 with the sequence u, of coefficients of u
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with respect to A, we obtain the sequence (g(u))p of coefficients of g(u) with
respect to B; multiplying the matrix [f]Z with that vector yields the sequence
(f(g(u)))c of coefficients of f(g(u)) with respect to C. In other words, we have

(flg)) e = [F1E - (9(w)) p = [F1C - [g]5 - wa.

Similarly, we have

(flg)) = ((fog)(w), =Lfogls - ua.
This holds for all u € U, in particular for the j-th element of the basis A, for
which we have uy = e; € F?, so we find

/16 lo)s - e;=1foglc e
for all j. This shows that the two matrices [f]Z - [g]a and [f o g]& have the same
columns, so they are equal. O

Note that the order of f and g in the product [f]5 - [g]3 of matrices, and in the
composition f o g, is opposite of the order in which they appear in diagram ({9.2]).

|

Corollary 9.15. With the notation as above, if f is an isomorphism, then we

have [f715 = ([f18) .

Proof. If f is an isomorphism, then m = n, and [f]Z is a square matrix. Apply
Proposition with g = f~! and A = C to find

16 - [f 7115 = [id]& = In.
| The statement follows. O

[ Example 9.16. Let B and E be the bases for R? as in Examples and
Then

1 1 2

_ 3 3 3
i =(idE) " =1 0 -
111

3 3 3

Since the sequence of coefficients of any vector v € R? with respect to E is equal

to itself, we have

1

vp = (id(v))s = [id]5 - ve = [id]5 - v,

so the sequence vp of coefficients of a vector v € R3 with respect to B equals
[id]% - v. Indeed, the sequence of coefficients with respect to B of the j-th
standard vector is the j-th column of [id], as we have

1 1 1 1 2 1
€1 = —§U1 + V2 -+ §U3, €y = gvl — §U3, €3 = gvl — V2 + 51}3.

[ Example 9.17. Let d: R[z]3 — R* be the linear map that sends a polynomial
f € Rz]3 to

(F2)+ F/(2), F3) + £/3), F4) + F'(4), £(5) + F(5))
where f’ is the derivative of f. Then d is the composition of the map
di: Rlz]s — Rlz|3
that sends f to f + f’ and the map
dy: Rlz]3 — R*
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that sends g to (¢(2), 9(3), g(4), g(5)). With respect to the basis B = (1, z, 22, 2%)
for R[z]3 and the standard basis F for R*, we get

1 2 4 8 1100 13 8 20
B 1B 5 |13 9 27 0120 1415 54

[d]z = [dao]g - [di]5 = 1 4 16 64 0013l |15 24 112]°
1 5 25 125 0001 1 6 35 200

| cf. Examples and [9.5]

Exercises

9.2.1. Let B = (v1,v2,v3,v4) be a basis for a vector space V over R. Show that
B’ = (v}, v}, vh,v)) with
V] = 1,
vé = v1 + 2v9,
vg = v1 + 2v2 + 3vs3,
vfl = v1 4 2v9 4 vz + 4vy

is also a basis for V.
(1) Determine the matrices M = [id]5" and N = [id]5,.
(2) Explain that for x = (21,22, 73, 74) € R*, the vector Mz is the sequence
of coefficients with respect to B of the vector v = 1] +z9v) +x305 +240).
(3) Explain that for x = (21, 22,73, 74) € R*, the vector Nz is the sequence of
coefficients with respect to B’ of the vector v = z1v1 + Tovs + T3V3 + T4v4.
9.2.2. Let E = (e1, €9, e3) be the standard basis for R?® and C' = (vq,v2,v3) a basis
with

U1 = (_1’_270)) Vg = (_25 153)7 U3 = (]-a _1)_2)

Determine the matrices [id]§ and [id]Z.

9.3. Changing bases

Proposition 9.18. Let f: V — W be a linear map of finite-dimensional vector
spaces. Suppose B and B’ are bases for V and C and C' are bases for W. Then
we have

(9:3) /16 = lidle. - [£16 - [d]F -

I: Proof. This follows immediately from Proposition [9.14] O

The following commuting diagram corresponds to the identity (9.3) of Proposi-
tion [9.18]

f
vy o Sy
254 T YB ] Yo T Yol T
Fn > n m m
dz 1B 1S
(15

In the spirit of the alternative proof of Proposition we can explain the iden-
tity (9.3) as follows. Take a vector v € V. By first multiplying the sequence vp: of
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coefficients of v with respect to B’ with the matrix [id]%’, we obtain the sequence
vp of coefficients of v with respect to B; multiplying that vector with the matrix
[f]Z yields the sequence (f(v))c of coefficients of f(v) with respect to C. Finally,
multiplying this last vector with the matrix [id]%, gives the sequence (f(v))cr of co-
efficients of f(v) with respect to C’. This sequence could also have been obtained
directly by multiplying | f]g: with the vector vg,. In other words, we have

116 vp = (f(v) o = (GG - [f1E - ) - va

for all v € V, in particular for the j-th element of the basis B’, for which we have
vpr = e; € F. So we find

116 - e5 = ()& - [£1 - [d]F) - e

for all j. This shows that the two matrices [f]Z and [id]S, - [f]Z - [id]2" have the
same columns, so they are equal.

Note again that the order of the matrices in the right-hand side of is opposite
of the order in which they appear in this diagram. Because of Proposition [9.18]
the matrices [id]2" and [id]$, associated as in Proposition to the linear maps
05t opp: F™ — F™ and %,1 opc: F™ — F™ respectively, are often called basis
change matrices. The latter, for example, satisfies [id]%, - we = wer for all w € W,
so multiplying [id]%, with the sequence w¢ of coefficients of a vector w with respect
to C gives the sequence wer of coefficients of w with respect to C”.

Exercises

9.3.1. Let E5 and E3 be the standard bases of R? and R?, respectively. Let 7: R? — R3
be the map given by

T((x, y)) = 3z + 2y, —y, —x + 2y).

(1) Determine the matrix [T]gi

(2) Determine the matrix [T]Z for the basis B = ((1,2),(~1,1)) of R? and
the basis C' = (vq,v2,v3) of R? with the vectors

U1 = (_17 _270)7 U2 = (_27 173)7 U3 = (17_17 _2)

as in Exercise 0.2.2]
9.3.2. Let V C R? be the subspace spanned by v; and v3 as in Exercise[9.3.1 Then
B = (v1,v3) is a basis for V. Let T: V — R? be the inclusion map. Let E be
the standard basis for R®. Let C be the basis for R? as in Exercise [9.3.1]
(1) Determine the matrices [T]2 and [T]2 directly.
(2) Verify the equality that should hold between one of the matrices [T]2 and
[T]5 on the one hand and the product of the other with [id]% on the other
hand.
9.3.3. Let B be a basis for F'" and let E be the standard basis.
(1) Show that we have [pp]5 = I,,.
(2) Show that for M = [ian]g we have fy = op.
(3) Show that we have [pp]E = [idgn]B.
9.3.4. Let B and C be the standard bases of R? and R?, respectively. Let 7': R? — R3
be the linear map given by

T((z,y)) = (2z — 3y,z +y, 3z + y).

(1) Determine the matrix [T)Z.
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(2) Determine the matrix [T]5, for the basis B’ = ((3,4),(1,-2)) for R? and
the basis O’ = (v1,v9,v3) for R? with

v =(L1,1), w=(1,23), wv3=(1,4,9).

(3) Verify that for the vector v € R? with v = (1,1) (that is, v = pp/((1,1))),
we indeed have

[T18, - vp = (T(v)) -
(4) Repeat this verification for vp = (1,0) and vg = (0, 1).

9.4. Endomorphisms

In the special case of Proposition that we have V = W, we can take B = C
and B’ = C' to obtain the following.

Proposition 9.19. Let f: V — V' be an endomorphism of a finite-dimensional
vector space V' with bases B and B'. Then we have

12 = [dIE - [A15- [ = [dE-[715- (Gd2)

Proof. This follows immediately from Proposition [9.18 and Corollary [9.15 [J

[ Example 9.20. Let B = (v, v2,v3) be the basis for R® as in Examples m
0.12] and [9.16, As in Example [0.11] let s denote the reflection in the plane V'
spanned by v; and vy. Then with the matrices of those examples, we find that
the matrix associated to s with respect to the standard basis E is

[s]2 = [id] 2 - [s]5 - [id]5 = [id]2 - [s]% - ([id] %)~

o O

12 1

3 3
-10—1:%
1 1

—1 5 T3 3

[SSI1NG UL P )

W IN

1
3

[ Example 9.21. Let B = (v1, v2,v3) be the basis for R? as in Example[0.20]and
let 7: R® — R? be the orthogonal projection onto the plane V' spanned by v,
and ve. Then we have w(v;) = v; for i = 1,2, and 7(v3) = 0, as v3 is a normal
to V. Therefore, we find

100
rE=1(0 10
000
and as in Example[9.20] we find the matrix [7]% with Proposition [0.18}

()% = ()2 - (715 - i) = ()2 - (713 - ([id)Z)

B

11 1 10
=21 —-1|-10 1
1 0 1 0 0

9.4.1. Let B be the basis (1,1 + 2,1+ + 2%, 1 + z + 2% + 2%) for R[z]3. Let
T: R[z]3 — Rz]s be the linear map given by T'(f) = f’.
(1) Determine the matrix [T]5 directly.
(2) Determine the matrix [7]5 by first determining the matrix [T]% for the
basis C' = (1, z, 22, 23), and then using a basis change matrix.

W=

LoD | =
winowe =

Exercises
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9.4.2. Let L C R? be the line given by y = 2z. Let m: R? — R? be the orthogonal
projection of R? on L.
(1) Determine [7]B, where B is the standard basis.
(2) Determine v; and vy such that (vq) is a basis for L and (v) is a basis for
LY. Set C = (v1,v2). Determine [r]&.
(3) Determine [7]5 again, this time using [7]& and a basis change matrix.
9.4.3. Let V C R3 be the plane given by = + 3y — 2z = 0. Let 7: R? — R? be the
orthogonal projection of R3 on V. Let B be the standard basis for R3.
(1) Determine [7]5 directly.
(2) Determine [7]5 via [7]&, where C' = (v1,v2,v3) is a basis consisting of a
basis (v1,v9) for V and a basis (vs) for V*.

9.5. Similar matrices and the trace
~
= Definition 9.22. We say that two n x n matrices M and M’ are similar if there

E is an invertible n x n matrix @ such that M’ = QMQ~.

A\ AL LR RRRRERIRRERIERIEREERIERERENRIERERERBIERIEREIRRIERNIERIERIERRIERIERERRIRIERRIERIERRRRIERIERNRN]DS

4SS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESESESSEEEEEEEEEEEEEEEEEEEEEEEER?

The notion of similarity defines an equivalence relation on Mat(n, F') (see Exer-
cise [9.5.2)). Proposition shows that any two matrices associated to the same
endomorphism of V', but with respect to different bases, are similar. The converse,
namely that any two similar n x n matrices are associated to the same endomor-
phism with respect to two appropriately chosen bases, will be proved in the next
section (see Proposition [9.29).

The next section also touches on the classification of matrices with respect to
similarity, which is complicated. For purposes of classification, it is useful to have
inwvariants, that is, functions that are constant on the equivalence classes.

The rank is an invariant with respect to similarity, that is, any two similar matrices
have the same rank (see Exercise [9.5.3). Here is another invariant (shown to be

invariant in Corollary [9.25]).

.‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.‘

= Definition 9.23. For A = (a;;) € Mat(n, F), we define the trace of A to be .
i TT(A):(I11+GQQ+"'+ann. E
‘...................................................................................l’
Lemma 9.24. If A € Mat(m x n, F') and B € Mat(n x m, F'), then
Tr(AB) = Tr(BA) .
i Proof. The (i,7)-entry of ABis > 7 a;;bji. The (g, j)-entry of BAis Y ", bjiai;.
So we get
TI'(AB) = Z Z aijbji = Z Z bjiaij = TI(BA) .
i=1 j=1 j=1 i=1
B [

Corollary 9.25. Let A, A’ € Mat(n, F') be similar. Then Tr(A) = Tr(A’).

Proof. There is an invertible matrix Q € Mat(n, F') such that A’ = QAQ'. Tt
follows from Lemma [9.24] that

Tr(A) =Tr(QA- Q1) =Tr(Q ' - QA) = Tr(A).
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This allows us to make the following definition.

‘Illl..ll.l.l.l.ll..lll.lll.ll..llllll..ll.lll.lll..ll.l.l.l.ll..lll.lll.ll.lllllll....
t Definition 9.26. Let V be a finite-dimensional F-vector space and f : V — V an :
= endomorphism of V. We define the trace Tr(f) of f to be the trace of any matrix &
= associated to f relative to some basis of V.

ammm

Note that Tr(f) is well-defined, since all matrices associated to f are similar by
Proposition and therefore have the same trace according to Corollary |9.25|

In the next chapter, we will introduce another invariant, which is even more im-
portant than the trace: the determinant.

Exercises

9.5.1. Determine the trace of the following three matrices.

1 2 2 1
4 -3 5 2
Mi=1 o 1 5 11
3 2 7 -13
11 1 1\ '/1 2 2 1 11 1 1
|12 3 4 4 -3 5 2 12 3 4
2= 1 4 9 16 2 1 5 11 1 4 9 16
1 8 27 64 3 2 7 —13/ \1 8 27 64
11 1\ '/1 5 6 1 2 2\ /15 6\ /11 1
Ms=1[1 5 7 02 7|14 -3 5|0 27 1 5 7
1 25 49 003/ \=2 1 5/\oo 3 1 25 49

9.5.2. Show that the notion of similarity defines an equivalence relation on the space
Mat(n, F') of n x n matrices, as claimed.

9.5.3. Show that any two similar matrices have the same rank.

9.6. Classifying matrices

9.6.1. Similar matrices. Proposition shows that any two matrices as-
sociated to the same endomorphism of V', but with respect to different bases, are
similar. Conversely, Proposition implies that for any two similar n X n ma-
trices My, My over F, there are an endomorphism f of F™ and two bases B; and
By for F™ such that M; = [f]gz for i € {1,2}. The proof of Proposition @ uses
the following lemma.

Lemma 9.27. Suppose V is an n-dimensional vector space over F with basis B.
Then for every invertible n X n matriz P, there is a basis B’ for V such that
idy]E = P.

Proof. Set w; = pp(P -e;) for all 1 < j < n, and set B’ = (wq,wy, ..., w,).
Then we have pp = @pofp. The map pp is an isomorphism by Proposition[7.29
and fp is an isomorphism because P is invertible, so their composition g is in-
vertible as well and B’ is a basis by Proposition . From fp = ¢5' oidy opp,
we conclude P = [idy]2 . O

[ Example 9.28. For V = F" and B = FE, the standard basis for F", we can
make this much more concrete. Let P be an every invertible n x n matrix, and
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let wy, ..., w, € F™ be the columns of P. Then the sequence B’ = (wy, ..., w,)

is linearly independent, so it is a basis for . We have P = [id]2" by Exam-
ple[9.13] See Exercise for the case that B is any basis of F™.

|

Proposition 9.29. Let M and M’ be two similar n x n matrices over F. Then
there exists a basis B of F™ such that for M' = [fu]5.

Proof. Since M’ and M are similar, there is an invertible n X n matrix P such

that M’ = P~*MP. By Lemma there is a basis B such that [idp]2 = P,

where F is the standard basis for F". Then we have

M' = P'MP = ([idp]2) " - [furl B lidpe] = [idpe]5 - [far] - [idpe]B = [farl .
O

The classification of matrices in Mat(n, F') with respect to similarity is complex.
What is still easy, is that the ‘multiplication by A’ endomorphism (for A\ € F) has
matrix Al, regardless of the basis, and so [, and pl,, are not similar if A # pu.

Before we give a more complex example, we state the following lemma.

Lemma 9.30. Suppose that the n x n matrices M and N over F are similar.
Then for every scalar X\ € F', the matrices M — \I,, and N — \I,, are similar as
well.

B Proof. Suppose M and N are similar. Then there is an invertible matrix )
such that N = QMQ~!. Then the identity

QM —ML)Q ' =QMQ™' —Q\,)Q ' =N - \QLQ ' =N -\,
shows that M — \I,, and N — \I,, are similar as well. O

[ Example 9.31. Consider the real matrices

At
”Ai::(o A)

with trace Tr(M, ;) = 2\. Since any two similar matrices have the same trace,
we find that M), and M, , can be similar only when A = ;1. We have

1 ift#0,

dimker(My; — A\y) = {2 P

By Lemma [9.30| and the fact that similar matrices have kernels of the same
dimension, we conclude that M) o and M) ; are not similar. On the other hand,
M, is similar to M) ; if t # 0, since

03)=06 )6 )60

This example gives us a first glimpse of the classification theorem, the ‘Jordan
| Normal Form Theorem’.
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9.6.2. Equivalent matrices.

Proposition 9.32. If f : V — W 1is a linear map between finite-dimensional
F-vector spaces and M € Mat(m x n, F') is the matriz associated to f relative
to some choice of bases of V. and W, then the set of all matrices associated to f
relative to any choice of bases is

{QMP : P e Mat(n,F), Q € Mat(m, F), P and Q invertible} .

Proof. By Proposition [9.18] every matrix associated to f is in the given set.
Conversely, let B and C be the original bases for V and W, so that M = [f]5.
Given invertible matrices P and @), we can find bases B’ and C’ for V and W,
respectively, such that P = [id]%" and Q! = [id]§ by Lemma [9.27, Then (by
Proposition again) we have QM P = [f]5,. O
* Definition 9.33. We say that two matrices M, M’ € Mat(m xn, F') are equivalent =
2 if there are invertible matrices P € Mat(n, F) and Q € Mat(m, F) such that &
s M =QMP.

’.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

]

n

g
>

This notion does indeed define an equivalence relation on Mat(m x n, F') (see
Exercise [9.6.2). It is weaker than the notion of similarity in the sense that any
two similar square matrices are equivalent, while two equivalent matrices need not
necessarily be similar.

Proposition [9.18 shows that any two matrices associated to the same linear map
f: V. — W, but with respect to different bases, are equivalent. Proposition [9.32]
shows that the converse holds as well.

If we choose bases that are well-adapted to the linear map, then we will obtain a
very nice matrix. This is used in the following result.

Corollary 9.34. Let M € Mat(m x n, F). Then there are invertible matrices
P e Mat(n, F') and Q € Mat(m, F) such that
10 - 00 --- 0
01 - 00 --- 0
QMP=10 0 10 0 =< L | O )
0 0 00 0 O(m—ryxr | Otm—r)x(n—r)
00 00 0
where r = rk(M).

Proof. Let V.= F* W = F™ and let f = fy; : V — W be the linear map
given by M. By the Basis Extension Theorem we can choose a basis
B = (vy,...,v,) for V such that v,41,...,v, is a basis of ker(f). We have
dimker(f) =n —r, sork f = r by Theorem [8.3| Since f(v;) =0 for r < i < n,
the r elements wy = f(vq),...,w, = f(v,) generate the image im f, which has
dimension 7, so these r elements are linearly independent by Theorem [7.47]
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Hence, we can extend them to a basis C' = (wy, ..., wy,) for W. We then have

w, ifl1<i<r
f(vi)—{o frel1<i<n,

So the matrix M’ = [f]E associated to f with respect to B and C has the

required form. Set P = [id]2 and Q = [id]é", where E, and E,, are the

standard bases of F'™ and F™, respectively. Then by Proposition [9.18] we have
M' = [f1¢ = il - [f1z;, - [id]E, = QMP,

as M is the matrix associated to f = fy; relative to the standard bases F,

B and FE,,. O

Corollary implies the following, which shows that it is easy to classify matrices
up to equivalence.

[

Corollary 9.35. Two m xn matrices M and M’ are equivalent if and only if they
have the same rank.

Proof. First note that if M and M’ are equivalent, they must have the same
rank, since the rank does not change under multiplication by invertible matrices
(see Exercise . For the converse, suppose M, M’ are m x n matrices of
rank r. Then Corollary tells us that M and M’ are both equivalent to the
matrix given there, and hence equivalent to each other. Il

[~ Remark 9.36. Recall that by Proposition row operations on a matrix M
correspond to multiplication on the left by an invertible matrix, and column
operations on M correspond to multiplication on the right by an invertible
matrix. Conversely, Corollary shows that any invertible matrix is the
product of elementary matrices, each corresponding with an elementary row
operation (if multiplied by from the left) or column operation (if multiplied by
from the right). This has two interesting implications.

(1) Corollary implies that any matrix M can be transformed into
the given simple form by elementary row and column operations. The
advantage of this approach is that by keeping track of the operations,
we can also determine the matrices P and () explicitly, much in the
same way as when inverting a matrix, cf. the first alternative proof of
Theorem [B.12]

(2) Interpreting M as the matrix [f]2 associated to a linear map f: V — W
relative to some bases B and C' for V and W, respectively, we see from
Proposition that row operations on M correspond to changing the
basis of the target space W, whereas column operations correspond to
changing the basis of the domain space V.

Exercises

9.6.1. This exercise generalises Example and makes Lemma [9.27] concrete for
V = F". Let B = (wy,...,w,) be a basis for F™ and let ) be the matrix
whose columns are wi,...,w,. Let P be any invertible n x n matrix and let
V1,V2, ...,V be the columns of the matrix QP. Show that B’ = (v1,...,v,) is
a basis for F™ and we have P = [idpn]E .

9.6.2. Show that the notion of equivalent matrices defines an equivalence relation
on the space Mat(m x n, F') of m x n matrices, as claimed.

9.6.3. Show that any two equivalent matrices have the same rank.




CHAPTER 10

Determinants

We will define the determinant det f of any endomorphism f: V — V of a finite-
dimensional vector space V over a field F'. The most important properties of the
determinant include the fact that f is an isomorphism if and only if det f # 0,
and the fact that it is multiplicative, that is, det(f o g) = (det f) - (det g).

10.1. Determinants of matrices

We start with the case V = F™, so that f: V — V is given by some matrix. In
the case F' = R, the determinant of f: R” — R" will turn out to correspond with
the factor by which f scales ‘oriented volumes’ (see Remark [10.14]). So we have
to think a little bit about functions that define ‘oriented volume’.

We will only consider parallelotopes; these are the bodies spanned by n vectors
Vi, ...,0, € R™

P(Ul,...,’l)n):{>\101+"'+)\nvnI)\l,...,)\né[0,1]}.

The parallelotope P(vy,...,v,) is the image of the ‘unit cube’ P(ey, ..., e,) under

the linear map that sends the standard basis vectors ey, ..., e, to vy,...,v,; this
map is po: R® — R” for the sequence C' = (vy,...,v,), and it is given by the
matrix that has vq,...,v, as columns.

Now let us assume D: Mat(n,R) — R is a function that measures oriented vol-
umes in the sense that for any n x n matrix A, the absolute value |D(A)| can
be interpreted as a volume of the image of the ‘unit cube’ P(ey,...,e,) under
fa, that is, a volume of the parallelotope P(vy,...,v,), where vy,..., v, are the
columns of A.

Note that if the n x n matrices A and A" have the same columns, but in a
different order, then their associated parallelotopes are the same, so we have
|D(A)| = |D(A’)|. Even though the parallelotope P(vy,...,v,) does not deter-
mine the order of the vectors vy,...,v,, by abuse of language we say that the
oriented volume of the parallelotope P(vy,...,v,) is D(A), where A is the matrix
with columns vy, ..., v, in the same order as in the notation P(vy,...,v,).

Example 10.1. For n = 1, the absolute value is a 1-dimensional volume, also
known as length: a number v € R has a length |v|. As oriented volume we
can take the identity: the oriented volume of v is v itself, which is (obviously)
negative when v is negative, while its absolute value is the usual length.

With a generalisation to arbitrary fields in mind, what properties should such a
function

D: Mat(n,F) — F
satisfy?
For notational convenience, for any m x n matrix A over F', any integer 1 < j < mn,
and any vector z € F'", we denote by 7;(A, x) the matrix obtained by replacing the

179
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j-th column of A by z; similarly, for integers 1 < j, k < n and vectors x,y € F™, we
denote by 7;5(A, ,y) the matrix obtained by replacing the j-th and k-th column
of A by x and vy, respectively.

The oriented volume should scale corresponding to scaling of the vectors, that is,
(10.1) D(rj(A, z)) = AD(r;(A,z)) forall 1 < j <mnandall x € F™.

Also, volumes should be additive in the following sense:
(10.2)
D(rj(A,x +vy)) = D(rj(A,z)) + D(rj(A,y)) forall 1 <j <nand all z € F™.

We will now give a motivation why we want D to satisfy these properties over R.
If the n — 1 columns vy,...,vj_1,V41,...,0, of A other than the j-th column,
span an (n — 1)-dimensional parallelotope B = P(vy,...,v,_1,Vjt1,. .., V) inside
a hyperplane H with normal a, and this so-called base B has (n — 1)-dimensional
volume b, then the volume |D(A)| of P(vy,...,v,) equals b times the absolute
value of the oriented height of P(vy, ..., v,) with respect to this base; this oriented
height is the oriented length of the projection of the j-th column onto a, which
is indeed additive in the j-th column. This is depicted in Figure for R3. In
the first picture we see the base B and in the second and third pictures we see
two parallelotopes with base B and third vector x and y, respectively. The fourth
picture has these two parallelotopes stacked on top of each other and the final
picture shows a parallelotope with base B and third vector x 4+ y. One way to
think about these parallelotopes in R? is as stacks of sheets of paper, each sheet
having the shape as the base B. We start with two skew stacks, put them on top
of each other, and straighten them to one (still skew) stack, keeping the top and
bottom sheet in place. Of course, the total volume of paper does not change in
the process. Clearly, any decent person would immediately make all the stacks
straight and vertical; a stack of papers with third vector z then becomes a stack
with third vector m,(z). The three straight (but skew) stacks in Figure then
become stacks with third vector equal to m,(z), 7, (y), and m,(x + y), respectively.
Since 7, is linear, we see again that the volumes of the first two stacks add up to
the volume of the big stack.

Over any field, the two properties ((10.1)) and (10.2]) can be stated simply by saying
that D is linear in each column separately, when the other n — 1 columns are held

constant. That is, for each n x n matrix A and each 1 < j < n, the function
F* — F, x — D(r;(A,z)) is linear. Such a function D: Mat(n, F') — F is said
to be multilinear as a function in the columns.

Still inspired by the case F' = R, another property of D should certainly be
that the n-dimensional volume D(A) vanishes when the parallelotope spanned by
the columns of A is of lower dimension, that is, when the columns are linearly
dependent. Together with multilinearity, it suffices to only require the special
case when two of the columns are equal (see Lemma [10.3(1)), that is,

(10.3) D(rij(A,z,z)) =0forall 1 <i,j <n withi# j and all x € F".

A function D: Mat(n, F') — F that is multilinear in the columns and that satisfies
this third property is said to be alternating. So these are the functions we
are looking for. Note that it makes sense over any field F' to talk about functions
Mat(n, F') — F that are multilinear and alternating in the columns.
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L(a)

Ta(y)

0

A
Ta( +y)

0

F1GURE 10.1. For a fixed base, the volume is additive in the final vector

‘IIIl..ll...l...ll..ll..ll..ll..llllll..ll..ll..ll..ll...l...ll..ll..ll..ll..lll.ll....
t Definition 10.2. Let F be a field and let n be a positive integer. A function &
s Mat(n, F) — F is called a determinantal function if it is multilinear and alter-
= nating as function in the columns.

4EEEEER

How many determinantal functions are there? First, it is pretty clear that the set
of all determinantal functions on V' forms an F-vector space. So the question we
should ask is, what is the dimension of this vector space?

Before we state the relevant theorem, let us first prove a few simple properties of
determinantal functions.
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Lemma 10.3. Let F' be a field, n a positive integer, and A € Mat(n, F'). Let
D : Mat(n, F') — F be a determinantal function.

(1) If A is not invertible, then D(A) = 0.

(2) If we add a scalar multiple of the i-th column of a matriz A to the j-th
column, where i # j, then D(A) is unchanged, that is,

D(rij(A’ Z, y)) = D(Tij(Aa z,y+ /\J}))

(3) If we interchange two of the columns, then D(A) changes sign, that is,
for i # j we have

D(rij<A7 Z, y)) = _D(rij(A7 Y, l‘))

Proof. For (1), assume that A € Mat(n, F) is not invertible. Then its columns
V1, V2, ..., U, are linearly dependent, so one of them, say v;, is a linear combi-
nation of the others, say

V; = Z )\zvz

By linearity of D in the j-th column, this implies

D(A) = D(Tj(A, ’Uj)) = D(’T’j (A, Z /\11}1)) = Z )\iD(Tj(A, 'U,L>> = Z /\10 = O,
i#j 1#] i#]

where the second-to-last equality follows from the fact that for ¢ # j, the matrix

r;(A,v;) has two identical columns, namely the i-th and the j-th.

We now prove (2). By linearity of D in the j-th column and the fact that D is
alternating, we have

D(rij(A,z,y + Az)) = D(ri;(A, z,y)) + AD(ri(A, z,2)) = D(ri;(A, 2, y)).
Finally, for (3), suppose we have z,y € F™. Then we obtain
0=D(rij(A,z+y,x+y)) =D(ri;(A z,z)) + D(ri;(A, z,y)) + D(ri;(A, y, x))

+ D(rij(A,y,y)) = D(rij(A,z,y)) + D(ri;(A,y, x)),
so D(ri;(A,z,y)) = —D(ri;(A,y,x)). O

|

Proposition 10.4. For any field F, non-negative integer n, and element \ € F,
there is at most one determinantal function D: Mat(n, F') — F with D(I,) = .

Proof. Suppose D: Mat(n, F') — F is a determinantal function with D(I,,) = .
Lemma [10.3(1) gives D(A) = 0 if A is not invertible. Otherwise, the matrix A
is invertible, and we can transform it into the identity matrix I,, by elementary
column operations. The multilinearity of D and Lemma tell us how the
value of D changes in the process: we see that

D(A) = (=1)*6'D(1,) = (=1)"6 X,
where £ is the number of times we have swapped two columns and ¢ is the

product of all the scaling factors we have used when scaling a column. This

shows that D is uniquely determined, as D(A) is determined for any matrix A.
O

We cannot use the observation made in the proof of Proposition [10.4] easily to
show the existence of a determinantal function on F™, as we would have to show
that (—1)*6~! does not depend on the sequence of elementary column operations
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we have performed in order to obtain [,,. Instead, we define an explicit function
and show that it is determinantal.

.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII..

: Definition 10.5. We define the functions

d,: Mat(n,F) — F

(for n > 0) inductively. We set dy(Ip) = 1 for the unique 0 x 0 matrix Iy. For
n > 0 we choose an index 1 <7 < n and set

n

(10.4) dn(A) =) (1) May; - dny(Ay),

Jj=1

= where a;; is the entry in the i-th row and j-th column of A and A;; is the submatrix
= of A obtained by deleting the i-th row and the j-th column from A.

’.lllIlllIlllIlllIlllIllllllllIIIIIIIIIIIIIIIIIlllIlllIlllIlllIIIIIIIIIIIIIIIIIIIIIII

Note that we have d; (()\)) = A, which could also have been used as the base case
in the inductive definition of the functions d,,.

A

priori, the function d,, might depend on the choice of the index i, and the

analogous choices made to define dy,...,d,_1). The following proposition says
that d,, does not depend on these choices.

‘.IlllIIIIIIIIIIIIIIIIIIIIIII

Proposition 10.6. For any integer n > 0, the function d,: Mat(n, F) — F is a
determinantal function with d,(I,) = 1 that is independent of the choice of i in

Definition [10.5.

Proof. We use induction on n. For n = 0 the statement is trivial. (If you suffer
from horror vacui, that is, you are afraid of the empty set, you can consider
n = 1; then d;: Mat(1, F) — F sends the 1 x 1 matrix (\) to A.) For the
induction step, we assume n > 1 and let ¢ be the corresponding choice from

Definition [10.3

We first show that d,, is linear in each of its columns. Indeed, note that the
function F™ — F™~! that deletes the i-th coordinate is linear. By the induction
hypothesis, this implies that for 1 < j, k < n, the function Mat(n, F') — F that
sends A to d,,_1(A;;) is linear as a function in the k-th column of A for k # j
and constant for £ = j; the function A — qa;; is the opposite, constant as a
function in the k-th column of A for £ # j and linear for k£ = j. So the j-th
term in the right-hand side of is linear in all columns. Therefore, so is
the sum d,,.

To see that d,, is alternating, we will show that for any n x n matrix A of which
the k-th and /-th column are the same for some k < [, we have d,(A) = 0. Let
A be such a matrix. Then for 1 < j <n with j # k,[, the submatrix A;; also
has two identical columns, so d,_1(A;;) = 0 by the induction hypothesis. We
conclude
dn(A) = (—1)i+kc . dn—l(Azk) + (—l)i—HC . dn—l(Az‘l)

with ¢ = a;;, = a;. The matrices A;, and A;; have the same columns, but in
a different order: the matrix A;; can be obtained from A; by shifting the k-th
column [ — k — 1 positions to the right, or, equivalently, swapping this column
with its right neighbor [ — k — 1 times. Since d,,_; is an alternating multilinear
function in the columns, we find d,,_1(Ay) = (—=1)""*"'d,,_1(Ay) by Lemma
10.3((3). This means that the two terms for j = k and j = [ cancel and we have
d,(A) =0.
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We conclude that d,, is indeed a determinantal function. It is easy to check
that d,(I,) = 1. From Proposition we conclude that these two properties
already determine d,, uniquely, so it is independent of the choice of ¢, which
finishes the proof. |

Corollary 10.7. The determinantal functions Mat(n, F') — F form an F-vector
space of dimension 1.

Proposition implies it is at least 1. OJ
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: Definition 10.8. For any field F' and any non-negative integer n, we let
det: Mat(n, F) — F

be the unique determinantal function with det(Z,) = 1; for A € Mat(n, F'), we
call det(A) the determinant of the matrix A.

IIIlllIllllllllIIIIIIIIIIIIIlllIlllIlllIlllIlllIllllllllllllIIIIIlllllllllllllllllll'

I: Proof. From Proposition it follows that the dimension is at most 1, while

llllllllllllll'

.-IIIIIIIIII

Note that the field F' and the dimension n are not explicit in the notation det; by
Proposition [10.6] we have det = d,,. If A = (a;;) is written as an n x n array of
entries, we also write

ay; a2 -+ Aip
a a e Aon,
det(A) =| = 7 ?
Ap1 Ap2 - Ann
and by (10.4]) we have
(10.5) det(A) =Y (1) a;; det(Aj)
=1

for all 1 < ¢ < n; this is called the expansion of the determinant along the i-th
row.

[ Example 10.9. For 2 x 2 matrices and 3 x 3 matrices, we find

CCL Z = ad — bc,
a b c
d e fl=uaei+bfg+ cdh —afh— bdi— ceg.
g h 1

A mnemonic to remember the formula for 3 x 3 matrices is to repeat the first
two columns after the third, and to add the products of the entries along the
diagonals in one direction and subtract the products of the entries along the
diagonals in the other direction.

Note that for n > 3 this does not directly generalise to n x n matrices! We will
see in Exercise [10.1.5[ that for n > 1 there is a way to write the determinant of
an n X n matrix as a sum of n! terms.
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[ Example 10.10. If one of the rows of a square matrix contains many zeros,
then it is useful to expand the determinant along that row. If we expand the
following determinant along the second row, then we get

1_01;(1) -1 21 1 -1 1

——1-|1 2 1]/=212 1 1|=-1.-2-2-(-7) =12
2 1 21 Sl T L
3 110

[~ Example 10.11. Using induction, it is easy to show that the determinant of a
diagonal matrix

At 00 0
0 X O 0
0 0 As 0
0O 0 0 - A

equals the product [, A; of the diagonal elements. The same holds for upper
triangular matrices, which are matrices of which all entries below the diagonal
| are zero. See Exercise [0.1.2]

The proof of Proposition gives us a second procedure to compute deter-
minants: we perform elementary column operations on A, keeping track of the
scalings and swappings, until we get a zero column (then det(A) = 0), or we reach
the identity matrix.

[ Example 10.12. We compute a determinant by elementary column opera-
tions. Note that we can avoid divisions (and hence fractions) by choosing the
operations cleverly, cf. Example [6.15]

1 2 3 4 1 0 0 0 1 0 0 0 1 0 0 O
2143 12 -3 -2 =5 |21 -2 -5, |0 1 0 O
34 2 1 3 -2 -7 -—11| 3 12 -7 —11| |=21 12 17 49
4 3 1 2 4 -5 —11 —-14 4 17 —11 —-14 —-30 17 23 71
1 0 0 0 1 0 0 O 1 0 O
10 1 0 0 _9 0o 1 0 0 _9 0 1 0
=21 12 17 2| T |-21 12 1 17| 0 0 1
=30 17 23 2 -30 17 —1 23 51 29 -1

100 0

0100

=2-40 00 1 0 =80
0001

0
0
0

40
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Exercises

10.1.1. Determine the determinants of the following matrices, both by expansion
along a row and by using elementary column operations.

-2 -3 2 2 -2 -2
(:;:;) 0 1 2 1 3 -1
-3 =30 2 =2 0
1 -2 -2 -1 -3 2 1 2
1 -1 -1 2 -1 -1 =3 1
-2 -2 0 -1 3 -2 -3 -2
0 0 -1 1 3 -2 -1 -1

10.1.2. An upper triangular matrix is a square matrix of which all entries below
the main diagonal are 0. Show that the determinant of an upper triangular
matrix is equal to the product of its diagonal entries. The same is true for
lower triangular matrices.

10.1.3. For each z,y € R, determine the determinant of the matrix

1 = y
1 112 yQ
1 £L'3 y3
In Exercise[10.2.6|this will be generalised to Vandermonde matrices of arbitrary

size.

10.1.4. Let M,, denote the n x n matrix over R of which the entry in the i-th row
and the j-th column equals 1 if |i — j| < 1 and 0 otherwise. For example,

11000 0
11100
011100

Ms=1190111 0
000111
000011

(1) Compute the determinant of M, for 2 <n <5.
(2) Give (with proof) a general formula in terms of n for the determinant of
M,.

10.1.5. Let n > 1 be an integer, and let S, be the set of all permutations of the set
{1,2,...,n}. (A permutation of a set is a bijection from that set to itself.) For
any such permutation o: {1,...,n} — {1,...,n}, we define the sign ¢(o) of &
by e(0) = (—1)™) with

m(o) =#{ (i,7) : 1 <i<j<nando(i)>o(j) }.
(1) Suppose o € S, is a permutation, and k,l € {1,2,...,n} two different

elements. Let ¢’ be the permutation obtained by composing o with the
permutation that just switches k and [, so

o(i) if o(i) # k,l,
o(i) =1k if o(i) =1,
! if o(i) = k.
Show that e(0’) = (o).
(2) Show that for any n x n matrix A = (am)ij we have

det A=Y £(0) - a1,0(1)02,0(2) ** Gno(n)-
UESTL
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10.2. Some properties of the determinant

Proposition 10.13. For any n X n matrices A and B, we have
det(AB) = (det A) - (det B).

Proof. Let A be an nxn matrix. Consider the functions Dy, Dy: Mat(n, F') — F,
given by

Dy(M) = (det A) - (det M),
Do(M) = det(AM).

Then D, is a multiple of det, so D; is a determinantal function and it satisfies
Di(I,) = det A. Note that in Section just under (5.5), we have seen
that the j-th column of AM equals (A times the j-th column of A). This
implies A-r;(M, ) = r;(AM, Az), from which it is easily seen that the function
Dy is linear in each column of M. It is also alternating, because if M has
two identical columns, then so does AM and so det(AM) = 0. We conclude
that D is a determinantal function satisfying Ds(1,) = det A as well. By
Proposition we conclude Dy = Dy and in particular Dy (B) = Dy(B), that
is, det(AB) = (det A) - (det B). O

Remark 10.14. We look back at our earlier motivation for the determinant:
oriented volumes. For two real n x n matrices A and B, we can interpret
det B as the oriented volume of the parallelotope P spanned by the columns
of B, and det(AB) as the oriented volume of the image fa(P) of P under
the map f4, namely the parallelotope spanned by the columns of AB. Then
Proposition states that the oriented volume of f4(P) is (det A) times the
oriented volume of P. Hence, instead of viewing det A as the volume of the
one parallelotope spanned by the columns of A, that is, the image of the unit
cube, we can view det A as the factor by which the endomorphism f,4 scales the
volumes of all polytopes.

[Corollary 10.15. If A is an invertible matriz, then det A # 0 and

det(A™1) = (det A)~.

Proof. Let n be the number of rows (and thus also the number of columns) of
A. By Proposition [10.13], we have

(det(A™)) - (det A) = det(A™A) = det(1,,) = 1,

from which the statement follows. O

Theorem 10.16. A square matrixz A is invertible if and only if det A # 0.

Proof. If A is not invertible, then det A = 0 by Lemma [10.3] and if A is invert-
ible, then det A # 0 by Corollary [10.15] 0J

Theorem 10.17. Let A € Mat(n, F). Then det(A") = det(A).

Proof. We show that A +— det(A") is a determinantal function. First, if A
has two columns that are the same, then we have rk A < n, so we also have
rk(A") < n by Theorem [8.12[3) (see Remark [8.13)) and therefore det(A") = 0

by Lemma [10.3{(1).
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This implies that our function is alternating. Second, we have to show that
det(AT) is linear in each of the columns of A. This is obviously equivalent to
saying that det(A) is linear in each of the rows of A. To check that this is the
case for the i-th row, we expand det(A) along the i-th row according to ([10.5]).
For A = (a;j), we have
det(A) = > (—1)"a;; det(A;).
j=1

Now in A;; the i-th row of A has been removed, so det(4;;) does not depend
on the i-th row of A; linearity is then clear from the formula. Finally, we have
det(I7) = det(l,) = 1, so det(A") must coincide with det(A) because of the
uniqueness of determinantal functions (see Proposition . O

Corollary 10.18 (Expansion along Columns). We can also expand deter-
minants along columns. Let n > 1 and A = (a;;) € Mat(n,F); we use the
notation A;; as before. Then for 1 < j <n,

det(A) =) (—1)"Ma;; det(Ay) .

=1

Proof. We expand the determinant of AT along the j-th row as in ([10.5),
with the roles of i and j switched. The elements in the j-th row of A" are
a1j,a2j, - - ., Aij, SO we get
det(A) = det(A") =) (~1)"a; det((A");)
i=1

_ Z(—Di“aij det ((Ai)") = Z(—niﬂ'% det(A;;) .

OJ

[ Remark 10.19. Just as Lemma tells us how the determinant of a matrix
behaves under elementary column operations, we conclude from Theorem [10.17]
that it behaves similarly under elementary row operations.

[ Example 10.20. A matrix A € Mat(n, F) is said to be orthogonal if AAT =
What can we deduce about det(A)? Well,

1 =det(1,) = det(AAT) = det(A) det(A") = det(A)?,
so det(A) = +1.

Exercises

10.2.1. Determine (again) the determinants of the matrices of Exercise [10.1.1] this
time using elementary row operations or expansion along a column.

10.2.2. Let A, B be two n X n matrices. True or not true?

(1) Tr(AB) = Tr(BA).
Tr(AB) = (Tr A)(Tr B).
Tr(A+B)=TrA+TrB.

et(AB) = det BA.

d
det(AB) = (det A)(det B).
d

(2)
(3)
(4)
(5)
(6) det(A+ B) = det A + det B.
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(7) det A # 0 if and only if A is invertible.
10.2.3. Let M be a block matrix
A|B
M= <%W>
over a field F' with A and C' square matrices, say A € Mat(m, F') and C € Mat(n, F),

and B € Mat(m x n, F') and where 0 denotes the zero matrix in Mat(n x m, F').
Show that det M = (det A) - (det C).

10.2.4. Show that for any block matrix

A [ A |- | Al
0 | Ay | - | Ay

A= : : )
0 0 |--- | Ay

with square blocks and zeros below the diagonal blocks, we have
det A= (det All)(det A22) cee (det Att)-

10.2.5. Let M,, denote the n X n matrix over R with zeros on the diagonal and ones
for every entry off the diagonal.
(1) Compute the determinant of M, for 2 <n <5.
(2) Guess a general formula in terms of n for the determinant of M,,.
(3) Can you prove your guess?
10.2.6. Let F' be a field containing k distinct elements a1, ao,...,ar € F. By Exer-
cise the square Vandermonde matrix

1 g of -+ a’f_l
1 ag a3 --- 0/2“_1
1 o oz% S aiil

is invertible, so it has nonzero determinant. Prove that the determinant equals

[Tt = ai).

i<j

10.3. Cramer’s rule

o NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
: Definition 10.21. Let A € Mat(n, F) with n > 1. Then the adjugate matrix
= of A (sometimes called the adjoint matrix, but this also has other meanings) i
i the matrix A € Mat(n, F) whose (i, j)-entry d;; is (—1)" det(A;;). Here Aj; is,
= as before, the matrix obtained from A by removing the i-th row and j-th column.
i Note the reversal of indices: G;; = = det(A;;) and not & det(A;;)!

'.IlllIlllIllllllllIIIIIIIIIIIIIIIIIlllIlllIlllIlllIlllIllllIIIIIIIIIIIIIIIIIIIIIIIII’

=
N
[ ]

Proposition 10.22 (Cramer’s rule). Let A € Mat(n, F') with n > 1. Then
AA = AA = det(A)I, .
If A is invertible, then det(A) # 0, and
A7l = det(A)'A.

Proof. We denote the (i, j)-th entry of A by a;;. The (4, k)-th entry of AA is

Z Clij(—l)j+k det(Ak]) .
j=1
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Let A" = (a;;) be the matrix that we obtain from A by replacing the k-th row
by the i-th row. Expanding the determinant of A" by the k-th row, we find

n n

det(A) = Y (1) ay; det(Ay;) = D (=1)Fay; det(Ay),

=1 j=1
which equals the (i, k)-th entry of AA mentioned above. The claimed identity

AA = det(A)I, now follows from the fact that for i = k we have A’ = A, so
det A" = det A, while for i # k, we have det A’ = 0, as the i-th and k-th row of

A’ are equal.

The assertion on AA is proved in the same way (or by applying what we have
just proved to AT). The final claim of the proposition follows immediately. [

[ Example 10.23. The inverse of a 2 X 2 matrix

a b
c d
with determinant ad — bc # 0 is
1 d —b
ad—bc —C a :

Exercises

10.3.1. Let A € Mat(n, f) be invertible, with n > 1. Let b € F™ be a vector. Then
the equation Ax = b has a unique solution s € F". Show that if we write

s = (s1,82,...,8,) for this solution, then for all indices 1 < i < n we have
det Az(b)
§; = ———=
! detA ’

where A;(b) denotes the n x n matrix obtained from A by replacing the i-th
column by b.

10.4. Determinants of endomorphisms

Proposition 10.24. Two similar n X n matrices have the same determinant.

Proof. Let A and A’ be similar n x n matrices. Then there is an invertible n x n
matrix P such that A’ = PAP~!. Then

det A" = det(PAP™') = (det P)(det A)(det P~') = (det P)(det A)(det P)™" = det A
by Proposition [10.13] 0J

[Corollary 10.25. Let f:V — V be an endomorphism of a finite-dimensional

vector space V with two bases B and B'. Then we have det[f]5, = det[f]5.

Proof. For P = [id]5, we have P! = [id]8" and [f]5 = P - [f]8- P! by
Proposition [9.19, so [f]5 and [f]5, are similar matrices. They have the same
determinant by Proposition [10.24} OJ

Corollary [10.25 shows that the following definition makes sense.
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: Definition 10.26. Let f: V — V be an endomorphism of a finite-dimensional &
= vector space V with basis B. Then we define the determinant of f, written det f,
: to be the determinant det[f]3 of the matrix associated to f with respect to B.

’.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

‘.llllll

[ Example 10.27. If V is a finite-dimensional vector space, then for the identity
B idy: V — V we have detidy = 1.

[ Example 10.28. By Example , we of course have det f4 = det[f4]% = det A
for any square matrix A.

Example 10.29. Let V C R? be a plane and s: R? — R3 the reflection in V, cf.
Examples and [9.20, To compute the determinant of s, we may choose any

basis. Take a basis (v1,v) for V and a normal vs of V. Then B = (vy,vq, v3) is
a basis for R* (why?), and as in Example [9.11} we find

10 0

s]E=(0 1 0

00 -1
We conclude dets = det([s]8) = —1. Note that this is consistent with the
fact that the reflection s preserves volumes and changes the orientation of the

volumes.

Proposition 10.30. For any finite-dimensional vector space V' and any two en-
domorphisms f,g: V — V, we have det(f o g) = (det f) - (det g).

Proof. Choose a basis B for V. From Propositions [9.14] and [10.13| we find

det(fog) = det([fog]) = det([f13-[g]5) = (det[f]5)(detlg]}) = (det f)(det g).
O

Proposition implies that if f: V — V is an automorphism of a finite-
dimensional vector space V, then det f # 0 and det(f~!) = (det f)~!. Indeed,
apply the proposition with ¢ = f~!. The following proposition shows that the
converse holds as well.

Proposition 10.31. Let f: V — V be an endomorphism of a finite-dimensional
vector space V. Then f is an isomorphism if and only if det f # 0.

Proof. Choose a basis for B and set n = dimV. By Proposition and
Definition , the map f is an isomorphism if and only if the matrix [f]5 is
invertible. By Theorem [10.16] this is the case if and only if the determinant
det f = det([f]B) is nonzero. O

Exercises

10.4.1. Determine the determinant of the following linear maps.
(1) f:R3 = R3 (z,y,2) — (22 + 2,y — 3z, —x + 2y + 32),
(2) the rotation R? — R? about 0 over an angle ¢,
(3) the orthogonal projection R? — R3 of R? onto the plane given by the
equation r — 2y + z = 0,
(4) the map R[z]s — R[z|3 given by f — xf’ with f’ the derivative of f,
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10.4.2. Let : V — W be an isomorphism of finite-dimensional vector spaces, and
f:V — V an endomorphism of V. Show that f’ = ¢ o f o o' is an endomor-
phism of W satisfying det f' = det f.

10.4.3. Let f: V — V be an endomorphism of a finite-dimensional vectorspace V.
Let 0: V — W be a linear map. Suppose that f(kero) C kero. Let f’ be the
restriction of f to kero and let f” be the endomorphism of im ¢ induced by f
(see Exercise [.5.1). Show that det f = (det f) - (det f”).

[Hint: use Exercise [10.2.3]]

10.4.4. For every positive integer n, let M, denote the matrix over R of Exer-

cise [10.2.9]
(1) Show that for every 2 < ¢ < n, the element v; = e; — e;—1 satisfies
ani = —;.

(2) Show that v; = (1,1,...,1) satisfies My, (v1) = (n — 1)v;.

(3) Show that B = (v, v2,...,v,) is a basis for R™.

(4) Set f = fu,: R® — R™. Show that [f]5 is a diagonal matrix with its
(1,1)-entry equal to n — 1 and the other diagonal entries equal to —1.

(5) Show that det M,, = (—1)""1(n —1).

10.5. Linear equations with parameters

The determinant is very useful in studying systems of linear equations with pa-
rameters.

[ Example 10.32. For any ¢ € R we set
1 -1 ¢ 2
A= 1 1 =2 and b= 1
-1 ¢ 2 -1
For each ¢ € R, we want to know whether the linear equation A. -z = b has

no solutions, exactly one solution, or more than one solution. We first compute
the determinant by expanding it along the first column.

1 =2/ |-1 ¢ |—-1 ¢

det A, = 'c 9 ‘— P e Y (24-2¢)—(—2—c*)—(2—c) = (c+1)(c+2).
We see that for ¢ # —2, —1, the determinant det A, is nonzero, so the matrix
A, is invertible and there is exactly one z with A. -2z = b. For ¢ = —1, the
extended matrix is

1 -1 -1/ 2

1 1 -2]1

-1 -1 2 | -1
with reduced row echelon form

10 -2 32

0 1 % 21

2| 2

00 01O

It follows immediately that a = (2, —3,0) satisfies A_;-a = b. The kernel of A_;

is generated by z = (3,1, 2), so the complete solution set is { a+rz : r € R }.

Finally, for ¢ = —2, the extended matrix is
1 -1 =2 2
1 1 =2]1

-1 -2 2 | -1
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with reduced row echelon form

1 0 -2]0
01 010
00 0|1

Here, the last column does contain a pivot, so there is no solution.

Exercises

10.5.1. For any real numbers a,b € R, we define the matrix C, and the vector v, by

a a 2 2
C,=11 0 a and =11
-2 -3 1 b

(1) For each a € R, determine the rank of the matrix C,.

(2) Is C, invertible for a = 27 If no, explain why not; if yes, give the inverse.

(3) For which pairs (a,b) does the equation C,x = v, have more than one
solution z € R3?

(4) Describe the complete solution set for the pair of part (3) with the smallest
value of a.






CHAPTER 11

Eigenvalues and Eigenvectors

In Example we saw that for a reflection s: R* — R? in a plane V C R3,
there is a special basis B such that the associated matrix [s]B with respect to B
is a diagonal matrix. It allowed us to compute the determinant very easily as
the product of the diagonal entries, but it also makes other computations easier.
The k-th power of a diagonal matrix D, for instance, is just the diagonal matrix
of which the diagonal entries are the k-th power of the corresponding entries
of D. In this chapter we will investigate these special bases consisting of so-called
eigenvectors.

11.1. Eigenvalues and eigenvectors
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= Definition 11.1. Let f: V' — V be an endomorphism of a vector space V. For
sany A € F| we define the A-eigenspace of f by Ex(f) ={veV : f(v)=v};
* we say that \ is an eigenvalue of f if E\(f) contains a nonzero vector, and we call
= such a vector an eigenvector for the eigenvalue A. The spectrum Q(f) of f is the
= set of eigenvalues of f.
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[ Example 11.2. Let V = R? and consider the map f: V — V given by
f(xz,y) = (y,z). Then 1 and —1 are eigenvalues of f, and we have

El(f) - {(l’,.’L’) HEUES R}?
E_(f) ={(z,—2): 2 € R}.
The eigenvectors (1,1) and (1,—1) form a basis B of V, and the matrix of f

relative to that basis is
g (1 O
ng=(p %)

[ Example 11.3. Let V = C*(R) be the space of infinitely differentiable func-
tions on R. Consider the endomorphism D : f — f”. Then every A € R is an
eigenvalue, and all eigenspaces are of dimension two:

Lz — 1,z x) ifA=0
E\(D) = { L(x — e x> e 1) if \=p>>0
L(x = sinpz, x> cospz) if A= —p? <0
[ Example 11.4. Let s: R?> — R? be the reflection in a plane W C R2®. Then
1 is an eigenvalue with eigenspace Fj(s) = W, and —1 is an eigenvalue with
eigenspace E_(s) = W+.

If m: R?® — R3 is the orthogonal projection onto W, then 1 is an eigenvalue with
eigenspace Ei(r) = W, and 0 is an eigenvalue with eigenspace Ey(7) = W,

195
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Since any matrices A € Mat(n, F') can be identified with the associated linear
map fa: F™ — F™, it makes sense to speak about eigenvalues, eigenvectors, and
eigenspaces of a square matrix.

Proposition 11.5. Let f: V — V be an endomorphism of a vector space V.
Suppose v € V' is an eigenvector of [ for eigenvalue X\. Then for every positive
integer k, the vector v is an eigenvector for eigenvalue \* of the endomorphism

ff=fofo-of: V=V
—_—
k
If f is an automorphism, then v is an eigenvector of f=1 with eigenvalue \~*.

I: Proof. Exercise. 0

Proposition 11.6. Let f: V — V be an endomorphism of a vector space V' over
a field F'. Then for any A\ € F, we have

E\(f) =ker(f — X-idy).

Proof. This follows immediately from the fact that for every v € V we h