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Abstract. In this paper, we construct, given an integer r ≥ 5,
an infinite family of r non-overlapping blocks of five consecutive
integers with the property that their product is always a perfect
square. In this particular situation, this answers a question of
Erdős and Graham in the negative.

1. Introduction

Let us define

f(n, k) = n(n + 1) · · · (n + k − 1).

Then a beautiful result of Erdős and Selfridge [3] is that f(n, k) is never
a perfect power of an integer, provided n ≥ 1 and k ≥ 2. Likely moti-
vated by this, Erdős and Graham [2] asked whether a similar statement
might hold for

∏r
j=1 f(nj, kj), specifically as to whether the Diophan-

tine equation

(1)
r∏

j=1

f(nj, kj) = x2

has, for fixed r ≥ 1 and {k1, k2, . . . , kr} with kj ≥ 4 for j = 1, 2, . . . , r,
at most finitely many solutions in positive integers (n1, n2, . . . , nr, x)
with, say,

(2) nj + kj ≤ nj+1 for 1 ≤ j ≤ r − 1.

This latter condition enables us to avoid certain trivial cases where the
blocks of integers are chosen to substantially overlap. Ulas [7] answered
this question in the negative if

{k1, k2, . . . , kr} = {4, 4, . . . , 4}
for r = 4 and r ≥ 6 (subsequently extended to r = 3 and r = 5
by Bauer and the first author [1]; if r = 2 and k1 = k2 = 4, it is
likely that equation (1) has at most finitely many solutions – see [5]
for conditional results on this problem). Further, Ulas suggested that
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equation (1) should have infinitely many solutions in each case where
the number of blocks is suitably large relative to the interval lengths
(i.e. for r exceeding a constant that depends only on maxi{ki}). This
assertion appears to be extremely difficult to prove (or, for that matter,
disprove). As the values of the ki increase, the techniques used to
construct families of solutions to (1) in [1] and [7] seem likely to fail.
In the present note, we will, however, provide an extension of the results
of [1] and [7] to the case ki = 5 (1 ≤ i ≤ r). We prove the following
result.

Theorem 1.1. If r ≥ 5 and ki = 5 for 1 ≤ i ≤ r, then there ex-
ist infinitely many (r + 1)-tuples of positive integers (n1, n2, . . . , nr, x)
satisfying equation (1) and (2).

2. Proof of Theorem 1.1

The argument in [1], in case ki = 4 (1 ≤ i ≤ r), proceeds as follows.
From, for example, the polynomial identities

f(N, 4)f(2N + 3, 4) = (2N2 + 5N)(2N2 + 5N + 3) (2(N + 2)(N + 3))2

and
f(M, 4) = (M2 + 3M)(M2 + 3M + 2),

it follows, if N and M satisfy

(3) 2
(
2N2 + 5N

)
= 3

(
M2 + 3M

)
,

that f(N, 4)f(M, 4)f(2N + 3, 4) is a square. Writing u = 4N + 5 and
v = 2M + 3, equation (3) is equivalent to the Pell-type equation

u2 − 3v2 = −2,

where we are interested in solutions with u ≡ 1 (mod 4). Since it is
readily shown that there are infinitely many such solutions, it is easy
to conclude that there exist infinitely many solutions to (1) in the case
r = 3, k1 = k2 = k3 = 4 (and, since min{ni} can be taken arbitrarily
large, in fact, after a little work, for r ≥ 3 and ki = 4, 1 ≤ i ≤ r).

It is unclear whether this argument can be extended to handle cases
with ki ≥ 5. Instead, we search for four polynomials pi(t) ∈ Z[t]
(1 ≤ i ≤ 4) with the property that pi(t) 6= pj(t) + k for 1 ≤ i, j, k ≤ 4
and i 6= j, and for which

(4) f(p1(t), 5)f(p2(t), 5)f(p3(t), 5)f(p4(t), 5) = g(t)h2(t),

where g, h ∈ Z[t] and g has degree at most two. If we can find such
polynomials, we might optimistically hope that there exist infinitely
many values of the parameter t for which g(t) is a perfect square; the
quadruples (n1, n2, n3, n4) = (p1(t), p2(t), p3(t), p4(t)) would provide a
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negative answer to the question of Erdős and Graham in the case r = 4
and k1 = k2 = k3 = k4 = 5. This hope turns out to be too optimistic,
at least for the solutions to (4) that we find. However, an adaptation
of this strategy will still allow us to answer the question negatively for
r ≥ 5.

We define di = deg(pi) and narrow our search to the case where
(d1, d2, d3, d4) = (1, 1, 2, 2). Under this restriction, the irreducible fac-
tors of f(p1(t), 5)f(p2(t), 5) are all linear, so if (4) holds, then the
product f(p3(t), 5) f(p4(t), 5) has at most one single irreducible qua-
dratic factor, up to squares of polynomials. In the following table, we
list quadratic polynomials p3(t) and p4(t) with this property; while we
do not prove that this list is exhaustive, we know of no other examples
(up to scaling and translation).

N p3(t) p4(t) N p3(t) p4(t)
4t2 + 3t− 4 N 2N 24t2 + 13t N − 2 2N
8t2 + t− 3 N 2N 24t2 + 19t + 2 N − 2 2N
12t2 + t− 4 N 2N 24t2 + 23t + 1 N − 2 2N
12t2 + 5t− 6 N 2N 32t2 + 14t + 1 N − 2 2N
12t2 + 7t− 3 N 2N 36t2 + 23t + 2 N − 2 2N
12t2 + 11t− 4 N 2N 36t2 + 31t + 5 N − 2 2N
2t2 + 2t− 3 N − 1 2N 18t2 + 6t− 3 N − 1 2N
4t2 + t− 2 N − 1 2N 24t2 + 4t− 3 N − 1 2N
6t2 + 2t− 3 N − 1 2N 24t2 + 20t + 1 N − 1 2N
8t2 + t− 3 N − 1 2N 36t2 + 3t− 2 N − 1 2N
12t2 + t− 4 N − 1 2N 36t2 + 21t + 1 N − 1 2N
12t2 + 5t− 6 N − 1 2N 36t2 + 27t + 3 N − 1 2N
12t2 + 5t− 1 N − 1 2N 24t2 + t− 7 N 2N
12t2 + 7t− 3 N − 1 2N 24t2 + 5t− 4 N 2N
12t2 + 11t− 4 N − 1 2N 24t2 + 11t− 3 N 2N
12t2 + 11t + 1 N − 1 2N 24t2 + 17t− 4 N 2N

4t2 + t− 2 N − 2 2N 36t2 + 5t− 4 N 2N
8t2 + 7t + 1 N − 2 2N 36t2 + 13t− 3 N 2N
12t2 + t− 4 N − 2 2N 36t2 + 19t + 1 2N − 1 3N
12t2 + 5t− 1 N − 2 2N 36t2 + 35t + 7 2N − 1 3N
12t2 + 7t− 3 N − 2 2N 36t2 + 19t + 1 2N − 2 3N
12t2 + 11t + 1 N − 2 2N 36t2 + 35t + 7 2N − 2 3N

4t2 + t− 2 N − 3 2N 24t2 + 13t + 1 N − 3 4N
24t2 + 7t− 4 N − 2 2N 24t2 + 19t + 3 N − 3 4N
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From this list, it is relatively easy to check that the only case where
there exist linear polynomials p1(t) and p2(t) and polynomials f, g for
which (4) holds is when N = 4t2 + t−2, p3(t) = N−3 and p4(t) = 2N .
Indeed, one easily checks that the polynomials

p1(t) = 4t− 4,

p2(t) = 4t + 1,

p3(t) = 4t2 + t− 5,

p4(t) = 8t2 + 2t− 4

g(t) = 2 (4t2 + t− 4)

h(t) = 2−3(4t2 + t− 2)(4t2 + t− 1)
5∏

j=−4

(4t + j)

satisfy (4). Unfortunately, g(t) is not a perfect square for any integer
t, as it is never a square modulo 25.

It is possible, however, to use this construction to answer the question
of Erdős and Graham in the negative, for values of r ≥ 5 (with ki = 5
for all i).

Lemma 2.1. Suppose D < 100 is a positive squarefree integer. Then
the equation

(5) g(t) = Ds2

has infinitely many solutions in positive integers s and t if and only if

D ∈ {5, 7, 13, 37, 47, 58, 67, 73, 83, 97}.

Proof. In each case, there either exists a local obstruction to solvability
or infinitely many solutions. A useful online resource for such questions
is http://www.alpertron.com.ar/QUAD.HTM. The solutions one finds
are readily described in terms of binary recurrence sequences. �

Proof of Theorem 1.1. We will use induction on r. First suppose r ∈
S = {5, 6, 7, 9, 10, 11, 12}. We take an integer D and r − 4 integers
n1, . . . , nr−4 satisfying

r−4∏
j=1

f(nj, 5) = Dy2
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for some y, as in the following table.

r D n1, . . . , nr−4

5 5 2
6 7 1, 6
7 13 1, 6, 24
9 7 1, 8, 13, 24, 32
10 47 1, 7, 14, 20, 32, 44
11 13 1, 6, 24, 30, 64, 132, 152
12 13 1, 8, 13, 32, 57, 118, 272, 548

By Lemma 2.1, there are infinitely many pairs (s, t) of integers satisfy-
ing g(t) = Ds2, with p1(t) > nr−4 + 4, so that (1) and (2) are satisfied
with nr−4+i = pi(t) (1 ≤ i ≤ 4) and x = Dysh(t). This proves the
statement of the theorem for r ∈ S.

Now suppose r ≥ 5 and r 6∈ S and set q = r − 8, so that q = 0,
or q ≥ 5. In both cases (in the former trivially and in the latter
by the induction hypothesis), there are positive integers n1, . . . , nq, w
satisfying (1) and (2) with q instead of r and w instead of x.

By Lemma 2.1, there are infinitely many quadruples (s1, t1, s2, t2) of
integers, with p1(t1) > nq + 4 and p1(t2) > p4(t1) + 4 satisfying g(ti) =
5s2

i (i = 1, 2); for each quadruple, (1) and (2) hold with nq+j = pj(t1)
and nq+4+j = pj(t2) (1 ≤ j ≤ 4) and x = 5ws1s2h(t1)h(t2). This proves
the theorem for all r ≥ 5. �

Remark Geometrically speaking, equation (1) determines a double
cover of the affine space Ar with coordinates n1, . . . , nr. We are inter-
ested in studying integral points on this variety. The inequalities in
(2) imply that we exclude certain subvarieties given by, for instance,
nj +l = nj+1 for some 0 ≤ l < kj. One might wonder for which r-tuples
k1, k2, . . . , kr the double cover is of so-called general type. In such cases,
Lang’s conjecture implies that even the set of rational points is not
dense on the variety, so we might expect very few integral points. For
k1 = . . . = kr = k, however, the variety is of general type if and only if k
is at least 5 and we just proved that for k = 5 there are infinitely many
integral points when r ≥ 5. Since Lang’s conjecture leaves the possibil-
ity that certain subvarieties contain infinitely many integral points, it
does not actually provide information about our problem. Indeed, the
points we have found all lie on the subvariety given by nr = 2nr−1 + 6.

3. Concluding remarks

We know of no solutions whatsoever to equation (1) with ki = 5 for
1 ≤ i ≤ r and r ≤ 3. For r = 4, there are many solutions (in all
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likelihood, infinitely many), including, by way of example, ones with
(n1, n2, n3, n4) = (1, 14, 24, 48) and (n1, n2, n3, n4) = (17, 24, 33, 74). If
we consider products of blocks of consecutive integers of length six or
more, the techniques discussed here appear unlikely to yield analogous
results (though such results may well still be true).
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[3] Erdős, P. and J. L. Selfridge. The product of consecutive integers is never
a power. Illinois J. Math. 19 (1975), 292–301.

[4] Guy, R.K. Unsolved Problems in Number Theory. 3rd ed. Springer, 2004.
[5] Luca, F. and P.G. Walsh. On a Diophantine equation related to a conjec-
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