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Goals:

(1) Computing Mordell-Weil groups of Jacobians

(2) Constructing nontrivial elements of Shafarevich-Tate groups

Tools:

(a) 2-descent on Jacobians

(b) Brauer-Manin obstruction to the existence of rational points
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Let C be a smooth, geometrically irreducible curve of genus 2 over a

number field K, and J the Jacobian of C.

Mordell-Weil Theorem:

J(K) is finitely generated.
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Let C be a smooth, geometrically irreducible curve of genus 2 over a

number field K, and J the Jacobian of C.

Mordell-Weil Theorem:

J(K) is finitely generated.

Primary goal:

Compute J(K) ∼= J(K)tors ⊕ Zr.

• J(K)tors: finite, easy to compute.

• J(K)tors and r known ⇒ J(K) computable.

• The rank r can be read off from

J(K)tors & J(K)/2J(K).

4



There are cohomologically defined finite groups

Sel(2)(K, J), the 2-Selmer group,
X(K, J), the Shafarevich-Tate group,

with

0→ J(K)/2J(K)→ Sel(2)(K, J)→X(K, J)[2]→ 0.

2-descent: compute Sel(2)(K, J) and decide which

of its elements come from J(K)/2J(K) (i.e., map to 0).
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There are cohomologically defined finite groups

Sel(2)(K, J), the 2-Selmer group,
X(K, J), the Shafarevich-Tate group,

with

0→ J(K)/2J(K)→ Sel(2)(K, J)→X(K, J)[2]→ 0.

2-descent: compute Sel(2)(K, J) and decide which

of its elements come from J(K)/2J(K) (i.e., map to 0).

Assumption: We can compute Sel(2)(K, J).

Remaining goal: Which elements of Sel(2)(K, J) map to 0?
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Element of Sel(2)(K, J): a twist π : Y → J of the map [2]: J → J

(over K there is an isomorphism σ such that

YK
∼=
σ

π

JK

[2]

JK JK

commutes), where Y is locally soluble everywhere.

The element Y → J maps to 0 in X(K, J)[2] iff Y (K) 6= ∅.
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Element of Sel(2)(K, J): a twist π : Y → J of the map [2]: J → J

(over K there is an isomorphism σ such that

YK
∼=
σ

π

JK

[2]

JK JK

commutes), where Y is locally soluble everywhere.

The element Y → J maps to 0 in X(K, J)[2] iff Y (K) 6= ∅.

Problem: The surfaces Y are described by 72 quadrics in P15 . . .
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Solution: A quotient of Y .

[−1] on J commutes with translation by 2-torsion points ⇒

it induces a unique involution ι of YK , defined over K. Set X = Y/ι.

9



Solution: A quotient of Y .

[−1] on J commutes with translation by 2-torsion points ⇒

it induces a unique involution ι of YK , defined over K. Set X = Y/ι.

Advantages:

• X is a complete intersection of 3 quadrics in P5.

• X(K) = ∅ ⇒ Y (K) = ∅

Disadvantage:

• This only gives sufficient conditions for Y (K) = ∅.
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Solution: A quotient of Y .

[−1] on J commutes with translation by 2-torsion points ⇒

it induces a unique involution ι of YK , defined over K. Set X = Y/ι.

Advantages:

• X is a complete intersection of 3 quadrics in P5.

• X(K) = ∅ ⇒ Y (K) = ∅

Disadvantage:

• This only gives sufficient conditions for Y (K) = ∅.

Situation: Such K3 surfaces are everywhere locally soluble, but may

still satisfy X(K) = ∅. Do they?
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Tool: Brauer-Manin obstruction.
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Tool: Brauer-Manin obstruction.

For any scheme Z we set BrZ = H2
ét(Z,Gm).

For any K-algebra S and any S-point x : SpecS → X, we get a homo-

morphism x∗ : BrX → Br S, yielding a map

ρS : X(S)→ Hom(BrX,Br S).

13



Tool: Brauer-Manin obstruction.

For any scheme Z we set BrZ = H2
ét(Z,Gm).

For any K-algebra S and any S-point x : SpecS → X, we get a homo-

morphism x∗ : BrX → Br S, yielding a map

ρS : X(S)→ Hom(BrX,Br S).

Apply this to K and to the ring of adèles

AK =
∏

v∈MK

′ Kv (almost all coordinates are integral).
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From class field theory (and comparison theorems) we have

0→ BrK → BrAK → Q/Z

Applying Hom(BrX, ) we find . . .
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0→ Hom(BrX,BrK )→Hom(BrX,BrAK)→ Hom(BrX,Q/Z)
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0→ Hom(BrX,BrK )→Hom(BrX,BrAK)→ Hom(BrX,Q/Z)

X(K)

ρK ρAK

X(AK)
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0→ Hom(BrX,BrK )→Hom(BrX,BrAK)→ Hom(BrX,Q/Z)

X(K) X(AK)

ρK ρAK
ψ
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0→ Hom(BrX,BrK )→Hom(BrX,BrAK)→ Hom(BrX,Q/Z)

X(K) X(AK)

ρK ρAK

X(AK)
Br = ψ−1(0)

ψ
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0→ Hom(BrX,BrK )→Hom(BrX,BrAK)→ Hom(BrX,Q/Z)

X(K) X(AK)

ρK ρAK

X(AK)
Br = ψ−1(0)

ψ

X(AK)
Br = ∅ ⇒ X(K) = ∅
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0→ Hom(Br1X,BrK )→Hom(Br1X,BrAK)→ Hom(Br1X,Q/Z)

X(K) X(AK)

ρK ρAK

X(AK)
Br1= ψ−11 (0)

ψ1

X(AK)
Br1= ∅ ⇒ X(K) = ∅

Br1X = ker(BrX → BrX)
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X(AK)
Br1 = ∅ ⇒ X(K) = ∅.

Two steps:

• Compute Br1Z/BrK for the desingularization(!) Z of X = Y/ι.

The Hochschild-Serre spectral sequence gives

Br1Z/BrK
∼= H1(GK,PicZ).

22



X(AK)
Br1 = ∅ ⇒ X(K) = ∅.

Two steps:

• Compute Br1Z/BrK for the desingularization(!) Z of X = Y/ι.

The Hochschild-Serre spectral sequence gives

Br1Z/BrK
∼= H1(GK,PicZ).

• Compute Z(AK)
Br1 (easier for elliptic fibrations).
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Intersection among 32 lines on Z



Proposition: Generically the group PicZ has rank 17, generated by the

set Λ of 32 lines.

Corollary: GK acts on PicZ through a subgroup of AutintΛ (which has

size 23040).

We can compute H1(G,PicZ) for all 2455 possible subgroups G of

AutintΛ (up to conjugacy).
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Z/2

Z/4

(Z/2)2
Z/4

(Z/2)2
(Z/2)3 (Z/2)3

Z/2× Z/4 (Z/2)2

Z/2× Z/4 Z/2× Z/4

Z/2 AutintΛ
12

15
20 120

24 24

48 48

96 96
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Z/2

Z/4

(Z/2)2
Z/4

(Z/2)2
(Z/2)3 (Z/2)3

Z/2× Z/4 (Z/2)2

Z/2× Z/4 Z/2× Z/4

Z/2 AutintΛ
12

15
20 120

24 24

48 48

96 96

These 11 subgroups, including AutintΛ,

induce all nontrivial Brauer elements.
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Z/4

(Z/2)2
Z/4

(Z/2)2

Z/2 AutintΛ
12

15
20 120

24 24

48 48

96 96
(Z/2)3 (Z/2)3

Z/2× Z/4 (Z/2)2

Z/2× Z/4 Z/2× Z/4

Step 2, Computing Z(AK)
Br1, is difficult
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There is a group E of order 384 such that if the Galois action factors

through E, then Z has an elliptic fibration over K.

Results:

• We can write down this fibration generically,

• Computing Z(AK)
Br1 is easier,

• There are 6 subgroups like the 11 before,

• For one, an algorithm for computing Z(AK)
Br1 is implemented.
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There is a group E of order 384 such that if the Galois action factors

through E, then Z has an elliptic fibration over K.

Results:

• We can write down this fibration generically,

• Computing Z(AK)
Br1 is easier,

• There are 6 subgroups like the 11 before,

• For one, an algorithm for computing Z(AK)
Br1 is implemented.

Non-result:

• We are expecting our first example soon.
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