Toward an explicit 2-descent on the Jacobian of a generic curve of genus 2

Ronald van Luijk
CRM, Montreal
MSRI, Berkeley
Joint work in progress with
Adam Logan
CRM, Montreal
Waterloo, Canada
January 15, 2006
San Antonio

Goals:

(1) Computing Mordell-Weil groups of Jacobians
(2) Constructing nontrivial elements of Shafarevich-Tate groups

Tools:

(a) 2-descent on Jacobians
(b) Brauer-Manin obstruction to the existence of rational points

Let C be a smooth, geometrically irreducible curve of genus 2 over a number field K, and J the Jacobian of C.

Mordell-Weil Theorem:

$J(K)$ is finitely generated.

Let C be a smooth, geometrically irreducible curve of genus 2 over a number field K, and J the Jacobian of C.

Mordell-Weil Theorem:

$J(K)$ is finitely generated.

Primary goal:

Compute $J(K) \cong J(K)_{\text {tors }} \oplus \mathbb{Z}^{r}$.

- $J(K)_{\text {tors }}$ finite, easy to compute.
- $J(K)_{\text {tors }}$ and r known $\Rightarrow J(K)$ computable.
- The rank r can be read off from

$$
J(K)_{\text {tors }} \quad \& \quad J(K) / 2 J(K) .
$$

There are cohomologically defined finite groups

$$
\begin{array}{ll}
\text { Sel }^{(2)}(K, J), & \text { the } 2 \text {-Selmer group, } \\
\amalg(K, J), & \text { the Shafarevich-Tate group, }
\end{array}
$$

with

$$
0 \rightarrow J(K) / 2 J(K) \rightarrow \operatorname{Sel}^{(2)}(K, J) \rightarrow \amalg(K, J)[2] \rightarrow 0
$$

2-descent: compute $\operatorname{Sel}^{(2)}(K, J)$ and decide which of its elements come from $J(K) / 2 J(K)$ (i.e., map to 0).

There are cohomologically defined finite groups

$$
\begin{array}{ll}
\text { Sel } & (2)(K, J), \\
\amalg(K, J), & \text { the } 2 \text {-Selmer group, } \\
\amalg(h e \text { Shafarevich-Tate group, }
\end{array}
$$

with

$$
0 \rightarrow J(K) / 2 J(K) \rightarrow \operatorname{Sel}^{(2)}(K, J) \rightarrow \amalg(K, J)[2] \rightarrow 0
$$

2-descent: compute $\operatorname{Sel}^{(2)}(K, J)$ and decide which of its elements come from $J(K) / 2 J(K)$ (i.e., map to 0).

Assumption: We can compute Sel ${ }^{(2)}(K, J)$.

Remaining goal: Which elements of $\operatorname{Sel}{ }^{(2)}(K, J)$ map to 0 ?

Element of $\operatorname{Sel}^{(2)}(K, J):$ a twist $\pi: Y \rightarrow J$ of the map [2]: $J \rightarrow J$ (over \bar{K} there is an isomorphism σ such that

commutes), where Y is locally soluble everywhere.

The element $Y \rightarrow J$ maps to 0 in $Ш(K, J)[2]$ iff $Y(K) \neq \emptyset$.

Element of $\mathrm{Sel}^{(2)}(K, J):$ a twist $\pi: Y \rightarrow J$ of the map [2]: $J \rightarrow J$ (over \bar{K} there is an isomorphism σ such that

commutes), where Y is locally soluble everywhere.

The element $Y \rightarrow J$ maps to 0 in $Ш(K, J)[2]$ iff $Y(K) \neq \emptyset$.

Problem: The surfaces Y are described by 72 quadrics in $\mathbb{P}^{15} \ldots$

Solution: A quotient of Y.

[-1] on J commutes with translation by 2-torsion points \Rightarrow it induces a unique involution ι of $Y_{\bar{K}}$, defined over K. Set $X=Y / \iota$.

Solution: A quotient of Y.

[-1] on J commutes with translation by 2-torsion points \Rightarrow it induces a unique involution ι of $Y_{\bar{K}}$, defined over K. Set $X=Y / \iota$.

Advantages:

- X is a complete intersection of 3 quadrics in \mathbb{P}^{5}.
- $X(K)=\emptyset \Rightarrow Y(K)=\emptyset$

Disadvantage:

- This only gives sufficient conditions for $Y(K)=\emptyset$.

Solution: A quotient of Y.
[-1] on J commutes with translation by 2-torsion points \Rightarrow it induces a unique involution ι of $Y_{\bar{K}}$, defined over K. Set $X=Y / \iota$.

Advantages:

- X is a complete intersection of 3 quadrics in \mathbb{P}^{5}.
- $X(K)=\emptyset \Rightarrow Y(K)=\emptyset$

Disadvantage:

- This only gives sufficient conditions for $Y(K)=\emptyset$.

Situation: Such K3 surfaces are everywhere locally soluble, but may still satisfy $X(K)=\emptyset$. Do they?

Tool: Brauer-Manin obstruction.

Tool: Brauer-Manin obstruction.

For any scheme Z we set $\operatorname{Br} Z=H_{\mathrm{et}}^{2}\left(Z, \mathbb{G}_{m}\right)$.

For any K-algebra S and any S-point x : Spec $S \rightarrow X$, we get a homomorphism $x^{*}: \operatorname{Br} X \rightarrow \operatorname{Br} S$, yielding a map

$$
\rho_{S}: X(S) \rightarrow \operatorname{Hom}(\operatorname{Br} X, \operatorname{Br} S) .
$$

Tool: Brauer-Manin obstruction.

For any scheme Z we set $\operatorname{Br} Z=H_{\text {êt }}^{2}\left(Z, \mathbb{G}_{m}\right)$.

For any K-algebra S and any S-point x : Spec $S \rightarrow X$, we get a homomorphism $x^{*}: \operatorname{Br} X \rightarrow \operatorname{Br} S$, yielding a map

$$
\rho_{S}: X(S) \rightarrow \operatorname{Hom}(\operatorname{Br} X, \operatorname{Br} S)
$$

Apply this to K and to the ring of adèles

$$
\mathbb{A}_{K}=\prod_{v \in M_{K}}^{\prime} K_{v}
$$

(almost all coordinates are integral).

From class field theory (and comparison theorems) we have
$0 \rightarrow$
$\mathrm{Br} K \rightarrow$
$\operatorname{Br} \mathbb{A}_{K} \rightarrow$
\mathbb{Q} / \mathbb{Z}

Applying $\left.\operatorname{Hom}(\operatorname{Br} X,)_{\text {a }}\right)$ we find ...
$0 \rightarrow \operatorname{Hom}(\operatorname{Br} X, \operatorname{Br} K) \rightarrow \operatorname{Hom}\left(\operatorname{Br} X, \operatorname{Br} \mathbb{A}_{K}\right) \rightarrow \operatorname{Hom}(\operatorname{Br} X, \mathbb{Q} / \mathbb{Z})$

$$
X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}}=\emptyset \quad \Rightarrow \quad X(K)=\emptyset
$$

$\mathrm{Br}_{1} X=\operatorname{ker}(\mathrm{Br} X \rightarrow \operatorname{Br} \bar{X})$

$$
X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}_{1}}=\emptyset \quad \Rightarrow \quad X(K)=\emptyset
$$

Two steps:

- Compute $\mathrm{Br}_{1} Z / \mathrm{Br} K$ for the desingularization(!) Z of $X=Y / \iota$.

The Hochschild-Serre spectral sequence gives

$$
\operatorname{Br}_{1} Z / \operatorname{Br} K \cong H^{1}\left(G_{K}, \operatorname{Pic} \bar{Z}\right) .
$$

$$
X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}_{1}}=\emptyset \quad \Rightarrow \quad X(K)=\emptyset
$$

Two steps:

- Compute $\mathrm{Br}_{1} Z / \mathrm{Br} K$ for the desingularization(!) Z of $X=Y / \iota$.

The Hochschild-Serre spectral sequence gives

$$
\operatorname{Br}_{1} Z / \operatorname{Br} K \cong H^{1}\left(G_{K}, \operatorname{Pic} \bar{Z}\right) .
$$

- Compute $Z\left(\mathbb{A}_{K}\right)^{\mathrm{Br}_{1}}$ (easier for elliptic fibrations).

Intersection among 32 lines on \bar{Z}

Proposition: Generically the group Pic \bar{Z} has rank 17, generated by the set \wedge of 32 lines.

Corollary: G_{K} acts on Pic \bar{Z} through a subgroup of Aut ${ }^{\text {int }} \wedge$ (which has size 23040).

We can compute $H^{1}(G, \operatorname{Pic} \bar{Z})$ for all 2455 possible subgroups G of Aut ${ }^{\text {int }} \wedge$ (up to conjugacy).

These 11 subgroups, including Aut ${ }^{\text {int }} \wedge$, induce all nontrivial Brauer elements.

Step 2, Computing $Z\left(\mathbb{A}_{K}\right)^{\mathrm{Br}}$, is difficult

There is a group E of order 384 such that if the Galois action factors through E, then Z has an elliptic fibration over K.

Results:

- We can write down this fibration generically,
- Computing $Z\left(\mathbb{A}_{K}\right)^{\mathrm{Br}_{1}}$ is easier,
- There are 6 subgroups like the 11 before,
- For one, an algorithm for computing $Z\left(\mathbb{A}_{K}\right)^{\mathrm{Br}_{1}}$ is implemented.

There is a group E of order 384 such that if the Galois action factors through E, then Z has an elliptic fibration over K.

Results:

- We can write down this fibration generically,
- Computing $Z\left(\mathbb{A}_{K}\right)^{\mathrm{Br}_{1}}$ is easier,
- There are 6 subgroups like the 11 before,
- For one, an algorithm for computing $Z\left(\mathbb{A}_{K}\right)^{\mathrm{Br}_{1}}$ is implemented.

Non-result:

- We are expecting our first example soon.

