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Goals:
(1) Computing Mordell-Weil groups of Jacobians

(2) Constructing nontrivial elements of Shafarevich-Tate groups

Tools:
(a) 2-descent on Jacobians

(b) Brauer-Manin obstruction to the existence of rational points



Let C be a smooth, geometrically irreducible curve of genus 2 over a
number field K, and J the Jacobian of C.

Mordell-Weil Theorem:
J(K) is finitely generated.



Let C be a smooth, geometrically irreducible curve of genus 2 over a
number field K, and J the Jacobian of C.

Mordell-Weil Theorem:
J(K) is finitely generated.

Primary goal.

Compute J(K) = J(K)tors B Z".

o J(K)iors: finite, easy to compute.

o J(K)tors and r known = J(K) computable.
e The rank r can be read off from

J(K)tors & J(K)/2J(K).



There are cohomologically defined finite groups

Sel(2)(K,.J), the 2-Selmer group,
(K, J), the Shafarevich-Tate group,

with
0 — J(K)/2J(K) — Sel@(K,J) — (K, J)[2] — O.

2-descent: compute Sel(2)(K, J) and decide which
of its elements come from J(K)/2J(K) (i.e., map to 0).



There are cohomologically defined finite groups

Sel(2)(K,.J), the 2-Selmer group,
(K, J), the Shafarevich-Tate group,

with
0 — J(K)/2J(K) — Sel@(K,J) — (K, J)[2] — O.

2-descent: compute Sel(2)(K, J) and decide which
of its elements come from J(K)/2J(K) (i.e., map to 0).

Assumption: We can compute Sel(2) (K, J).

Remaining goal: Which elements of Sel(2)(K,.J) map to 07



Element of Sel(z)(K, J): atwist m: Y — J of the map [2]: J — J
(over K there is an isomorphism o such that

Y5-Ik
0 [2]
S

commutes), where Y is locally soluble everywhere.

The element Y — J maps to 0 in III(K, J)[2] iff Y(K) # 0.



Element of Sel(z)(K, J): atwist m: Y — J of the map [2]: J — J
(over K there is an isomorphism o such that

Y5-Ik
0 [2]
S

commutes), where Y is locally soluble everywhere.

The element Y — J maps to 0 in III(K, J)[2] iff Y(K) # 0.

Problem: The surfaces Y are described by 72 quadrics in pls .



Solution: A quotient of Y.

[—1] on J commutes with translation by 2-torsion points =
it induces a unique involution ¢ of Y%, defined over K. Set X =Y/..



Solution: A quotient of Y.

[—1] on J commutes with translation by 2-torsion points =
it induces a unique involution ¢ of Y%, defined over K. Set X =Y/..

Advantages:
e X is a complete intersection of 3 quadrics in P°.

e X(K)=0 = Y(K)=10

Disadvantage:
e This only gives sufficient conditions for Y(K) = 0.
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Solution: A quotient of Y.

[—1] on J commutes with translation by 2-torsion points =
it induces a unique involution ¢ of Y%, defined over K. Set X =Y/..

Advantages:
e X is a complete intersection of 3 quadrics in P°.

e X(K)=0 = Y(K)=10

Disadvantage:
e This only gives sufficient conditions for Y(K) = 0.

Situation: Such K3 surfaces are everywhere locally soluble, but may
still satisfy X(K) = 0. Do they?
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Tool:

Brauer-Manin obstruction.
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Tool: Brauer-Manin obstruction.
For any scheme Z we set BrZ = HZ.(Z,Gn).

For any K-algebra S and any S-point z: SpecS — X, we get a homo-
morphism z*: Br X — Br.S, yielding a map

ps. X(S) —- Hom(Br X,BrS).
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Tool: Brauer-Manin obstruction.
For any scheme Z we set BrZ = HZ.(Z,Gn).

For any K-algebra S and any S-point z: SpecS — X, we get a homo-
morphism z*: Br X — Br.S, yielding a map

ps. X(S) —- Hom(Br X,BrS).

Apply this to K and to the ring of adeles

A = H’ Ky (almost all coordinates are integral).
veEMp
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From class field theory (and comparison theorems) we have

0 — BrKk — BrAg — Q/Z

Applying Hom(Br X, ) we find ...
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0 —- Hom(Br X,Br K) —Hom(Br X,BrAg) — Hom(Br X,Q/Z)
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X(K) X(Agk)

0 —- Hom(Br X,Br K) —Hom(Br X,BrAg) — Hom(Br X,Q/Z)
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X(K) X(Ag)

0 —- Hom(Br X,Br K) —Hom(Br X,BrAg) — Hom(Br X,Q/Z)
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X(Ag)B =vy71(0)

N

X(K) X(Ag)

0 —- Hom(Br X,Br K) —Hom(Br X,BrAg) — Hom(Br X,Q/Z)
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XAR)B =0 = X(K)=10

X(Ag)B =vy71(0)

N

X(K) X(Ag)

0 —- Hom(Br X,Br K) —Hom(Br X,BrAg) — Hom(Br X,Q/Z)
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X(A)B1=0 = X(K)=0

X (Ag)B= ¢y 1(0)

N

X(K) X(Ag)

0 - Hom(BrX,Br K) = Hom(BnrX,BrAg) — Hom(BriX,Q/Z)

Bri X = ker(BrX — BrX)



X(A)B1=90 = X(K)=0.

Two steps:
e Compute Bry Z/Br K for the desingularization(!) Z of X =Y/..

The Hochschild-Serre spectral sequence gives

BriZ/BrK = HYGg,PicZ).

22



X(A)B1=90 = X(K)=0.

Two steps:
e Compute Bry Z/Br K for the desingularization(!) Z of X =Y/..

The Hochschild-Serre spectral sequence gives

BriZ/BrK = HYGg,PicZ).

e Compute Z(Ag)B" (easier for elliptic fibrations).
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Intersection among 32 lines on Z

.
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Proposition: Generically the group Pic Z has rank 17, generated by the
set A\ of 32 lines.

Corollary: Gy acts on Pic Z through a subgroup of Autnt A (which has
size 23040).

We can compute Hl(G,PiCZ) for all 2455 possible subgroups G of
Aut'"'A (up to conjugacy).
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7./2 X 7./4

7./2 X 71./4

7/2 x Z)4 (Z])2)?
(/23 (z/2? °
N (2/2)°
7,/ 4

(Z)2)?
7.4 120
\15
12 Z/2  Autint A

These 11 subgroups, including Aut"t A
induce all nontrivial Brauer elements.
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Z/

Step 2, Computing Z(Ax)B", is difficult
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There is a group E of order 384 such that if the Galois action factors
through FE, then Z has an elliptic fibration over K.

Results:

e We can write down this fibration generically,

e Computing Z(Ag)B" is easier,

e [ here are 6 subgroups like the 11 before,

e For one, an algorithm for computing Z(AK)Brl IS implemented.
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There is a group E of order 384 such that if the Galois action factors
through FE, then Z has an elliptic fibration over K.

Results:

e We can write down this fibration generically,

e Computing Z(Ag)B" is easier,

e [ here are 6 subgroups like the 11 before,

e For one, an algorithm for computing Z(AK)Brl IS implemented.

Non-result:
e \We are expecting our first example soon.
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