Cubic points on cubic curves and the Brauer-Manin obstruction on K3 surfaces

Ronald van Luijk PIMS, Vancouver University of British Columbia Simon Fraser University

> July 10, 2007 Bristol

Two problems:

(1) Are there cubic curves without cubic points?

(2) Is the Brauer-Manin obstruction the only one on K3 surfaces?

Goal:

(a) Explain the problems

(b) Relate them

Hasse Principle

Let X be a variety over \mathbb{Q} . If X has no points over \mathbb{R} then X has no points over \mathbb{Q} . If X has no points over \mathbb{Q}_p then X has no points over \mathbb{Q} .

Conics satisfy the **Hasse principle**:

If a conic C has a point over \mathbb{R} and over \mathbb{Q}_p for every p, then C has a point over \mathbb{Q} .

If a variety X over a number field k has points over every completion of k, then we say that X is **locally solvable everywhere** (LSE).

The curve *C* given by $3x^3 + 4y^3 + 5z^3 = 0$ in \mathbb{P}^2 is **LSE**, but has no points over \mathbb{Q} (Selmer).

The curve *C* given by $3x^3 + 4y^3 + 5z^3 = 0$ in \mathbb{P}^2 is **LSE**, but has no points over \mathbb{Q} (Selmer).

Question 1: Over what fields does *C* acquire points?

The curve *C* given by $3x^3 + 4y^3 + 5z^3 = 0$ in \mathbb{P}^2 is **LSE**, but has no points over \mathbb{Q} (Selmer).

Question 1: Over what fields does *C* acquire points? **Question 2**: Over cubic fields that are galois?

The curve *C* given by $3x^3 + 4y^3 + 5z^3 = 0$ in \mathbb{P}^2 is **LSE**, but has no points over \mathbb{Q} (Selmer).

Question 1: Over what fields does *C* acquire points? **Question 2**: Over cubic fields that are galois?

Definition: A **cubic point** is a point over a cubic galois extension.

The line L: 711x + 172y + 785z = 0 intersects C in three cubic points.

The curve *C* given by $3x^3 + 4y^3 + 5z^3 = 0$ in \mathbb{P}^2 is **LSE**, but has no points over \mathbb{Q} (Selmer).

Question 1: Over what fields does *C* acquire points? **Question 2**: Over cubic fields that are galois?

Definition: A **cubic point** is a point over a cubic galois extension.

The line L: 711x + 172y + 785z = 0 intersects C in three cubic points.

Question 3: Does every cubic curve that is **LSE** have cubic points? (**unknown**)

Let K be a number field with ring of adèles

$$\mathbb{A}_K = \prod_{v \in M_K} {'} K_v$$

(almost all coordinates are integral).

Let K be a number field with ring of adèles

 $\mathbb{A}_K = \prod_{v \in M_K} ' K_v \qquad (almost all coordinates are integral).$

Let X be a smooth, absolutely irreducible, projective variety over K.

Then the set of adèlic points is

$$X(\mathbb{A}_K) = \prod_{v \in M_K} X(K_v)$$

and this is nonempty if and only if X is **LSE**.

For any scheme Z we set $\operatorname{Br} Z = H^2_{\operatorname{\acute{e}t}}(Z, \mathbb{G}_m)$. For any ring R we set $\operatorname{Br} R = \operatorname{Br} \operatorname{Spec} R$.

For any scheme Z we set $\operatorname{Br} Z = H^2_{\operatorname{\acute{e}t}}(Z, \mathbb{G}_m)$. For any ring R we set $\operatorname{Br} R = \operatorname{Br} \operatorname{Spec} R$.

For any *K*-algebra *S* and any *S*-point $x: \operatorname{Spec} S \to X$, we get a homomorphism $x^*: \operatorname{Br} X \to \operatorname{Br} S$, yielding a map

 $\rho_S \colon X(S) \to \operatorname{Hom}(\operatorname{Br} X, \operatorname{Br} S).$

For any scheme Z we set $\operatorname{Br} Z = H^2_{\operatorname{\acute{e}t}}(Z, \mathbb{G}_m)$. For any ring R we set $\operatorname{Br} R = \operatorname{Br} \operatorname{Spec} R$.

For any *K*-algebra *S* and any *S*-point $x: \operatorname{Spec} S \to X$, we get a homomorphism $x^*: \operatorname{Br} X \to \operatorname{Br} S$, yielding a map

 $\rho_S \colon X(S) \to \operatorname{Hom}(\operatorname{Br} X, \operatorname{Br} S).$

We will apply this to K and to the ring of adèles \mathbb{A}_K .

From class field theory we have

 $0 \to \qquad \qquad \mathsf{Br}\, K \to \qquad \qquad \mathsf{Br}\, \mathbb{A}_K \to \qquad \qquad \mathbb{Q}/\mathbb{Z}$

Applying $Hom(Br X, _)$ we find ...

 $0 \rightarrow \operatorname{Hom}(\operatorname{Br} X, \operatorname{Br} K) \rightarrow \operatorname{Hom}(\operatorname{Br} X, \operatorname{Br} \mathbb{A}_K) \rightarrow \operatorname{Hom}(\operatorname{Br} X, \mathbb{Q}/\mathbb{Z})$

 $X(\mathbb{A}_K)^{\mathsf{Br}} = \emptyset \quad \Rightarrow \quad X(K) = \emptyset$

$$X(\mathbb{A}_K)^{\mathsf{Br}_1} = \emptyset \quad \Rightarrow \quad X(K) = \emptyset$$

 $\operatorname{Br}_1 X = \operatorname{ker}(\operatorname{Br} X \to \operatorname{Br} \overline{X})$

$$X(\mathbb{A}_K)^{\mathsf{Br}_{(1)}} = \emptyset \quad \Rightarrow \quad X(K) = \emptyset.$$

There is a Brauer-Manin obstruction to the Hasse principle if

 $X(\mathbb{A}_K) \neq \emptyset$ and $X(\mathbb{A}_K)^{\mathsf{Br}} = \emptyset.$

 $X(\mathbb{A}_K)^{\mathsf{Br}_{(1)}} = \emptyset \quad \Rightarrow \quad X(K) = \emptyset.$

There is a **Brauer-Manin obstruction** to the Hasse principle if

 $X(\mathbb{A}_K) \neq \emptyset$ and $X(\mathbb{A}_K)^{\mathsf{Br}} = \emptyset.$

For a class S of varieties over K the Brauer-Manin obstruction is the **only obstruction** to the Hasse principle if for every $X \in S$ we have

$$X(\mathbb{A}_K)^{\mathsf{Br}} = \emptyset \quad \Leftrightarrow \quad X(K) = \emptyset.$$

 $X(\mathbb{A}_K)^{\mathsf{Br}_{(1)}} = \emptyset \quad \Rightarrow \quad X(K) = \emptyset.$

There is a Brauer-Manin obstruction to the Hasse principle if

 $X(\mathbb{A}_K) \neq \emptyset$ and $X(\mathbb{A}_K)^{\mathsf{Br}} = \emptyset.$

For a class S of varieties over K the Brauer-Manin obstruction is the **only obstruction** to the Hasse principle if for every $X \in S$ we have

$$X(\mathbb{A}_K)^{\mathsf{Br}} = \emptyset \quad \Leftrightarrow \quad X(K) = \emptyset.$$

Conjecture: The Brauer-Manin obstruction is the only obstruction to the Hasse principle for **rationally connected varieties**.

Definition: A K3 surface is a smooth, absolutely irreducible, projective surface X with trivial canonical sheaf and $H^1(X, \mathcal{O}_X) = 0$.

Examples of K3's:

smooth surfaces of degree 4 in \mathbb{P}^3 , Kummer surfaces.

Question 4: Is the Brauer-Manin obstruction the only obstruction to the Hasse principle for K3 surfaces? (unknown)

Relating the two problems

Relating the two problems

Let C be a smooth cubic curve over K in \mathbb{P}^2 and ρ the automorphism

$$\rho: C \times C \to C \times C, \quad (P,Q) \mapsto (Q,R),$$

with R the third intersection point of C with the line through P and Q.

Relating the two problems

Let C be a smooth cubic curve over K in \mathbb{P}^2 and ρ the automorphism

 $\rho: C \times C \to C \times C, \quad (P,Q) \mapsto (Q,R),$

with R the third intersection point of C with the line through P and Q.

Let X_C be the minimal desingularization of the quotient $(C \times C)/\rho$.

Then X_C is a K3 surface.

Let C be the cubic curve in \mathbb{P}^2_K given by $ax^3 + by^3 + cz^3 = 0$ and suppose (i) C is **LSE**,

(ii) $abc \in K^*$ is not a cube,

(iii) C has no cubic points (with K as ground field).

Then

$$X_C(\mathbb{A}_K)^{\mathsf{Br}_1} \neq \emptyset$$
 and $X_C(K) = \emptyset$

(algebraic Brauer-Manin obstruction is not the only one).

Let C be the cubic curve in \mathbb{P}^2_K given by $ax^3 + by^3 + cz^3 = 0$ and suppose (i) C is **LSE**,

(ii) $abc \in K^*$ is not a cube,

(iii) C has no cubic points (with K as ground field).

Then

$$X_C(\mathbb{A}_K)^{\mathsf{Br}_1} \neq \emptyset \quad \text{and} \quad X_C(K) = \emptyset$$

sketch of proof:

(iii) implies $X_C(K) = \emptyset$. Indeed, $T \in X_C(K)$ corresponds to a galois-invariant orbit $\{(P,Q), (Q,R), (R,P)\}$ of ρ on $C \times C$, so galois acts by even permutations only and P, Q, R are defined over some cubic extension that is galois.

Let C be the cubic curve in \mathbb{P}^2_K given by $ax^3 + by^3 + cz^3 = 0$ and suppose (i) C is **LSE**,

(ii) $abc \in K^*$ is not a cube,

(iii) C has no cubic points (with K as ground field).

Then

$$X_C(\mathbb{A}_K)^{\mathsf{Br}_1} \neq \emptyset \quad \text{and} \quad X_C(K) = \emptyset$$

sketch of proof:

(iii) implies $X_C(K) = \emptyset$. (ii) implies $\operatorname{Br}_1 X_C = \operatorname{Br} K$. Indeed, $\operatorname{Br}_1 X_C / \operatorname{Br} K \cong H^1(K, \operatorname{Pic} \overline{X}_C)$, and $\operatorname{Pic} \overline{X}_C$ is defined over $K(\zeta_3, \sqrt[3]{a/c}, \sqrt[3]{b/c})$, with galois group contained in $(\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}) \rtimes \mathbb{Z}/2\mathbb{Z}$. The only subgroups with nontrivial $H^1(K, \operatorname{Pic} \overline{X}_C)$ all fix $\sqrt[3]{abc}$.

Let C be the cubic curve in \mathbb{P}^2_K given by $ax^3 + by^3 + cz^3 = 0$ and suppose (i) C is **LSE**,

(ii) $abc \in K^*$ is not a cube,

(iii) C has no cubic points (with K as ground field).

Then

$$X_C(\mathbb{A}_K)^{\mathsf{Br}_1} \neq \emptyset$$
 and $X_C(K) = \emptyset$

sketch of proof:

(iii) implies $X_C(K) = \emptyset$. (ii) implies $\operatorname{Br}_1 X_C = \operatorname{Br} K$. (i) implies that X_C is **LSE**, so $X_C(\mathbb{A}_K) \neq \emptyset$.

Let C be the cubic curve in \mathbb{P}^2_K given by $ax^3 + by^3 + cz^3 = 0$ and suppose (i) C is **LSE**,

(ii) $abc \in K^*$ is not a cube,

(iii) C has no cubic points (with K as ground field).

Then

$$X_C(\mathbb{A}_K)^{\mathsf{Br}_1} \neq \emptyset$$
 and $X_C(K) = \emptyset$

sketch of proof:

(iii) implies $X_C(K) = \emptyset$. (ii) implies $\operatorname{Br}_1 X_C = \operatorname{Br} K$. (i) implies that X_C is **LSE**, so $X_C(\mathbb{A}_K) \neq \emptyset$.

Done!