Cubic points on cubic curves and the Brauer-Manin obstruction on K3 surfaces

Ronald van Luijk
PIMS, Vancouver
University of British Columbia
Simon Fraser University

July 10, 2007
Bristol

Two problems:

(1) Are there cubic curves without cubic points?
(2) Is the Brauer-Manin obstruction the only one on K3 surfaces?

Goal:

(a) Explain the problems
(b) Relate them

Hasse Principle

Let X be a variety over \mathbb{Q}.
If X has no points over \mathbb{R} then X has no points over \mathbb{Q}.
If X has no points over \mathbb{Q}_{p} then X has no points over \mathbb{Q}.

Conics satisfy the Hasse principle:
If a conic C has a point over \mathbb{R} and over \mathbb{Q}_{p} for every p, then C has a point over \mathbb{Q}.

If a variety X over a number field k has points over every completion of k, then we say that X is locally solvable everywhere (LSE).

Cubic curves in general do not satisfy the Hasse principle.
The curve C given by $3 x^{3}+4 y^{3}+5 z^{3}=0$ in \mathbb{P}^{2} is LSE, but has no points over \mathbb{Q} (Selmer).

Cubic curves in general do not satisfy the Hasse principle.
The curve C given by $3 x^{3}+4 y^{3}+5 z^{3}=0$ in \mathbb{P}^{2} is LSE, but has no points over \mathbb{Q} (Selmer).

Question 1: Over what fields does C acquire points?

Cubic curves in general do not satisfy the Hasse principle.
The curve C given by $3 x^{3}+4 y^{3}+5 z^{3}=0$ in \mathbb{P}^{2} is LSE, but has no points over \mathbb{Q} (Selmer).

Question 1: Over what fields does C acquire points? Question 2: Over cubic fields that are galois?

Cubic curves in general do not satisfy the Hasse principle.
The curve C given by $3 x^{3}+4 y^{3}+5 z^{3}=0$ in \mathbb{P}^{2} is LSE, but has no points over \mathbb{Q} (Selmer).

Question 1: Over what fields does C acquire points?
Question 2: Over cubic fields that are galois?

Definition: A cubic point is a point over a cubic galois extension.

The line $L: 711 x+172 y+785 z=0$ intersects C in three cubic points.

Cubic curves in general do not satisfy the Hasse principle.
The curve C given by $3 x^{3}+4 y^{3}+5 z^{3}=0$ in \mathbb{P}^{2} is LSE, but has no points over \mathbb{Q} (Selmer).

Question 1: Over what fields does C acquire points?
Question 2: Over cubic fields that are galois?

Definition: A cubic point is a point over a cubic galois extension.

The line $L: 711 x+172 y+785 z=0$ intersects C in three cubic points.
Question 3: Does every cubic curve that is LSE have cubic points? (unknown)

Brauer-Manin obstruction.

Brauer-Manin obstruction.

Let K be a number field with ring of adèles

$$
\mathbb{A}_{K}=\prod_{v \in M_{K}}^{\prime} K_{v}
$$

(almost all coordinates are integral).

Brauer-Manin obstruction.

Let K be a number field with ring of adèles

$$
\mathbb{A}_{K}=\prod_{v \in M_{K}}^{\prime} K_{v} \quad \quad \text { (almost all coordinates are integral) }
$$

Let X be a smooth, absolutely irreducible, projective variety over K.

Then the set of adèlic points is

$$
X\left(\mathbb{A}_{K}\right)=\prod_{v \in M_{K}} X\left(K_{v}\right)
$$

and this is nonempty if and only if X is LSE.

Brauer-Manin obstruction.

For any scheme Z we set $\operatorname{Br} Z=H_{\text {ett }}^{2}\left(Z, \mathbb{G}_{m}\right)$.
For any ring R we set $\operatorname{Br} R=\operatorname{BrSpec} R$.

Brauer-Manin obstruction.

For any scheme Z we set $\operatorname{Br} Z=H_{\text {êt }}^{2}\left(Z, \mathbb{G}_{m}\right)$.
For any ring R we set $\operatorname{Br} R=\operatorname{BrSpec} R$.

For any K-algebra S and any S-point x : Spec $S \rightarrow X$, we get a homomorphism $x^{*}: \operatorname{Br} X \rightarrow \operatorname{Br} S$, yielding a map

$$
\rho_{S}: X(S) \rightarrow \operatorname{Hom}(\operatorname{Br} X, \operatorname{Br} S)
$$

Brauer-Manin obstruction.

For any scheme Z we set $\operatorname{Br} Z=H_{\text {êt }}^{2}\left(Z, \mathbb{G}_{m}\right)$.
For any ring R we set $\operatorname{Br} R=\operatorname{BrSpec} R$.

For any K-algebra S and any S-point x : Spec $S \rightarrow X$, we get a homomorphism $x^{*}: \operatorname{Br} X \rightarrow \operatorname{Br} S$, yielding a map

$$
\rho_{S}: X(S) \rightarrow \operatorname{Hom}(\operatorname{Br} X, \operatorname{Br} S)
$$

We will apply this to K and to the ring of adèles \mathbb{A}_{K}.

From class field theory we have

Applying $\operatorname{Hom}\left(\mathrm{Br} X,{ }_{-}\right)$we find...
$0 \rightarrow \operatorname{Hom}(\operatorname{Br} X, \operatorname{Br} K) \rightarrow \operatorname{Hom}\left(\operatorname{Br} X, \operatorname{Br} \mathbb{A}_{K}\right) \rightarrow \operatorname{Hom}(\operatorname{Br} X, \mathbb{Q} / \mathbb{Z})$

$$
X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}}=\emptyset \quad \Rightarrow \quad X(K)=\emptyset
$$

$$
X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}_{1}}=\emptyset \quad \Rightarrow \quad X(K)=\emptyset
$$

$\mathrm{Br}_{1} X=\operatorname{ker}(\mathrm{Br} X \rightarrow \mathrm{Br} \bar{X})$

$$
X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}}(1)=\emptyset \quad \Rightarrow \quad X(K)=\emptyset
$$

There is a Brauer-Manin obstruction to the Hasse principle if

$$
X\left(\mathbb{A}_{K}\right) \neq \emptyset \quad \text { and } \quad X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}}=\emptyset
$$

$$
X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}(1)}=\emptyset \quad \Rightarrow \quad X(K)=\emptyset .
$$

There is a Brauer-Manin obstruction to the Hasse principle if

$$
X\left(\mathbb{A}_{K}\right) \neq \emptyset \quad \text { and } \quad X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}}=\emptyset
$$

For a class \mathcal{S} of varieties over K the Brauer-Manin obstruction is the only obstruction to the Hasse principle if for every $X \in \mathcal{S}$ we have

$$
X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}}=\emptyset \quad \Leftrightarrow \quad X(K)=\emptyset .
$$

$$
X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}}(1)=\emptyset \quad \Rightarrow \quad X(K)=\emptyset
$$

There is a Brauer-Manin obstruction to the Hasse principle if

$$
X\left(\mathbb{A}_{K}\right) \neq \emptyset \quad \text { and } \quad X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}}=\emptyset
$$

For a class \mathcal{S} of varieties over K the Brauer-Manin obstruction is the only obstruction to the Hasse principle if for every $X \in \mathcal{S}$ we have

$$
X\left(\mathbb{A}_{K}\right)^{\mathrm{Br}}=\emptyset \quad \Leftrightarrow \quad X(K)=\emptyset
$$

Conjecture: The Brauer-Manin obstruction is the only obstruction to the Hasse principle for rationally connected varieties.

Definition: A K3 surface is a smooth, absolutely irreducible, projective surface X with trivial canonical sheaf and $H^{1}\left(X, \mathcal{O}_{X}\right)=0$.

Examples of K3's:

 smooth surfaces of degree 4 in \mathbb{P}^{3}, Kummer surfaces.Question 4: Is the Brauer-Manin obstruction the only obstruction to the Hasse principle for K3 surfaces?
(unknown)

Relating the two problems

Relating the two problems

Let C be a smooth cubic curve over K in \mathbb{P}^{2} and ρ the automorphism

$$
\rho: C \times C \rightarrow C \times C, \quad(P, Q) \mapsto(Q, R)
$$

with R the third intersection point of C with the line through P and Q.

Relating the two problems

Let C be a smooth cubic curve over K in \mathbb{P}^{2} and ρ the automorphism

$$
\rho: C \times C \rightarrow C \times C, \quad(P, Q) \mapsto(Q, R)
$$

with R the third intersection point of C with the line through P and Q.

Let X_{C} be the minimal desingularization of the quotient $(C \times C) / \rho$.

Then X_{C} is a K3 surface.

Theorem (vL)
Let C be the cubic curve in \mathbb{P}_{K}^{2} given by $a x^{3}+b y^{3}+c z^{3}=0$ and suppose (i) C is LSE,
(ii) $a b c \in K^{*}$ is not a cube,
(iii) C has no cubic points (with K as ground field).

Then

$$
X_{C}\left(\mathbb{A}_{K}\right)^{\mathrm{Br}_{1}} \neq \emptyset \quad \text { and } \quad X_{C}(K)=\emptyset
$$

(algebraic Brauer-Manin obstruction is not the only one).

Theorem (vL)
Let C be the cubic curve in \mathbb{P}_{K}^{2} given by $a x^{3}+b y^{3}+c z^{3}=0$ and suppose (i) C is LSE,
(ii) $a b c \in K^{*}$ is not a cube,
(iii) C has no cubic points (with K as ground field).

Then

$$
X_{C}\left(\mathbb{A}_{K}\right)^{\mathrm{Br}_{1}} \neq \emptyset \quad \text { and } \quad X_{C}(K)=\emptyset
$$

sketch of proof:
(iii) implies $X_{C}(K)=\emptyset$.

Indeed, $T \in X_{C}(K)$ corresponds to a galois-invariant orbit $\{(P, Q),(Q, R),(R, P)\}$ of ρ on $C \times C$, so galois acts by even permutations only and P, Q, R are defined over some cubic extension that is galois.

Theorem (vL)
Let C be the cubic curve in \mathbb{P}_{K}^{2} given by $a x^{3}+b y^{3}+c z^{3}=0$ and suppose (i) C is LSE,
(ii) $a b c \in K^{*}$ is not a cube,
(iii) C has no cubic points (with K as ground field).

Then

$$
X_{C}\left(\mathbb{A}_{K}\right)^{\mathrm{Br}_{1}} \neq \emptyset \quad \text { and } \quad X_{C}(K)=\emptyset
$$

sketch of proof:
(iii) implies $X_{C}(K)=\emptyset$.
(ii) implies $\mathrm{Br}_{1} X_{C}=\mathrm{Br} K$.

Indeed, $\mathrm{Br}_{1} X_{C} / \operatorname{Br} K \cong H^{1}\left(K, \operatorname{Pic} \bar{X}_{C}\right)$, and $\operatorname{Pic} \bar{X}_{C}$ is defined over $K\left(\zeta_{3}, \sqrt[3]{a / c}, \sqrt[3]{b / c}\right)$, with galois group contained in $(\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}) \rtimes \mathbb{Z} / 2 \mathbb{Z}$. The only subgroups with nontrivial $H^{1}\left(K, \operatorname{Pic} \bar{X}_{C}\right)$ all fix $\sqrt[3]{a b c}$.

Theorem (vL)
Let C be the cubic curve in \mathbb{P}_{K}^{2} given by $a x^{3}+b y^{3}+c z^{3}=0$ and suppose (i) C is LSE,
(ii) $a b c \in K^{*}$ is not a cube,
(iii) C has no cubic points (with K as ground field).

Then

$$
X_{C}\left(\mathbb{A}_{K}\right)^{\mathrm{Br}_{1}} \neq \emptyset \quad \text { and } \quad X_{C}(K)=\emptyset
$$

sketch of proof:
(iii) implies $X_{C}(K)=\emptyset$.
(ii) implies $\mathrm{Br}_{1} X_{C}=\mathrm{Br} K$.
(i) implies that X_{C} is LSE, so $X_{C}\left(\mathbb{A}_{K}\right) \neq \emptyset$.

Theorem (vL)
Let C be the cubic curve in \mathbb{P}_{K}^{2} given by $a x^{3}+b y^{3}+c z^{3}=0$ and suppose (i) C is LSE,
(ii) $a b c \in K^{*}$ is not a cube,
(iii) C has no cubic points (with K as ground field).

Then

$$
X_{C}\left(\mathbb{A}_{K}\right)^{\mathrm{Br}_{1}} \neq \emptyset \quad \text { and } \quad X_{C}(K)=\emptyset
$$

sketch of proof:
(iii) implies $X_{C}(K)=\emptyset$.
(ii) implies $\mathrm{Br}_{1} X_{C}=\mathrm{Br} K$.
(i) implies that X_{C} is LSE, so $X_{C}\left(\mathbb{A}_{K}\right) \neq \emptyset$.

Done!

