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Two problems:

(1) Are there cubic curves without cubic points?

(2) Is the Brauer-Manin obstruction the only one on K3 surfaces?

Goal:

(a) Explain the problems

(b) Relate them
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Hasse Principle

Let X be a variety over Q.

If X has no points over R then X has no points over Q.

If X has no points over Qp then X has no points over Q.

Conics satisfy the Hasse principle:

If a conic C has a point over R and over Qp for every p,

then C has a point over Q.

If a variety X over a number field k has points over every completion

of k, then we say that X is locally solvable everywhere (LSE).
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Cubic curves in general do not satisfy the Hasse principle.

The curve C given by 3x3 + 4y3 + 5z3 = 0 in P2 is LSE,

but has no points over Q (Selmer).
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Cubic curves in general do not satisfy the Hasse principle.

The curve C given by 3x3 + 4y3 + 5z3 = 0 in P2 is LSE,

but has no points over Q (Selmer).

Question 1: Over what fields does C acquire points?
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Cubic curves in general do not satisfy the Hasse principle.

The curve C given by 3x3 + 4y3 + 5z3 = 0 in P2 is LSE,

but has no points over Q (Selmer).

Question 1: Over what fields does C acquire points?

Question 2: Over cubic fields that are galois?
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Cubic curves in general do not satisfy the Hasse principle.

The curve C given by 3x3 + 4y3 + 5z3 = 0 in P2 is LSE,

but has no points over Q (Selmer).

Question 1: Over what fields does C acquire points?

Question 2: Over cubic fields that are galois?

Definition: A cubic point is a point over a cubic galois extension.

The line L : 711x+ 172y+ 785z = 0 intersects C in three cubic points.
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Cubic curves in general do not satisfy the Hasse principle.

The curve C given by 3x3 + 4y3 + 5z3 = 0 in P2 is LSE,

but has no points over Q (Selmer).

Question 1: Over what fields does C acquire points?

Question 2: Over cubic fields that are galois?

Definition: A cubic point is a point over a cubic galois extension.

The line L : 711x+ 172y+ 785z = 0 intersects C in three cubic points.

Question 3: Does every cubic curve that is LSE have cubic points?

(unknown)
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Brauer-Manin obstruction.

9



Brauer-Manin obstruction.

Let K be a number field with ring of adèles

AK =
∏

v∈MK

′ Kv (almost all coordinates are integral).
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Brauer-Manin obstruction.

Let K be a number field with ring of adèles

AK =
∏

v∈MK

′ Kv (almost all coordinates are integral).

Let X be a smooth, absolutely irreducible, projective variety over K.

Then the set of adèlic points is

X(AK) =
∏

v∈MK

X(Kv)

and this is nonempty if and only if X is LSE.
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Brauer-Manin obstruction.

For any scheme Z we set BrZ = H2
ét(Z,Gm).

For any ring R we set BrR = BrSpecR.
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Brauer-Manin obstruction.

For any scheme Z we set BrZ = H2
ét(Z,Gm).

For any ring R we set BrR = BrSpecR.

For any K-algebra S and any S-point x : SpecS → X, we get a

homomorphism x∗ : BrX → Br S, yielding a map

ρS : X(S) → Hom(BrX,Br S).
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Brauer-Manin obstruction.

For any scheme Z we set BrZ = H2
ét(Z,Gm).

For any ring R we set BrR = BrSpecR.

For any K-algebra S and any S-point x : SpecS → X, we get a

homomorphism x∗ : BrX → Br S, yielding a map

ρS : X(S) → Hom(BrX,Br S).

We will apply this to K and to the ring of adèles AK.
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From class field theory we have

0 → BrK → Br AK → Q/Z

Applying Hom(BrX, ) we find . . .
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0 → Hom(BrX,BrK ) →Hom(BrX,Br AK) → Hom(BrX,Q/Z)
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0 → Hom(BrX,BrK ) →Hom(BrX,Br AK) → Hom(BrX,Q/Z)

X(K)

ρK ρAK

X(AK)
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0 → Hom(BrX,BrK ) →Hom(BrX,Br AK) → Hom(BrX,Q/Z)

X(K) X(AK)

ρK ρAK
ψ
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0 → Hom(BrX,BrK ) →Hom(BrX,Br AK) → Hom(BrX,Q/Z)

X(K) X(AK)

ρK ρAK

X(AK)Br = ψ−1(0)

ψ
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0 → Hom(BrX,BrK ) →Hom(BrX,Br AK) → Hom(BrX,Q/Z)

X(K) X(AK)

ρK ρAK

X(AK)Br = ψ−1(0)

ψ

X(AK)Br = ∅ ⇒ X(K) = ∅
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0 → Hom(Br1X,BrK ) →Hom(Br1X,Br AK) → Hom(Br1X,Q/Z)

X(K) X(AK)

ρK ρAK

X(AK)Br1= ψ−1
1 (0)

ψ1

X(AK)Br1= ∅ ⇒ X(K) = ∅

Br1X = ker(BrX → BrX)
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X(AK)
Br(1) = ∅ ⇒ X(K) = ∅.

There is a Brauer-Manin obstruction to the Hasse principle if

X(AK) 6= ∅ and X(AK)Br = ∅.
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X(AK)
Br(1) = ∅ ⇒ X(K) = ∅.

There is a Brauer-Manin obstruction to the Hasse principle if

X(AK) 6= ∅ and X(AK)Br = ∅.

For a class S of varieties over K the Brauer-Manin obstruction is

the only obstruction to the Hasse principle if for every X ∈ S we have

X(AK)Br = ∅ ⇔ X(K) = ∅.
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X(AK)
Br(1) = ∅ ⇒ X(K) = ∅.

There is a Brauer-Manin obstruction to the Hasse principle if

X(AK) 6= ∅ and X(AK)Br = ∅.

For a class S of varieties over K the Brauer-Manin obstruction is

the only obstruction to the Hasse principle if for every X ∈ S we have

X(AK)Br = ∅ ⇔ X(K) = ∅.

Conjecture: The Brauer-Manin obstruction is the only obstruction to

the Hasse principle for rationally connected varieties.
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Definition: A K3 surface is a smooth, absolutely irreducible, projective

surface X with trivial canonical sheaf and H1(X,OX) = 0.

Examples of K3’s:

smooth surfaces of degree 4 in P3,

Kummer surfaces.

Question 4: Is the Brauer-Manin obstruction the only obstruction to

the Hasse principle for K3 surfaces?

(unknown)
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Relating the two problems
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Relating the two problems

Let C be a smooth cubic curve over K in P2 and ρ the automorphism

ρ : C × C → C × C, (P,Q) 7→ (Q,R),

with R the third intersection point of C with the line through P and Q.

27



Relating the two problems

Let C be a smooth cubic curve over K in P2 and ρ the automorphism

ρ : C × C → C × C, (P,Q) 7→ (Q,R),

with R the third intersection point of C with the line through P and Q.

Let XC be the minimal desingularization of the quotient (C × C)/ρ.

Then XC is a K3 surface.
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Theorem (vL)

Let C be the cubic curve in P2
K given by ax3+by3+cz3 = 0 and suppose

(i) C is LSE,

(ii) abc ∈ K∗ is not a cube,

(iii) C has no cubic points (with K as ground field).

Then

XC(AK)Br1 6= ∅ and XC(K) = ∅
(algebraic Brauer-Manin obstruction is not the only one).
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Theorem (vL)

Let C be the cubic curve in P2
K given by ax3+by3+cz3 = 0 and suppose

(i) C is LSE,

(ii) abc ∈ K∗ is not a cube,

(iii) C has no cubic points (with K as ground field).

Then

XC(AK)Br1 6= ∅ and XC(K) = ∅
sketch of proof:

(iii) implies XC(K) = ∅.
Indeed, T ∈ XC(K) corresponds to a galois-invariant orbit

{(P,Q), (Q,R), (R,P )} of ρ on C×C, so galois acts by even permutations

only and P,Q,R are defined over some cubic extension that is galois.
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Theorem (vL)

Let C be the cubic curve in P2
K given by ax3+by3+cz3 = 0 and suppose

(i) C is LSE,

(ii) abc ∈ K∗ is not a cube,

(iii) C has no cubic points (with K as ground field).

Then

XC(AK)Br1 6= ∅ and XC(K) = ∅
sketch of proof:

(iii) implies XC(K) = ∅.
(ii) implies Br1XC = BrK.

Indeed, Br1XC/BrK ∼= H1(K,PicXC), and PicXC is defined over

K(ζ3,
3
√

a/c, 3
√

b/c), with galois group contained in (Z/3Z×Z/3Z)⋊Z/2Z.

The only subgroups with nontrivial H1(K,PicXC) all fix
3
√
abc.
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Theorem (vL)

Let C be the cubic curve in P2
K given by ax3+by3+cz3 = 0 and suppose

(i) C is LSE,

(ii) abc ∈ K∗ is not a cube,

(iii) C has no cubic points (with K as ground field).

Then

XC(AK)Br1 6= ∅ and XC(K) = ∅
sketch of proof:

(iii) implies XC(K) = ∅.
(ii) implies Br1XC = BrK.

(i) implies that XC is LSE, so XC(AK) 6= ∅.
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Theorem (vL)

Let C be the cubic curve in P2
K given by ax3+by3+cz3 = 0 and suppose

(i) C is LSE,

(ii) abc ∈ K∗ is not a cube,

(iii) C has no cubic points (with K as ground field).

Then

XC(AK)Br1 6= ∅ and XC(K) = ∅
sketch of proof:

(iii) implies XC(K) = ∅.
(ii) implies Br1XC = BrK.

(i) implies that XC is LSE, so XC(AK) 6= ∅.

Done!
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