Geometry dictates arithmetic

Ronald van Luijk

February 21, 2013 Utrecht

Curves

Example. Circle given by $x^2 + y^2 = 1$ (or projective closure in \mathbb{P}^2).

Curves

Example. Circle given by $x^2 + y^2 = 1$ (or projective closure in \mathbb{P}^2).

Definition.

Genus of a smooth projective curve C over \mathbb{Q} is the genus of $C(\mathbb{C})$.

Theorem. If a conic over \mathbb{Q} has a rational point, then it has infinitely many.

Theorem. If a conic over \mathbb{Q} has a rational point, then it has infinitely many.

Theorem. If a conic D over \mathbb{Q} has a rational point, then there is an isomorphism $\mathbb{P}^1(\mathbb{C}) \to D(\mathbb{C})$, so the genus of D is 0.

Theorem. If a conic over \mathbb{Q} has a rational point, then it has infinitely many.

Theorem. If a conic D over \mathbb{Q} has a rational point, then there is an isomorphism $\mathbb{P}^1(\mathbb{C}) \to D(\mathbb{C})$, so the genus of D is 0.

Theorem. Any curve of genus 0 over \mathbb{Q} is isomorphic to a conic.

Theorem. If a conic over \mathbb{Q} has a rational point, then it has infinitely many.

Theorem. If a conic D over \mathbb{Q} has a rational point, then there is an isomorphism $\mathbb{P}^1(\mathbb{C}) \to D(\mathbb{C})$, so the genus of D is 0.

Theorem. Any curve of genus 0 over \mathbb{Q} is isomorphic to a conic.

Theorem. If a curve of genus 0 over \mathbb{Q} has a rational point, then it is isomorphic to \mathbb{P}^1 and it has infinitely many rational points.

Fact. E(k) is an abelian group!

Fact. E(k) is an abelian group!

Theorem (Mordell-Weil). For any elliptic curve E over \mathbb{Q} , the group $E(\mathbb{Q})$ is finitely generated.

Here: rank= 1, and $\mathbb{Z} \cong E(\mathbb{Q}) = \langle (3,1) \rangle$.

Genus $g \ge 2$

Examples.

- $y^2 = f(x)$ with f separable of degree 2g + 2.
- ▶ smooth projective plane curve of degree $d \ge 4$ with $g = \frac{1}{2}(d-1)(d-2)$.

Genus $g \ge 2$

Examples.

- $y^2 = f(x)$ with f separable of degree 2g + 2.
- ▶ smooth projective plane curve of degree $d \ge 4$ with $g = \frac{1}{2}(d-1)(d-2)$.

Theorem ("Mordell Conjecture" by Faltings, 1983). Any curve over \mathbb{Q} with $g \ge 2$ has only finitely many rational points.

Genus $g \ge 2$

Examples.

- $y^2 = f(x)$ with f separable of degree 2g + 2.
- ► smooth projective plane curve of degree $d \ge 4$ with $g = \frac{1}{2}(d-1)(d-2)$.

Theorem ("Mordell Conjecture" by Faltings, 1983). Any curve over \mathbb{Q} with $g \ge 2$ has only finitely many rational points.

Conclusion.

"The higher the genus, the lower the number of rational points".

Differentials

Definition.

Let X be a smooth projective variety with function field k(X). Then $\Omega_{k(X)/k}$ is the k(X)-vectorspace of differential 1-forms, generated by $\{df : f \in k(X)\}$ and satisfying

- ► d(f+g) = df + dg,
- d(fg) = fdg + gdf,
- da = 0 for $a \in k$.

Differentials

Definition.

Let X be a smooth projective variety with function field k(X). Then $\Omega_{k(X)/k}$ is the k(X)-vectorspace of differential 1-forms, generated by $\{df : f \in k(X)\}$ and satisfying

- ► d(f+g) = df + dg,
- d(fg) = fdg + gdf,
- da = 0 for $a \in k$.

Proposition. We have $\dim_{k(X)} \Omega_{k(X)/k} = \dim X$.

Example.

For curve $C: y^2 = f(x)$ we have 2ydy = f'(x)dx in $\Omega_{k(C)/k}$.

Holomorphic differentials on curves

Definition. For a point *P* on a smooth projective curve *C* with local parameter $t_P \in k(C)$ and a differential $\omega \in \Omega_{k(C)/k}$, we write $\omega = f_P dt_P$; then ω is holomorphic at *P* if f_P has no pole at *P*.

Example. Curve C: $y^2 = f(x)$ with f separable of degree $d \ge 3$. Then

$$\omega = \frac{1}{y}d(x-c) = \frac{1}{y}dx = \frac{2}{f'(x)}dy$$

is holomorphic everywhere.

Holomorphic differentials on curves

Definition. For a point *P* on a smooth projective curve *C* with local parameter $t_P \in k(C)$ and a differential $\omega \in \Omega_{k(C)/k}$, we write $\omega = f_P dt_P$; then ω is holomorphic at *P* if f_P has no pole at *P*.

Example. Curve $C: y^2 = f(x)$ with f separable of degree $d \ge 3$. Then

$$\omega = \frac{1}{y}d(x-c) = \frac{1}{y}dx = \frac{2}{f'(x)}dy$$

is holomorphic everywhere.

Definition. Set $\Omega_{C/k} = \{ \omega \in \Omega_{k(C)/k} : \omega \text{ holom. everywhere} \}.$

Proposition. We have $g = \dim_k \Omega_{C/k}$.

Recall. If X smooth, projective, then $\dim_{k(X)} \Omega_{k(X)/k} = \dim X$.

Fact. If V is a vector space with dim V = n, then dim $\bigwedge^n V = 1$.

Recall. If X smooth, projective, then $\dim_{k(X)} \Omega_{k(X)/k} = \dim X$.

Fact. If V is a vector space with dim V = n, then dim $\bigwedge^n V = 1$.

Definition (unconventional notation for (dim X)-forms). Set $\Omega_{X/k} = \{ \omega \in \bigwedge^{\dim X} \Omega_{k(X)/k} : \omega \text{ holom. everywhere} \}.$

Recall. If X smooth, projective, then $\dim_{k(X)} \Omega_{k(X)/k} = \dim X$.

Fact. If V is a vector space with dim V = n, then dim $\bigwedge^n V = 1$.

Definition (unconventional notation for (dim X)-forms). Set $\Omega_{X/k} = \{ \omega \in \bigwedge^{\dim X} \Omega_{k(X)/k} : \omega \text{ holom. everywhere} \}.$

Definition

For a k-basis $(\omega_0, \omega_1, \ldots, \omega_N)$ of $\Omega_{X/k}$, we get $f_i \in k(X)$ such that $\omega_i = f_i \omega_0$. The Kodaira dimension $\kappa(X)$ of X is -1 if dim_k $\Omega_{X/k} = 0$, or the dimension of the image of the map

$$X \to \mathbb{A}^N, \qquad P \mapsto (f_1(P), f_2(P), \dots, f_N(P)).$$

Recall. If X smooth, projective, then $\dim_{k(X)} \Omega_{k(X)/k} = \dim X$.

Fact. If V is a vector space with dim V = n, then dim $\bigwedge^n V = 1$.

Definition (unconventional notation for (dim X)-forms). Set $\Omega_{X/k} = \{ \omega \in \bigwedge^{\dim X} \Omega_{k(X)/k} : \omega \text{ holom. everywhere} \}.$

Definition (Wrong: use tensor powers of $\bigwedge^{\dim X} \Omega_{k(X)/k}$.) For a k-basis ($\omega_0, \omega_1, \ldots, \omega_N$) of $\Omega_{X/k}$, we get $f_i \in k(X)$ such that $\omega_i = f_i \omega_0$. The Kodaira dimension $\kappa(X)$ of X is -1 if dim_k $\Omega_{X/k} = 0$, or the dimension of the image of the map

 $X \to \mathbb{A}^N, \qquad P \mapsto (f_1(P), f_2(P), \dots, f_N(P)).$

Recall. If X smooth, projective, then $\dim_{k(X)} \Omega_{k(X)/k} = \dim X$.

Fact. If V is a vector space with dim V = n, then dim $\bigwedge^n V = 1$.

Definition (unconventional notation for (dim X)-forms). Set $\Omega_{X/k} = \{ \omega \in \bigwedge^{\dim X} \Omega_{k(X)/k} : \omega \text{ holom. everywhere} \}.$

Definition (Wrong: use tensor powers of $\bigwedge^{\dim X} \Omega_{k(X)/k}$.) For a k-basis ($\omega_0, \omega_1, \ldots, \omega_N$) of $\Omega_{X/k}$, we get $f_i \in k(X)$ such that $\omega_i = f_i \omega_0$. The Kodaira dimension $\kappa(X)$ of X is -1 if dim_k $\Omega_{X/k} = 0$, or the dimension of the image of the map

$$X \to \mathbb{A}^N, \qquad P \mapsto (f_1(P), f_2(P), \dots, f_N(P)).$$

Proposition. For a curve C we get

$$\kappa(C)=egin{cases} -1 & g=0\ 0 & g=1\ 1 & g\geq 2 \end{cases}$$

Varieties of general type

In general, $-1 \le \kappa(X) \le \dim X$ (complex $X \Rightarrow \text{high } \kappa(X)$).

Definition. We say that X is of general type if $\kappa(X) = \dim X$. ("many" holom. differentials, "canonical bundle is pseudo-ample")

Varieties of general type

In general, $-1 \le \kappa(X) \le \dim X$ (complex $X \Rightarrow \text{high } \kappa(X)$).

Definition. We say that X is of general type if $\kappa(X) = \dim X$. ("many" holom. differentials, "canonical bundle is pseudo-ample")

Conjecture (Lang). If X is a variety over \mathbb{Q} that is of general type, then the rational points lie in a Zariski closed subset, i.e., a finite union of proper subvarieties of X.

Varieties of general type

In general, $-1 \le \kappa(X) \le \dim X$ (complex $X \Rightarrow \text{high } \kappa(X)$).

Definition. We say that X is of general type if $\kappa(X) = \dim X$. ("many" holom. differentials, "canonical bundle is pseudo-ample")

Conjecture (Lang). If X is a variety over \mathbb{Q} that is of general type, then the rational points lie in a Zariski closed subset, i.e., a finite union of proper subvarieties of X.

Corollary. Let $X \subset \mathbb{P}^3$ be a smooth, projective surface over \mathbb{Q} of degree ≥ 5 . Then the rational points are all contained in some finite union of curves.

Definition. A Fano variety is a smooth, projective variety X with ample anti-canonical bundle.

We have $\kappa(X) = -1$ and X is geometrically "easy".

Definition. A Fano variety is a smooth, projective variety X with ample anti-canonical bundle.

We have $\kappa(X) = -1$ and X is geometrically "easy".

Conjecture (Batyrev-Manin). Suppose X over \mathbb{Q} is Fano. Set $\rho = \operatorname{rk} \operatorname{Pic} X$. There is an open subset $U \subset X$ and a constant c with

 $N_U(B) \sim cB(\log B)^{\rho-1}.$

Definition. A Fano variety is a smooth, projective variety X with ample anti-canonical bundle.

We have $\kappa(X) = -1$ and X is geometrically "easy".

Conjecture (Batyrev-Manin). Suppose X over \mathbb{Q} is Fano. Set $\rho = \operatorname{rk} \operatorname{Pic} X$. There is an open subset $U \subset X$ and a constant c with

 $N_U(B) \sim cB(\log B)^{\rho-1}.$

This is proved in many cases for surfaces.

False in higher dimension, but no counterexamples to lower bound.

Definition. A Fano variety is a smooth, projective variety X with ample anti-canonical bundle.

We have $\kappa(X) = -1$ and X is geometrically "easy".

Conjecture (Batyrev-Manin). Suppose X over \mathbb{Q} is Fano. Set $\rho = \operatorname{rk} \operatorname{Pic} X$. There is an open subset $U \subset X$ and a constant c with

 $N_U(B) \sim cB(\log B)^{\rho-1}.$

This is proved in many cases for surfaces.

False in higher dimension, but no counterexamples to lower bound.

Conclusion. The more complex a variety, the fewer rational points.

Definition. A K3 surface over \mathbb{Q} is a smooth, projective surface X with $X(\mathbb{C})$ simply connected and with trivial canonical bundle.

There is a unique holomorphic differential and we have $\kappa(X) = 0$.

Definition. A K3 surface over \mathbb{Q} is a smooth, projective surface X with $X(\mathbb{C})$ simply connected and with trivial canonical bundle.

There is a unique holomorphic differential and we have $\kappa(X) = 0$.

Examples

- Smooth quartic surfaces in \mathbb{P}^3 .
- Double cover of \mathbb{P}^2 ramified over a smooth sextic.
- Desingularization of $A/\langle [-1] \rangle$ for an abelian surface A.

Theorem (Tschinkel-Bogomolov). If $\operatorname{rk}\operatorname{Pic} X \ge 5$, then there is a finite extension K of \mathbb{Q} such that the K-rational points are Zariski dense on X, i.e., rational points are potentially dense on X. Theorem (Tschinkel-Bogomolov).

If $\operatorname{rk}\operatorname{Pic} X \ge 5$, then there is a finite extension K of \mathbb{Q} such that the K-rational points are Zariski dense on X, i.e., rational points are potentially dense on X.

Question. Is there a K3 surface X over a number field with $\operatorname{rk}\operatorname{Pic} X = 1$ and rational points potentially dense?

Theorem (Tschinkel-Bogomolov).

If $\operatorname{rk}\operatorname{Pic} X \ge 5$, then there is a finite extension K of \mathbb{Q} such that the K-rational points are Zariski dense on X, i.e., rational points are potentially dense on X.

Question. Is there a K3 surface X over a number field with $\operatorname{rk}\operatorname{Pic} X = 1$ and rational points potentially dense?

Question. Is there a K3 surface X over a number field with $\operatorname{rk}\operatorname{Pic} X = 1$ and rational points **not** potentially dense?

Theorem (Tschinkel-Bogomolov).

If $\operatorname{rk}\operatorname{Pic} X \ge 5$, then there is a finite extension K of \mathbb{Q} such that the K-rational points are Zariski dense on X, i.e., rational points are potentially dense on X.

Question. Is there a K3 surface X over a number field with $\operatorname{rk}\operatorname{Pic} X = 1$ and rational points potentially dense?

Question. Is there a K3 surface X over a number field with $\operatorname{rk}\operatorname{Pic} X = 1$ and rational points **not** potentially dense?

Question. Is there a K3 surface X over a number field K with X(K) neither empty nor dense?

Theorem (Logan, McKinnon, vL). Take $a, b, c, d \in \mathbb{Q}^*$ with $abcd \in (\mathbb{Q}^*)^2$. Let $X \subset \mathbb{P}^3$ be given by

 $ax^4 + by^4 + cz^4 + dw^4.$

If $P \in X(\mathbb{Q})$ has no zero coordinates and P does not lie on one of the 48 lines (no two terms sum to 0), then $X(\mathbb{Q})$ is Zariski dense.

Theorem (Logan, McKinnon, vL). Take $a, b, c, d \in \mathbb{Q}^*$ with $abcd \in (\mathbb{Q}^*)^2$. Let $X \subset \mathbb{P}^3$ be given by

 $ax^4 + by^4 + cz^4 + dw^4.$

If $P \in X(\mathbb{Q})$ has no zero coordinates and P does not lie on one of the 48 lines (no two terms sum to 0), then $X(\mathbb{Q})$ is Zariski dense.

Question. Are the conditions on *P* necessary?

Conjecture (vL) Every $t \in \mathbb{Q}$ can be written as

$$t = \frac{x^4 - y^4}{z^4 - w^4}.$$

Conjecture (vL). Suppose X is a K3 surface over \mathbb{Q} with $\operatorname{rk}\operatorname{Pic} X_{\mathbb{C}} = 1$. There is an open subset $U \subset X$ and a constant c such that

 $N_U(B) \sim c \log B.$

Hasse principle

Theorem (Hasse). Let $Q \subset \mathbb{P}^n$ be a smooth quadric over \mathbb{Q} . Suppose that Q has points over \mathbb{R} and over \mathbb{Q}_p for every p. Then $Q(\mathbb{Q}) \neq \emptyset$.

Hasse principle

Theorem (Hasse).

Let $Q \subset \mathbb{P}^n$ be a smooth quadric over \mathbb{Q} . Suppose that Q has points over \mathbb{R} and over \mathbb{Q}_p for every p. Then $Q(\mathbb{Q}) \neq \emptyset$.

Proposition (Selmer). The curve $C \subset \mathbb{P}^2$ given by $3x^3 + 4y^3 + 5z^3 = 0$ has points over \mathbb{R} and over \mathbb{Q}_p for every p, but $C(\mathbb{Q}) = \emptyset$.

To every variety X we can assign the Brauer group $\operatorname{Br} X$. Every morphism $X \to Y$ induces a homomorphism $\operatorname{Br} Y \to \operatorname{Br} X$. For every point P over a field k we have $\operatorname{Br}(P) = \operatorname{Br}(k)$.

To every variety X we can assign the Brauer group Br X. Every morphism $X \to Y$ induces a homomorphism Br $Y \to Br X$. For every point P over a field k we have Br(P) = Br(k).

Let X be smooth and projective.

To every variety X we can assign the Brauer group $\operatorname{Br} X$. Every morphism $X \to Y$ induces a homomorphism $\operatorname{Br} Y \to \operatorname{Br} X$. For every point P over a field k we have $\operatorname{Br}(P) = \operatorname{Br}(k)$.

Let X be smooth and projective.

Corollary. If $\left(\prod_{\nu} X(\mathbb{Q}_{\nu})\right)^{\mathrm{Br}} := \phi^{-1}(0)$ is empty, then $X(\mathbb{Q}) = \emptyset$.

To every variety X we can assign the Brauer group $\operatorname{Br} X$. Every morphism $X \to Y$ induces a homomorphism $\operatorname{Br} Y \to \operatorname{Br} X$. For every point P over a field k we have $\operatorname{Br}(P) = \operatorname{Br}(k)$.

Let X be smooth and projective.

Corollary. If $(\prod_{\nu} X(\mathbb{Q}_{\nu}))^{\mathrm{Br}} := \phi^{-1}(0)$ is empty, then $X(\mathbb{Q}) = \emptyset$.

Conjecture (Colliot-Thélène).

This Brauer-Manin obstruction is the only obstruction to the existence of rational points for rationally connected varieties.