Geometry dictates arithmetic

Ronald van Luijk

February 21, 2013
Utrecht

Curves

Example. Circle given by $x^{2}+y^{2}=1$ (or projective closure in \mathbb{P}^{2}).

Curves

Example. Circle given by $x^{2}+y^{2}=1$ (or projective closure in \mathbb{P}^{2}).
Definition.
Genus of a smooth projective curve C over \mathbb{Q} is the genus of $C(\mathbb{C})$.

Genus 0

$$
\mathbb{P}^{2} \supset C: x^{2}+y^{2}=1
$$

Genus 0

$$
\mathbb{P}^{2} \supset C: x^{2}+y^{2}=1
$$

Genus 0

$$
\mathbb{P}^{2} \supset C: x^{2}+y^{2}=1
$$

Genus 0

$$
\mathbb{P}^{2} \supset C: x^{2}+y^{2}=1
$$

Genus 0

$$
\mathbb{P}^{2} \supset C: x^{2}+y^{2}=1
$$

Theorem. If a conic over \mathbb{Q} has a rational point, then it has infinitely many.

Genus 0

$$
\mathbb{P}^{2} \supset C: x^{2}+y^{2}=1
$$

Theorem. If a conic over \mathbb{Q} has a rational point, then it has infinitely many.

Theorem. If a conic D over \mathbb{Q} has a rational point, then there is an isomorphism $\mathbb{P}^{1}(\mathbb{C}) \rightarrow D(\mathbb{C})$, so the genus of D is 0 .

Genus 0

Theorem. If a conic over \mathbb{Q} has a rational point, then it has infinitely many.

Theorem. If a conic D over \mathbb{Q} has a rational point, then there is an isomorphism $\mathbb{P}^{1}(\mathbb{C}) \rightarrow D(\mathbb{C})$, so the genus of D is 0 .

Theorem. Any curve of genus 0 over \mathbb{Q} is isomorphic to a conic.

Genus 0

Theorem. If a conic over \mathbb{Q} has a rational point, then it has infinitely many.

Theorem. If a conic D over \mathbb{Q} has a rational point, then there is an isomorphism $\mathbb{P}^{1}(\mathbb{C}) \rightarrow D(\mathbb{C})$, so the genus of D is 0 .

Theorem. Any curve of genus 0 over \mathbb{Q} is isomorphic to a conic.

Theorem. If a curve of genus 0 over \mathbb{Q} has a rational point, then it is isomorphic to \mathbb{P}^{1} and it has infinitely many rational points.

Genus 0

Genus 0

Genus 0

$N_{C}(B)=$

Theorem. The number $N_{D}(B)$ of rational points on a conic D grows linearly with the height B (or is zero).

Genus 1 (elliptic)

Genus 1 (elliptic)

$E: y^{2}=x^{3}-15 x+19$

Genus 1 (elliptic)

$E: y^{2}=x^{3}-15 x+19$

Genus 1 (elliptic)

$E: y^{2}=x^{3}-15 x+19$

Genus 1 (elliptic)

Fact. $E(k)$ is an abelian group!

$E: y^{2}=x^{3}-15 x+19$

Genus 1 (elliptic)

Fact. $E(k)$ is an abelian group!

Theorem (Mordell-Weil). For any elliptic curve E over \mathbb{Q}, the group $E(\mathbb{Q})$ is finitely generated.

Here: rank $=1$, and
$\mathbb{Z} \cong E(\mathbb{Q})=\langle(3,1)\rangle$.
$E: y^{2}=x^{3}-15 x+19$

Genus 1 (elliptic)

$$
E: y^{2}=x^{3}-15 x+19
$$

Genus 1 (elliptic)

Theorem. For any elliptic curve E over \mathbb{Q} with $r=\operatorname{rank} E(\mathbb{Q})$, we have $N_{E}(B) \sim c(\log B)^{r / 2}$.

Genus $g \geq 2$

Examples.

- $y^{2}=f(x)$ with f separable of degree $2 g+2$.
- smooth projective plane curve of degree $d \geq 4$ with $g=\frac{1}{2}(d-1)(d-2)$.

Genus $g \geq 2$

Examples.

- $y^{2}=f(x)$ with f separable of degree $2 g+2$.
- smooth projective plane curve of degree $d \geq 4$ with

$$
g=\frac{1}{2}(d-1)(d-2)
$$

Theorem ("Mordell Conjecture" by Faltings, 1983).
Any curve over \mathbb{Q} with $g \geq 2$ has only finitely many rational points.

Genus $g \geq 2$

Examples.

- $y^{2}=f(x)$ with f separable of degree $2 g+2$.
- smooth projective plane curve of degree $d \geq 4$ with

$$
g=\frac{1}{2}(d-1)(d-2)
$$

Theorem ("Mordell Conjecture" by Faltings, 1983).
Any curve over \mathbb{Q} with $g \geq 2$ has only finitely many rational points.
Conclusion.
"The higher the genus, the lower the number of rational points".

Differentials

Definition.
Let X be a smooth projective variety with function field $k(X)$. Then $\Omega_{k(X) / k}$ is the $k(X)$-vectorspace of differential 1-forms, generated by $\{d f: f \in k(X)\}$ and satisfying

- $d(f+g)=d f+d g$,
- $d(f g)=f d g+g d f$,
- $d a=0$ for $a \in k$.

Differentials

Definition.
Let X be a smooth projective variety with function field $k(X)$. Then $\Omega_{k(X) / k}$ is the $k(X)$-vectorspace of differential 1-forms, generated by $\{d f: f \in k(X)\}$ and satisfying

- $d(f+g)=d f+d g$,
- $d(f g)=f d g+g d f$,
- $d a=0$ for $a \in k$.

Proposition. We have $\operatorname{dim}_{k(X)} \Omega_{k(X) / k}=\operatorname{dim} X$.
Example.
For curve $C: y^{2}=f(x)$ we have $2 y d y=f^{\prime}(x) d x$ in $\Omega_{k(C) / k}$.

Holomorphic differentials on curves

Definition. For a point P on a smooth projective curve C with local parameter $t_{P} \in k(C)$ and a differential $\omega \in \Omega_{k(C) / k}$, we write $\omega=f_{P} d t_{P}$; then ω is holomorphic at P if f_{P} has no pole at P.

Example.
Curve C : $y^{2}=f(x)$ with f separable of degree $d \geq 3$. Then

$$
\omega=\frac{1}{y} d(x-c)=\frac{1}{y} d x=\frac{2}{f^{\prime}(x)} d y
$$

is holomorphic everywhere.

Holomorphic differentials on curves

Definition. For a point P on a smooth projective curve C with local parameter $t_{P} \in k(C)$ and a differential $\omega \in \Omega_{k(C) / k}$, we write $\omega=f_{P} d t_{P}$; then ω is holomorphic at P if f_{P} has no pole at P.

Example.
Curve C : $y^{2}=f(x)$ with f separable of degree $d \geq 3$. Then

$$
\omega=\frac{1}{y} d(x-c)=\frac{1}{y} d x=\frac{2}{f^{\prime}(x)} d y
$$

is holomorphic everywhere.
Definition. Set $\Omega_{C / k}=\left\{\omega \in \Omega_{k(C) / k}: \omega\right.$ holom. everywhere $\}$.
Proposition. We have $g=\operatorname{dim}_{k} \Omega_{C / k}$.

Holomorphic differentials in general

Recall. If X smooth, projective, then $\operatorname{dim}_{k(X)} \Omega_{k(X) / k}=\operatorname{dim} X$.
Fact. If V is a vector space with $\operatorname{dim} V=n$, then $\operatorname{dim} \bigwedge^{n} V=1$.

Holomorphic differentials in general

Recall. If X smooth, projective, then $\operatorname{dim}_{k(X)} \Omega_{k(X) / k}=\operatorname{dim} X$.
Fact. If V is a vector space with $\operatorname{dim} V=n$, then $\operatorname{dim} \bigwedge^{n} V=1$.
Definition (unconventional notation for ($\operatorname{dim} X$)-forms). Set $\Omega_{X / k}=\left\{\omega \in \bigwedge^{\operatorname{dim} X} \Omega_{k(X) / k}: \omega\right.$ holom. everywhere $\}$.

Holomorphic differentials in general

Recall. If X smooth, projective, then $\operatorname{dim}_{k(X)} \Omega_{k(X) / k}=\operatorname{dim} X$.
Fact. If V is a vector space with $\operatorname{dim} V=n$, then $\operatorname{dim} \bigwedge^{n} V=1$.
Definition (unconventional notation for $(\operatorname{dim} X)$-forms).
Set $\Omega_{X / k}=\left\{\omega \in \Lambda^{\operatorname{dim} X} \Omega_{k(X) / k}: \omega\right.$ holom. everywhere $\}$.
Definition
For a k-basis $\left(\omega_{0}, \omega_{1}, \ldots, \omega_{N}\right)$ of $\Omega_{X / k}$, we get $f_{i} \in k(X)$ such that $\omega_{i}=f_{i} \omega_{0}$. The Kodaira dimension $\kappa(X)$ of X is
-1 if $\operatorname{dim}_{k} \Omega_{X / k}=0$, or the dimension of the image of the map

$$
X \rightarrow \mathbb{A}^{N}, \quad P \mapsto\left(f_{1}(P), f_{2}(P), \ldots, f_{N}(P)\right)
$$

Holomorphic differentials in general

Recall. If X smooth, projective, then $\operatorname{dim}_{k(X)} \Omega_{k(X) / k}=\operatorname{dim} X$.
Fact. If V is a vector space with $\operatorname{dim} V=n$, then $\operatorname{dim} \bigwedge^{n} V=1$.
Definition (unconventional notation for $(\operatorname{dim} X)$-forms). Set $\Omega_{X / k}=\left\{\omega \in \Lambda^{\operatorname{dim} X} \Omega_{k(X) / k}: \omega\right.$ holom. everywhere $\}$.

Definition (Wrong: use tensor powers of $\Lambda^{\operatorname{dim} X} \Omega_{k(X) / k}$.)
For a k-basis $\left(\omega_{0}, \omega_{1}, \ldots, \omega_{N}\right)$ of $\Omega_{X / k}$, we get $f_{i} \in k(X)$
such that $\omega_{i}=f_{i} \omega_{0}$. The Kodaira dimension $\kappa(X)$ of X is
-1 if $\operatorname{dim}_{k} \Omega_{X / k}=0$, or the dimension of the image of the map

$$
X \rightarrow \mathbb{A}^{N}, \quad P \mapsto\left(f_{1}(P), f_{2}(P), \ldots, f_{N}(P)\right)
$$

Holomorphic differentials in general

Recall. If X smooth, projective, then $\operatorname{dim}_{k(X)} \Omega_{k(X) / k}=\operatorname{dim} X$.
Fact. If V is a vector space with $\operatorname{dim} V=n$, then $\operatorname{dim} \bigwedge^{n} V=1$.
Definition (unconventional notation for $(\operatorname{dim} X)$-forms). Set $\Omega_{X / k}=\left\{\omega \in \Lambda^{\operatorname{dim} X} \Omega_{k(X) / k}: \omega\right.$ holom. everywhere $\}$.

Definition (Wrong: use tensor powers of $\Lambda^{\operatorname{dim} X} \Omega_{k(X) / k}$.)
For a k-basis $\left(\omega_{0}, \omega_{1}, \ldots, \omega_{N}\right)$ of $\Omega_{X / k}$, we get $f_{i} \in k(X)$
such that $\omega_{i}=f_{i} \omega_{0}$. The Kodaira dimension $\kappa(X)$ of X is
-1 if $\operatorname{dim}_{k} \Omega_{X / k}=0$, or the dimension of the image of the map

$$
X \rightarrow \mathbb{A}^{N}, \quad P \mapsto\left(f_{1}(P), f_{2}(P), \ldots, f_{N}(P)\right)
$$

Proposition. For a curve C we get

$$
\kappa(C)= \begin{cases}-1 & g=0 \\ 0 & g=1 \\ 1 & g \geq 2\end{cases}
$$

Varieties of general type

In general, $-1 \leq \kappa(X) \leq \operatorname{dim} X$ (complex $X \Rightarrow$ high $\kappa(X)$).
Definition. We say that X is of general type if $\kappa(X)=\operatorname{dim} X$. ("many" holom. differentials, "canonical bundle is pseudo-ample")

Varieties of general type

In general, $-1 \leq \kappa(X) \leq \operatorname{dim} X$ (complex $X \Rightarrow$ high $\kappa(X)$).
Definition. We say that X is of general type if $\kappa(X)=\operatorname{dim} X$. ("many" holom. differentials, "canonical bundle is pseudo-ample")

Conjecture (Lang).
If X is a variety over \mathbb{Q} that is of general type, then the rational points lie in a Zariski closed subset, i.e., a finite union of proper subvarieties of X.

Varieties of general type

In general, $-1 \leq \kappa(X) \leq \operatorname{dim} X$ (complex $X \Rightarrow$ high $\kappa(X)$).
Definition. We say that X is of general type if $\kappa(X)=\operatorname{dim} X$. ("many" holom. differentials, "canonical bundle is pseudo-ample")

Conjecture (Lang).
If X is a variety over \mathbb{Q} that is of general type, then the rational points lie in a Zariski closed subset, i.e., a finite union of proper subvarieties of X.

Corollary. Let $X \subset \mathbb{P}^{3}$ be a smooth, projective surface over \mathbb{Q} of degree ≥ 5. Then the rational points are all contained in some finite union of curves.

Fano varieties

Definition. A Fano variety is a smooth, projective variety X with ample anti-canonical bundle.

We have $\kappa(X)=-1$ and X is geometrically "easy".

Fano varieties

Definition. A Fano variety is a smooth, projective variety X with ample anti-canonical bundle.

We have $\kappa(X)=-1$ and X is geometrically "easy".
Conjecture (Batyrev-Manin).
Suppose X over \mathbb{Q} is Fano. Set $\rho=\operatorname{rkPic} X$.
There is an open subset $U \subset X$ and a constant c with

$$
N_{U}(B) \sim c B(\log B)^{\rho-1}
$$

Fano varieties

Definition. A Fano variety is a smooth, projective variety X with ample anti-canonical bundle.

We have $\kappa(X)=-1$ and X is geometrically "easy".
Conjecture (Batyrev-Manin).
Suppose X over \mathbb{Q} is Fano. Set $\rho=\operatorname{rkPic} X$.
There is an open subset $U \subset X$ and a constant c with

$$
N_{U}(B) \sim c B(\log B)^{\rho-1}
$$

This is proved in many cases for surfaces. False in higher dimension, but no counterexamples to lower bound.

Fano varieties

Definition. A Fano variety is a smooth, projective variety X with ample anti-canonical bundle.

We have $\kappa(X)=-1$ and X is geometrically "easy".
Conjecture (Batyrev-Manin). Suppose X over \mathbb{Q} is Fano. Set $\rho=\operatorname{rkPic} X$. There is an open subset $U \subset X$ and a constant c with

$$
N_{U}(B) \sim c B(\log B)^{\rho-1}
$$

This is proved in many cases for surfaces.
False in higher dimension, but no counterexamples to lower bound.

Conclusion. The more complex a variety, the fewer rational points.

K3 surfaces

Definition. A K3 surface over \mathbb{Q} is a smooth, projective surface X with $X(\mathbb{C})$ simply connected and with trivial canonical bundle.

There is a unique holomorphic differential and we have $\kappa(X)=0$.

K3 surfaces

Definition. A K3 surface over \mathbb{Q} is a smooth, projective surface X with $X(\mathbb{C})$ simply connected and with trivial canonical bundle.

There is a unique holomorphic differential and we have $\kappa(X)=0$.
Examples

- Smooth quartic surfaces in \mathbb{P}^{3}.
- Double cover of \mathbb{P}^{2} ramified over a smooth sextic.
- Desingularization of $A /\langle[-1]\rangle$ for an abelian surface A.

Theorem (Tschinkel-Bogomolov).
If $\operatorname{rkPic} X \geq 5$, then there is a finite extension K of \mathbb{Q} such that the K-rational points are Zariski dense on X, i.e., rational points are potentially dense on X.

Theorem (Tschinkel-Bogomolov).
If $\operatorname{rkPic} X \geq 5$, then there is a finite extension K of \mathbb{Q} such that the K-rational points are Zariski dense on X, i.e., rational points are potentially dense on X.

Question. Is there a K 3 surface X over a number field with $\operatorname{rk} \operatorname{Pic} X=1$ and rational points potentially dense?

Theorem (Tschinkel-Bogomolov).
If $\operatorname{rkPic} X \geq 5$, then there is a finite extension K of \mathbb{Q} such that the K-rational points are Zariski dense on X, i.e., rational points are potentially dense on X.

Question. Is there a K 3 surface X over a number field with $\operatorname{rk} \operatorname{Pic} X=1$ and rational points potentially dense?

Question. Is there a K 3 surface X over a number field with $\operatorname{rk} \operatorname{Pic} X=1$ and rational points not potentially dense?

Theorem (Tschinkel-Bogomolov).
If $\operatorname{rkPic} X \geq 5$, then there is a finite extension K of \mathbb{Q} such that the K-rational points are Zariski dense on X, i.e., rational points are potentially dense on X.

Question. Is there a K 3 surface X over a number field with $\operatorname{rk} \operatorname{Pic} X=1$ and rational points potentially dense?

Question. Is there a K 3 surface X over a number field with $\operatorname{rk} \operatorname{Pic} X=1$ and rational points not potentially dense?

Question. Is there a K 3 surface X over a number field K with $X(K)$ neither empty nor dense?

K3 surfaces

Theorem (Logan, McKinnon, vL).
Take $a, b, c, d \in \mathbb{Q}^{*}$ with abcd $\in\left(\mathbb{Q}^{*}\right)^{2}$. Let $X \subset \mathbb{P}^{3}$ be given by

$$
a x^{4}+b y^{4}+c z^{4}+d w^{4} .
$$

If $P \in X(\mathbb{Q})$ has no zero coordinates and P does not lie on one of the 48 lines (no two terms sum to 0), then $X(\mathbb{Q})$ is Zariski dense.

K3 surfaces

Theorem (Logan, McKinnon, vL).
Take $a, b, c, d \in \mathbb{Q}^{*}$ with abcd $\in\left(\mathbb{Q}^{*}\right)^{2}$. Let $X \subset \mathbb{P}^{3}$ be given by

$$
a x^{4}+b y^{4}+c z^{4}+d w^{4} .
$$

If $P \in X(\mathbb{Q})$ has no zero coordinates and P does not lie on one of the 48 lines (no two terms sum to 0), then $X(\mathbb{Q})$ is Zariski dense.

Question. Are the conditions on P necessary?
Conjecture (vL) Every $t \in \mathbb{Q}$ can be written as

$$
t=\frac{x^{4}-y^{4}}{z^{4}-w^{4}}
$$

K3 surfaces

Conjecture (vL).
Suppose X is a K 3 surface over \mathbb{Q} with $\mathrm{rk} \operatorname{Pic} X_{\mathbb{C}}=1$.
There is an open subset $U \subset X$ and a constant c such that

$$
N_{U}(B) \sim c \log B .
$$

Hasse principle

Theorem (Hasse).
Let $Q \subset \mathbb{P}^{n}$ be a smooth quadric over \mathbb{Q}. Suppose that Q has points over \mathbb{R} and over \mathbb{Q}_{p} for every p. Then $Q(\mathbb{Q}) \neq \emptyset$.

Hasse principle

Theorem (Hasse).
Let $Q \subset \mathbb{P}^{n}$ be a smooth quadric over \mathbb{Q}. Suppose that Q has points over \mathbb{R} and over \mathbb{Q}_{p} for every p. Then $Q(\mathbb{Q}) \neq \emptyset$.

Proposition (Selmer).
The curve $C \subset \mathbb{P}^{2}$ given by $3 x^{3}+4 y^{3}+5 z^{3}=0$ has points over \mathbb{R} and over \mathbb{Q}_{p} for every p, but $C(\mathbb{Q})=\emptyset$.

Brauer-Manin obstruction

To every variety X we can assign the Brauer group $\operatorname{Br} X$. Every morphism $X \rightarrow Y$ induces a homomorphism $\operatorname{Br} Y \rightarrow \operatorname{Br} X$. For every point P over a field k we have $\operatorname{Br}(P)=\operatorname{Br}(k)$.

Brauer-Manin obstruction

To every variety X we can assign the Brauer group $\operatorname{Br} X$.
Every morphism $X \rightarrow Y$ induces a homomorphism $\operatorname{Br} Y \rightarrow \operatorname{Br} X$.
For every point P over a field k we have $\operatorname{Br}(P)=\operatorname{Br}(k)$.
Let X be smooth and projective.

Brauer-Manin obstruction

To every variety X we can assign the Brauer group $\operatorname{Br} X$.
Every morphism $X \rightarrow Y$ induces a homomorphism $\operatorname{Br} Y \rightarrow \operatorname{Br} X$.
For every point P over a field k we have $\operatorname{Br}(P)=\operatorname{Br}(k)$.
Let X be smooth and projective.

Corollary. If $\left(\prod_{v} X\left(\mathbb{Q}_{v}\right)\right)^{\mathrm{Br}}:=\phi^{-1}(0)$ is empty, then $X(\mathbb{Q})=\emptyset$.

Brauer-Manin obstruction

To every variety X we can assign the Brauer group $\operatorname{Br} X$.
Every morphism $X \rightarrow Y$ induces a homomorphism $\operatorname{Br} Y \rightarrow \operatorname{Br} X$.
For every point P over a field k we have $\operatorname{Br}(P)=\operatorname{Br}(k)$.
Let X be smooth and projective.

Corollary. If $\left(\prod_{v} X\left(\mathbb{Q}_{v}\right)\right)^{\mathrm{Br}}:=\phi^{-1}(0)$ is empty, then $X(\mathbb{Q})=\emptyset$.
Conjecture (Colliot-Thélène).
This Brauer-Manin obstruction is the only obstruction to the existence of rational points for rationally connected varieties.

