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Example. Circle given by x? + y? = 1 (or projective closure in P?),
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Example. Circle given by x? + y? = 1 (or projective closure in P?),

Definition.

Genus of a smooth projective curve C over Q is the genus of C(C).
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Theorem. If a conic D over Q
has a rational point, then there is
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Theorem. Any curve of genus 0
over Q is isomorphic to a conic.
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Theorem. If a conic over Q has
a rational point, then it has in-
finitely many.

Theorem. If a conic D over Q
has a rational point, then there is
an isomorphism P1(C) — D(C),
so the genus of D is 0.

Theorem. Any curve of genus 0
over Q is isomorphic to a conic.

Theorem. If a curve of genus 0
over Q has a rational point, then
it is isomorphic to P! and it has
infinitely many rational points.
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Fact. E(k) is an abelian group!

Theorem (Mordell-Weil).
For any elliptic curve E
over Q, the group E(Q) is
finitely generated.

Here: rank=1, and

2= E@Q) = ((5,1)).
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Genus 1 (elliptic) Ng(B) =
100 1 number of (

c’c

(2622397863 117375339855079)
362178961 > 6892627806791

Ne(B) ~ vV/log B

N = 2.6768125...

Theorem. For any elliptic curve E
over Q with r = rank E(Q), we have

2 0 T T T
NE(B) ~ C(log B)r/ ! 0 300 600 900 1200

log B
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Examples.

> y2 = f(x) with f separable of degree 2g + 2.

» smooth projective plane curve of degree d > 4 with
g =3(d—1)(d-2).
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Theorem (“Mordell Conjecture” by Faltings, 1983).
Any curve over Q with g > 2 has only finitely many rational points.
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Examples.

> y2 = f(x) with f separable of degree 2g + 2.

» smooth projective plane curve of degree d > 4 with
g =3(d—1)(d-2).

Theorem (“Mordell Conjecture” by Faltings, 1983).
Any curve over Q with g > 2 has only finitely many rational points.

Conclusion.
“The higher the genus, the lower the number of rational points”.



Differentials

Definition.
Let X be a smooth projective variety with function field k(X).
Then Qy(x)/« is the k(X)-vectorspace of differential 1-forms,
generated by {df : f € k(X)} and satisfying

> d(f +g) = df + dg,

» d(fg) = fdg + gdf,

» da =0 for a € k.



Differentials

Definition.

Let X be a smooth projective variety with function field k(X).
Then Qy(x)/« is the k(X)-vectorspace of differential 1-forms,
generated by {df : f € k(X)} and satisfying

> d(f +g) = df + dg,
> d(fg) = fdg + gdf,
» da =0 for a € k.

Proposition. We have dim(x) Qx(x)/x = dim X.

Example.
For curve C: y? = f(x) we have 2ydy = f'(x)dx in Qx(c)/k-



Holomorphic differentials on curves

Definition. For a point P on a smooth projective curve C with
local parameter tp € k(C) and a differential w € Q(cy/k, we write
w = fpdtp; then w is holomorphic at P if fp has no pole at P.

Example.
Curve C: y? = f(x) with f separable of degree d > 3. Then

is holomorphic everywhere.



Holomorphic differentials on curves

Definition. For a point P on a smooth projective curve C with
local parameter tp € k(C) and a differential w € Q(cy/k, we write
w = fpdtp; then w is holomorphic at P if fp has no pole at P.

Example.
Curve C: y? = f(x) with f separable of degree d > 3. Then

is holomorphic everywhere.
Definition. Set Q¢ = {w € Qy(c)/k : w holom. everywhere}.

Proposition. We have g = dim, Q¢ .
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such that w; = fijwp. The Kodaira dimension x(X) of X is
—1if dimy Qx/, = 0, or the dimension of the image of the map

X — AN, P (A(P), (P),...,n(P)).
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Holomorphic differentials in general
Recall. If X smooth, projective, then dim(x) Qy(x)/x = dim X.

Fact. If V is a vector space with dim V = n, then dim /\" vV =1.

Definition (unconventional notation for (dim X)-forms).
Set Qx/ = {we /\d'mXQk(X)/k . w holom. everywhere}.

Definition (Wrong: use tensor powers of /\dimx Qux)/k-)

For a k-basis (wo, w1, ..., wn) of Qx i, we get f; € k(X)

such that w; = fiwp. The Kodaira dimension x(X) of X is
—1if dimy Qx/, = 0, or the dimension of the image of the map

X — AN, P (A(P), (P),...,n(P)).

Proposition. For a curve C we get
-1 g=0
K(C)=<K0 g=1
1 g>2
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(“many” holom. differentials, “canonical bundle is pseudo-ample™)
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Varieties of general type

In general, —1 < k(X) < dim X (complex X = high x(X)).

Definition. We say that X is of general type if x(X) = dim X.
(“many” holom. differentials, “canonical bundle is pseudo-ample™)

Conjecture (Lang).

If X is a variety over QQ that is of general type, then the rational
points lie in a Zariski closed subset, i.e., a finite union of proper
subvarieties of X.

Corollary. Let X C 3 be a smooth, projective surface over Q of
degree > 5. Then the rational points are all contained in some
finite union of curves.
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Fano varieties

Definition. A Fano variety is a smooth, projective variety X with
ample anti-canonical bundle.

We have k(X) = —1 and X is geometrically “easy”.

Conjecture (Batyrev-Manin).
Suppose X over Q is Fano. Set p = rk Pic X.
There is an open subset U C X and a constant ¢ with

Ny(B) ~ cB(log B)"~*.

This is proved in many cases for surfaces.
False in higher dimension, but no counterexamples to lower bound.

Conclusion. The more complex a variety, the fewer rational points.
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There is a unique holomorphic differential and we have x(X) = 0.



K3 surfaces

Definition. A K3 surface over QQ is a smooth, projective surface X
with X(C) simply connected and with trivial canonical bundle.

There is a unique holomorphic differential and we have x(X) = 0.

Examples
» Smooth quartic surfaces in P3.
» Double cover of P2 ramified over a smooth sextic.

» Desingularization of A/([—1]) for an abelian surface A.
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Theorem (Tschinkel-Bogomolov).

If rk Pic X > 5, then there is a finite extension K of Q such that
the K-rational points are Zariski dense on X, i.e., rational points
are potentially dense on X.

Question. Is there a K3 surface X over a number field with
rk Pic X = 1 and rational points potentially dense?

Question. Is there a K3 surface X over a number field with
rk Pic X = 1 and rational points not potentially dense?

Question. Is there a K3 surface X over a number field K with
X(K) neither empty nor dense?



K3 surfaces

Theorem (Logan, McKinnon, vL).
Take a, b, c,d € Q* with abcd € (Q*)%. Let X C P be given by

ax* 4+ by* + cz* + dw*.

If P € X(Q) has no zero coordinates and P does not lie on one of
the 48 lines (no two terms sum to 0), then X(Q) is Zariski dense.



K3 surfaces

Theorem (Logan, McKinnon, vL).
Take a, b, c,d € Q* with abcd € (Q*)%. Let X C P be given by

ax* 4+ by* + cz* + dw*.

If P € X(Q) has no zero coordinates and P does not lie on one of
the 48 lines (no two terms sum to 0), then X(Q) is Zariski dense.

Question. Are the conditions on P necessary?
Conjecture (vL) Every t € Q can be written as

4 4
X —
t: y

74— wh’
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K3 surfaces

Conjecture (vL).
Suppose X is a K3 surface over Q with rk Pic X¢ = 1.
There is an open subset U C X and a constant ¢ such that

Ny(B) ~ clog B.
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Hasse principle

Theorem (Hasse).
Let @ C P" be a smooth quadric over Q. Suppose that @ has
points over R and over Q, for every p. Then Q(Q) # 0.

Proposition (Selmer).
The curve C C P? given by 3x3 + 4y3 + 523 = 0 has points over R
and over Q, for every p, but C(Q) = 0.
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Brauer-Manin obstruction

To every variety X we can assign the Brauer group Br X.
Every morphism X — Y induces a homomorphism Br Y — Br X.
For every point P over a field k we have Br(P) = Br(k).

Let X be smooth and projective.

X(Q) —IL, X(Qv)

| |

Br(Q) — @, Br(Q) —Q/Z
Corollary. If (HVX(Q\,))Br := ¢~1(0) is empty, then X(Q) = 0.

Conjecture (Colliot-Thélene).
This Brauer-Manin obstruction is the only obstruction to the
existence of rational points for rationally connected varieties.



