Finiteness theorems for K3 surfaces over arbitrary fields

Martin Bright Adam Logan Ronald van Luijk

Groningen, August 2020/ 2021 2022

Definition. A K3 surface is a nice (smooth, projective, geometrically integral) surface X over a field k with $\omega_X \cong \mathcal{O}_X$ and $H^1(X, \mathcal{O}_X) = 0$.

Examples:

- smooth quartic surface in \mathbb{P}^3 ;
- \blacksquare smooth double cover of \mathbb{P}^2 ramified along a sextic curve;
- smooth complete intersection of quadric and cubic in \mathbb{P}^4 ;
- Kummer surface: desingularization of abelian surface modulo -1.

Picard lattice with intersection pairing.

- $\operatorname{Pic}(X) \cong \operatorname{NS}(X) \cong \operatorname{Num}(X).$
- Rank $\rho(X)$ at most 22.
- $\blacksquare \ {\rm Hodge \ Index \ Theorem: \ signature \ } (1, \rho 1).$
- For divisor D, get $\chi(\mathcal{O}_X(D)) = \frac{1}{2}D^2 + 2$, so $\operatorname{Pic}(X)$ is even.
- For divisor class D with $D^2 \ge -2$, get $D \gg 0$ or $-D \gg 0$.
- For a nice curve $C \subset X$, get $2p_a(C) 2 = C^2$, so $C^2 \ge -2$.

Cones

Let X be a projective K3 surface over an algebraically closed field k.

Inside $(\operatorname{Pic} X)_{\mathbb{R}}$ we have the cone

$$\{\alpha \in (\operatorname{Pic} X)_{\mathbb{R}} \mid \alpha^2 > 0\}$$

consisting of two components; the one that contains all the ample divisor classes is the positive cone, denoted C_X .

There is also the nef cone

$$\operatorname{Nef}(X) = \{ \alpha \in (\operatorname{Pic} X)_{\mathbb{R}} \mid \alpha \cdot C \ge 0 \text{ for all curves } C \subset X \}.$$

■ The ample cone Amp(X) ⊂ C_X is ℝ-generated by all ample classes. Nakai–Moishezon–Kleiman:

$$\operatorname{Nef}(X)^{\circ} = \operatorname{Amp}(X) \subset \overline{\operatorname{Amp}(X)} = \operatorname{Nef}(X).$$

• $\operatorname{Amp}(X) = \mathcal{C}_X \cap \{ \alpha \in (\operatorname{Pic} X)_{\mathbb{R}} \mid \alpha \cdot C > 0 \text{ for all } (-2) \text{-curves } C \subset X \}.$

Example.

Conic $C \subset X \subset \mathbb{P}^3_{\mathbb{C}}$ quartic Hyperplane section H. Basis (H, C) for Pic(X). Pic $(X)_{\mathbb{R}} \cong \left(\mathbb{R}^2, \begin{pmatrix} 4 & 2 \\ 2 & -2 \end{pmatrix}\right)$ $(aH + bC)^2 = 4a^2 + 4ab - 2b^2$

(-2)-class D = aH + bC $D^{2} = -2 \Leftrightarrow$ $(b-a) + a\sqrt{3} = \pm (2 + \sqrt{3})^{n}$ D effective iff $H \cdot D > 0$.

Residual conic $C' = H - C \gg 0$.

Every $\phi \in Aut(X)$ fixes: C_X and Nef(X) class of H (so ϕ is linear) plane containing C and C'set $C \cap C'$

Aut(X) is finite!

Automorphisms and cones in general

Study Aut X by relating it to the group O(Pic X) of isometries of Pic X.

- Any $\phi \in \operatorname{Aut} X$ induces an isometry of Pic X fixing \mathcal{C}_X and Nef(X).
- More isometries of Pic X: reflection s_{δ} in δ^{\perp} for any (-2)-class δ .

$$s_{\delta}(x) = x + (x \cdot \delta)\delta, ext{ where } \delta^2 = -2.$$

These fix C_X , but never fix Nef(X), since s_{δ} interchanges the two half-spaces $\{(\alpha \cdot \delta) > 0\}$ and $\{(\alpha \cdot \delta) < 0\}$.

• Weyl group $W(\operatorname{Pic} X) := \langle s_{\delta} \rangle_{\delta}$. From reflection groups theory:

 $\operatorname{Nef}(X) \cap \mathcal{C}_X$ is a locally polyhedral fundamental domain for the action of $W(\operatorname{Pic} X)$ on \mathcal{C}_X .

(Where Nef(X) meets the boundary of C_X , it need not be locally polyhedral.)

Example of hyperbolic picture for rank 3 [by A. Baragar]

Dark blue: Nef(X).

Light blue: tiling by O(Pic(X))

Theorem (Pjateckii-Šapiro-Šafarevič, Sterk, Lieblich-Maulik)

Let X be a K3 surfaces over $k = \overline{k}$ with char $k \neq 2$.

- **1** Nef $(X) \cap C_X$ is a locally polyhedral fundamental domain for the action of $W(\operatorname{Pic} X)$ on C_X .
- **2** The homomorphism

Aut
$$X \to O(\operatorname{Pic} X) / W(\operatorname{Pic} X)$$

has finite kernel and cokernel.

- **3** The group Aut X is finitely generated.
- 4 The action of Aut X on real convex hull $\operatorname{Nef}^{e}(X)$ of $\operatorname{Nef}(X) \cap \operatorname{Pic}(X)$ admits a rational polyhedral fundamental domain.
- **5** For any *d*, there are only finitely many orbits under Aut X of classes of irreducible curves of self-intersection 2d.

All five have analogues over non-algebraically closed fields, but first two need adjustment. The last three then follow just as before.

Let X be a K3 surface over any field k and set $\bar{X} = X \times_k \bar{k}$.

- The positive, ample and nef cones of X are just the intersections with $(\operatorname{Pic} X)_{\mathbb{R}} \subset (\operatorname{Pic} \overline{X})_{\mathbb{R}}$ of the positive, ample and nef cones of \overline{X} .
- Suppose that X contains a pair of disjoint, conjugate (-2)-curves C₁, C₂. The class [C₁ + C₂] ∈ Pic X defines a wall of the ample cone that may not correspond to a (-2)-class defined over k.
- So we will need to replace the group $W(\operatorname{Pic} X)$.
- For $g \in O(\operatorname{Pic} \overline{X})$ and $\delta \in \operatorname{Pic} \overline{X}$ with $\delta^2 = -2$, get

$$gs_{\delta}g^{-1}=s_{g\delta},$$

~		~
5	c	J

- $W(\operatorname{Pic} \bar{X})$ is normal in $O(\operatorname{Pic} \bar{X})$,
- Aut (\overline{k}/k) acts through O(Pic \overline{X}) on $W(Pic\overline{X})$ by conjugation,
- may define $R_X = W(\operatorname{Pic} \bar{X})^{\operatorname{Aut}(\bar{k}/k)}$,
- R_X is normal in $O(\operatorname{Pic} \bar{X})^{\operatorname{Aut}(\bar{k}/k)}$,
- Aut X acts through $O(\operatorname{Pic} \bar{X})^{\operatorname{Aut}(\bar{k}/k)}$ on R_X by conjugation.

Theorem (Bright, Logan, vL, 2018)

Let X be a K3 surface over any field of characteristic $\neq 2$.

- **1** Then $Nef(X) \cap C_X$ is a fundamental domain for action of R_X on C_X .
- 2 The map $\operatorname{Aut}(X) \to O(\operatorname{Pic} X)/R_X$ has finite kernel and cokernel. There is a natural map $\operatorname{Aut}(X) \ltimes R_X \to O(\operatorname{Pic} X)$ with finite kernel and image of finite index.

Proof. First replace \overline{k} by k^s . Let $k \subset \overline{k}$ be separably closed.

- The Picard scheme $\operatorname{Pic}_{X/k}$ exists, with $\operatorname{Pic}_{X/k}(k) = \operatorname{Pic} X$ and $\operatorname{Pic}_{X/k}(\bar{k}) = \operatorname{Pic} \bar{X}$.
- $H^1(X, \mathcal{O}_X) = 0$ implies that $\operatorname{Pic}_{X/k}$ is étale over k, and therefore $\operatorname{Pic} X \to \operatorname{Pic} \overline{X}$ is an isomorphism.
- This also shows that all (-2)-curves on \bar{X} are defined over k.
- Similarly, $H^0(X, T_X) = 0$ shows that the automorphism scheme **Aut**_{X/k} is étale over k, and so Aut $X \to Aut \overline{X}$ is an isomorphism.

Acting on $\operatorname{Pic} X$

Set $\Gamma_k = \operatorname{Gal}(k^s/k)$.

- We have Pic X ⊂ (Pic X^s)^{Γk}, but they need not be equal. (They are equal if X has a k-rational point).
- The quotient maps into Br k, so is finite.
- It is clear that the action of $R_X = W(\operatorname{Pic} X^s)^{\Gamma_k}$ on $\operatorname{Pic} X^s$ preserves $(\operatorname{Pic} X^s)^{\Gamma_k}$, but not immediately obvious that it preserves $\operatorname{Pic} X$.
- Fortunately, we can see this from an explicit description of R_X .

Description of R_X

Theorem (Hée; Lusztig; Geck–Iancu)

Let (W, T) be a Coxeter system. Let G be a group of permutations of T that induce automorphisms of W. Let F be the set of G-orbits $I \subset T$ for which W_I is finite, and for $I \in F$ let ℓ_I be the longest element of (W_I, I) . Then $(W^G, \{\ell_I : I \in F\})$ is a Coxeter system.

In our situation, we have $W = W(\operatorname{Pic} X^{s})$ and $T = \{s_{\delta} : \delta \in (-2)\text{-curve}\}$.

If two (-2)-curves have intersection number ≥ 2 , then the corresponding reflections generate an infinite dihedral group in W. So a Galois orbit containing two such curves will not lie in F, and will not contribute a generator to R_X .

Description of R_X

If an orbit consists of two (-2)-curves C, C' intersecting with multiplicity 1, then s_C , $s_{C'}$ generate a subgroup of W isomorphic to $S_3 = W(A_2)$; the longest element is the reflection $s_C s_{C'} s_C = s_{C'} s_C s_{C'}$: the Galois-invariant reflection $s_{[C]+[C']}$ associated to the (-2)-class [C] + [C'].

If an orbit consists of two disjoint (-2)-curves C, C', then $s_C, s_{C'}$ commute and generate a subgroup of Wisomorphic to $C_2 \times C_2 = W(A_1 \times A_1)$; the Galoisinvariant subgroup is generated by $s_C s_{C'}$, which is the reflection defined by the (-4)-class [C] + [C'].

In general, the only orbits contributing to R_X are disjoint unions of these.

Fundamental domain for R_X

So R_X does preserve (and therefore act on) $\operatorname{Pic} X \subset \operatorname{Pic} X^{\mathfrak{s}}$. Proof that Nef $X \cap C_X$ is a fundamental domain for R_X acting on C_X :

- Case α ∈ C_X has trivial stabiliser in W(Pic X^s). Then there is a unique g ∈ W(Pic X^s) with g(α) ∈ Nef X^s. Any σ ∈ Γ_k preserves Nef X^s, so σ(g(α)) = (σg)(σα) = (σg)(α) also lies in Nef X^s. By uniqueness, σg = g for all σ ∈ Γ_k, so g lies in R_X.
- 2 Case $\alpha \in C_X$ has non-trivial stabiliser (i.e. lies on a wall). Write it as the limit of elements with trivial stabiliser.
- **3** To show that two translates of $(\operatorname{Nef} X \cap C_X)$ intersect only in their boundaries, use $\partial(\operatorname{Nef} X) = \partial(\operatorname{Nef} X^s) \cap (\operatorname{Pic} X)_{\mathbb{R}}$.

Descending finite kernel and image of finite index

Proposition (Bright, Logan, vL, 2018)

Let Λ be a lattice and $H \subset O(\Lambda)$ a subgroup such that $M = \Lambda^H$ is non-degenerate. Set $O(\Lambda, M) = \{g \in O(\Lambda) : g(M) = M\}$. Then:

- **1** the natural map $O(\Lambda, M) \rightarrow O(M)$ has finite cokernel;
- 2 if M^{\perp} is definite, then $O(\Lambda, M) \rightarrow O(M)$ has finite kernel, and the centraliser $Z_{O(\Lambda)}H$ has finite index in $O(\Lambda, M)$.

Example I

- Over the complex numbers, whether Aut X is finite can be read off from Pic X. This is not true over arbitrary fields.
- Let M, N be the block diagonal matrices

$$M = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -8 \end{pmatrix}, \qquad N = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \hline & & -2I_4 \end{pmatrix}.$$

- Over C, a K3 surface having intersection matrix M would have infinite automorphism group, whereas a K3 surface having intersection matrix N would have finite automorphism group.
- Using elliptic surfaces, we construct a K3 surface X over Q such that Pic X has intersection matrix M, but Pic X has intersection matrix N. So Aut X, and <u>a fortiori</u> Aut X, is finite.

Example II

l et

Example I was sort of cheating – with a finite automorphism group over $\mathbb{C}.$

 $M = \begin{pmatrix} 6 & 4 \\ 4 & -4 \end{pmatrix}, \quad N = \begin{pmatrix} 6 & 2 & 2 \\ 2 & -2 & 0 \\ 2 & 0 & -2 \end{pmatrix}.$

- Any K3 surface over C with intersection lattice either *M* or *N* has infinite automorphism group.
- We constructed a K3 surface X over Q, having intersection matrix M over Q and intersection matrix N over Q
 , such that Aut X is finite.
- We took X to be the intersection of a quadric and a cubic in P⁴, containing a pair of disjoint Galois-conjugate conics and having geometric Picard number 3.

Example II

$$M = \begin{pmatrix} 6 & 4 \\ 4 & -4 \end{pmatrix}, \quad N = \begin{pmatrix} 6 & 2 & 2 \\ 2 & -2 & 0 \\ 2 & 0 & -2 \end{pmatrix}.$$

- Pic X has intersection matrix M, and O(Pic X) is easy to compute it is related to the unit group of the field Q(√10). In particular, it contains a copy of Z with finite index.
- A K3 surface over C having this Picard lattice would contain no (-2)-curves, so would have infinite automorphism group.
- However, X does contain a Galois-conjugate disjoint pair (C, C') of (-2)-curves, and in fact contains many.
- With *H* a hyperplane section, 6[*H*] − 3[*C*] − 4[*C'*] is the class of another (−2)-curve *D*, disjoint from its conjugate *D'*.
- The two reflections in the (-4)-classes [C] + [C'] and [D] + [D'] generate an infinite dihedral subgroup of R_X , showing that R_X has finite index in O(Pic X), and so Aut X is finite.

Example III

An example of actual arithmetic interest.

Theorem (Bright, Logan, vL, 2018)

Let k be a field of characteristic zero, let $c \in k^{\times}$ be such that $[k(\zeta_8, \sqrt[4]{c}) : k] = 16$, and let $X \subset \mathbb{P}^3_k$ be the surface

$$x^4 - y^4 = c(z^4 - w^4).$$

Then $\rho(X) = 6$ and $\rho(\bar{X}) = 20$ and $\operatorname{Aut} X$ is finite.

Proof is computational, but not straightforward!