Finiteness theorems for K3 surfaces over arbitrary fields

Martin Bright Adam Logan Ronald van Luijk

Groningen, August 204OO R2OAZ1 2022

Definition. A K3 surface is a nice (smooth, projective, geometrically integral) surface X over a field k with $\omega_{X} \cong \mathcal{O}_{X}$ and $\mathrm{H}^{1}\left(X, \mathcal{O}_{X}\right)=0$.

Examples:

- smooth quartic surface in \mathbb{P}^{3};
- smooth double cover of \mathbb{P}^{2} ramified along a sextic curve;
- smooth complete intersection of quadric and cubic in \mathbb{P}^{4};

■ Kummer surface: desingularization of abelian surface modulo -1 .

Picard lattice with intersection pairing.

- $\operatorname{Pic}(X) \cong \mathrm{NS}(X) \cong \operatorname{Num}(X)$.
- Rank $\rho(X)$ at most 22.

■ Hodge Index Theorem: signature (1, $\rho-1$).

- For divisor D, get $\chi\left(\mathcal{O}_{X}(D)\right)=\frac{1}{2} D^{2}+2$, so $\operatorname{Pic}(X)$ is even.

■ For divisor class D with $D^{2} \geqslant-2$, get $D \gg 0$ or $-D \gg 0$.
■ For a nice curve $C \subset X$, get $2 p_{a}(C)-2=C^{2}$, so $C^{2} \geqslant-2$.

Cones

Let X be a projective K 3 surface over an algebraically closed field k.
■ Inside $(\operatorname{Pic} X)_{\mathbb{R}}$ we have the cone

$$
\left\{\alpha \in(\operatorname{Pic} X)_{\mathbb{R}} \mid \alpha^{2}>0\right\}
$$

consisting of two components; the one that contains all the ample divisor classes is the positive cone, denoted \mathcal{C}_{X}.

- There is also the nef cone

$$
\operatorname{Nef}(X)=\left\{\alpha \in(\operatorname{Pic} X)_{\mathbb{R}} \mid \alpha \cdot C \geqslant 0 \text { for all curves } C \subset X\right\}
$$

- The ample cone $\operatorname{Amp}(X) \subset \mathcal{C}_{X}$ is \mathbb{R}-generated by all ample classes. Nakai-Moishezon-Kleiman:

$$
\operatorname{Nef}(X)^{\circ}=\operatorname{Amp}(X) \subset \overline{\operatorname{Amp}(X)}=\operatorname{Nef}(X)
$$

$■ \operatorname{Amp}(X)=\mathcal{C}_{X} \cap\left\{\alpha \in(\operatorname{Pic} X)_{\mathbb{R}} \mid \alpha \cdot C>0\right.$ for all (-2)-curves $\left.C \subset X\right\}$.

Example.

Conic $C \subset X \subset \mathbb{P}_{\mathbb{C}}^{3}$ quartic Hyperplane section H.
Basis (H,C) for Pic (X).
$\operatorname{Pic}(X)_{\mathbb{R}} \cong\left(\mathbb{R}^{2},\left(\begin{array}{cc}4 & 2 \\ 2 & -2\end{array}\right)\right)$
$(a H+b C)^{2}=4 a^{2}+4 a b-2 b^{2}$
(-2)-class $D=a H+b C$
$D^{2}=-2 \Leftrightarrow$
$(b-a)+a \sqrt{3}= \pm(2+\sqrt{3})^{n}$
D effective iff $H \cdot D>0$.
Residual conic $C^{\prime}=H-C \gg 0$.

Every $\phi \in \operatorname{Aut}(X)$ fixes: \mathcal{C}_{X} and $\operatorname{Nef}(X)$ class of H (so ϕ is linear) plane containing C and C^{\prime} set $C \cap C^{\prime}$

Aut (X) is finite!

Automorphisms and cones in general

Study Aut X by relating it to the group $\mathrm{O}(\operatorname{Pic} X)$ of isometries of $\mathrm{Pic} X$.

- Any $\phi \in$ Aut X induces an isometry of Pic X fixing \mathcal{C}_{X} and $\operatorname{Nef}(X)$.
- More isometries of $\mathrm{Pic} X$: reflection s_{δ} in δ^{\perp} for any (-2)-class δ.

$$
s_{\delta}(x)=x+(x \cdot \delta) \delta, \text { where } \delta^{2}=-2
$$

These fix \mathcal{C}_{X}, but never fix $\operatorname{Nef}(X)$, since s_{δ} interchanges the two half-spaces $\{(\alpha \cdot \delta)>0\}$ and $\{(\alpha \cdot \delta)<0\}$.
■ Weyl group $W(\operatorname{Pic} X):=\left\langle s_{\delta}\right\rangle_{\delta}$. From reflection groups theory:
$\operatorname{Nef}(X) \cap \mathcal{C}_{X}$ is a locally polyhedral fundamental domain for the action of $W(\operatorname{Pic} X)$ on \mathcal{C}_{X}.
(Where $\operatorname{Nef}(X)$ meets the boundary of \mathcal{C}_{X}, it need not be locally polyhedral.)

Example of hyperbolic picture for rank 3 [by A. Baragar]

Dark blue: $\operatorname{Nef}(X)$.
Light blue: tiling by $O(\operatorname{Pic}(X))$

Theorem (Pjateckiǐ-Šapiro-Šafarevič, Sterk, Lieblich-Maulik)

Let X be a K3 surfaces over $k=\bar{k}$ with char $k \neq 2$.
$1 \operatorname{Nef}(X) \cap \mathcal{C}_{X}$ is a locally polyhedral fundamental domain for the action of $W(\operatorname{Pic} X)$ on \mathcal{C}_{X}.
2 The homomorphism

$$
\text { Aut } X \rightarrow \mathrm{O}(\operatorname{Pic} X) / W(\operatorname{Pic} X)
$$

has finite kernel and cokernel.
3 The group Aut X is finitely generated.
4 The action of Aut X on real convex hull $\operatorname{Nef}^{e}(X)$ of $\operatorname{Nef}(X) \cap \operatorname{Pic}(X)$ admits a rational polyhedral fundamental domain.
5 For any d, there are only finitely many orbits under Aut X of classes of irreducible curves of self-intersection $2 d$.

All five have analogues over non-algebraically closed fields, but first two need adjustment. The last three then follow just as before.

Let X be a K3 surface over any field k and set $\bar{X}=X \times_{k} \bar{k}$.

- The positive, ample and nef cones of X are just the intersections with $(\operatorname{Pic} X)_{\mathbb{R}} \subset(\operatorname{Pic} \bar{X})_{\mathbb{R}}$ of the positive, ample and nef cones of \bar{X}.
■ Suppose that X contains a pair of disjoint, conjugate (-2)-curves C_{1}, C_{2}. The class $\left[C_{1}+C_{2}\right] \in \operatorname{Pic} X$ defines a wall of the ample cone that may not correspond to a (-2)-class defined over k.
■ So we will need to replace the group $W(\operatorname{Pic} X)$.
■ For $g \in \mathrm{O}(\operatorname{Pic} \bar{X})$ and $\delta \in \operatorname{Pic} \bar{X}$ with $\delta^{2}=-2$, get

$$
g s_{\delta} g^{-1}=s_{g \delta}
$$

so

- $W(\operatorname{Pic} \bar{X})$ is normal in $\mathrm{O}(\operatorname{Pic} \bar{X})$,
- Aut (\bar{k} / k) acts through $\mathrm{O}(\operatorname{Pic} \bar{X})$ on $W(\operatorname{Pic} \bar{X})$ by conjugation,
- may define $R_{X}=W(\operatorname{Pic} \bar{X})^{\operatorname{Aut}(\bar{k} / k)}$,
- R_{X} is normal in $\mathrm{O}(\operatorname{Pic} \bar{X})^{\mathrm{Aut}(\bar{k} / k)}$,
- Aut X acts through $\mathrm{O}(\operatorname{Pic} \bar{X})^{\operatorname{Aut}(\bar{k} / k)}$ on R_{X} by conjugation.

Theorem (Bright, Logan, vL, 2018)

Let X be a K3 surface over any field of characteristic $\neq 2$.
1 Then $\operatorname{Nef}(X) \cap \mathcal{C}_{X}$ is a fundamental domain for action of R_{X} on \mathcal{C}_{X}.
2 The map $\operatorname{Aut}(X) \rightarrow O(\operatorname{Pic} X) / R_{X}$ has finite kernel and cokernel. There is a natural map $\operatorname{Aut}(X) \ltimes R_{X} \rightarrow \mathrm{O}(\operatorname{Pic} X)$ with finite kernel and image of finite index.

Proof. First replace \bar{k} by k^{s}. Let $k \subset \bar{k}$ be separably closed.
■ The Picard scheme $\mathbf{P i c}_{X / k}$ exists, with $\operatorname{Pic}_{X / k}(k)=\operatorname{Pic} X$ and $\operatorname{Pic}_{X / k}(\bar{k})=\operatorname{Pic} \bar{X}$.
$\square \mathrm{H}^{1}\left(X, \mathcal{O}_{X}\right)=0$ implies that $\operatorname{Pic}_{X / k}$ is étale over k, and therefore $\operatorname{Pic} X \rightarrow \operatorname{Pic} \bar{X}$ is an isomorphism.

- This also shows that all (-2)-curves on \bar{X} are defined over k.
- Similarly, $\mathrm{H}^{0}\left(X, T_{X}\right)=0$ shows that the automorphism scheme Aut $_{X / k}$ is étale over k, and so Aut $X \rightarrow$ Aut \bar{X} is an isomorphism.

Acting on Pic X

Set $\Gamma_{k}=\operatorname{Gal}\left(k^{s} / k\right)$.
■ We have Pic $X \subset\left(\text { Pic } X^{s}\right)^{\Gamma_{k}}$, but they need not be equal.
(They are equal if X has a k-rational point).
■ The quotient maps into $\operatorname{Br} k$, so is finite.
■ It is clear that the action of $R_{X}=W\left(\operatorname{Pic} X^{s}\right)^{\Gamma_{k}}$ on Pic X^{s} preserves $\left(\operatorname{Pic} X^{s}\right)^{\Gamma_{k}}$, but not immediately obvious that it preserves Pic X.
■ Fortunately, we can see this from an explicit description of R_{X}.

Description of R_{X}

Theorem (Hée; Lusztig; Geck-lancu)

Let (W, T) be a Coxeter system. Let G be a group of permutations of T that induce automorphisms of W. Let F be the set of G-orbits $I \subset T$ for which W_{l} is finite, and for $I \in F$ let ℓ_{I} be the longest element of $\left(W_{l}, I\right)$. Then $\left(W^{G},\left\{\ell_{I}: I \in F\right\}\right)$ is a Coxeter system.

In our situation, we have $W=W\left(\operatorname{Pic} X^{s}\right)$ and $T=\left\{s_{\delta}: \delta\right.$ a (-2 -curve $\}$.

If two (-2)-curves have intersection number $\geqslant 2$, then the corresponding reflections generate an infinite dihedral group in W. So a Galois orbit containing two such curves will not lie in F, and will not contribute a generator to R_{X}.

Description of R_{X}

If an orbit consists of two (-2)-curves C, C^{\prime} intersecting with multiplicity 1 , then $s_{C}, s_{C^{\prime}}$ generate a subgroup of W isomorphic to $S_{3}=W\left(A_{2}\right)$; the longest element is the reflection $s_{C} s_{C^{\prime}} s_{C}=s_{C^{\prime}} s_{C} s_{C^{\prime}}$: the Galois-invariant reflection $s_{[C]+\left[C^{\prime}\right]}$ associated to the (-2)-class $[C]+\left[C^{\prime}\right]$.

If an orbit consists of two disjoint (-2)-curves C, C^{\prime}, then $s_{C}, s_{C^{\prime}}$ commute and generate a subgroup of W isomorphic to $C_{2} \times C_{2}=W\left(A_{1} \times A_{1}\right)$; the Galoisinvariant subgroup is generated by $s_{C} s_{C^{\prime}}$, which is the reflection defined by the (-4)-class $[C]+\left[C^{\prime}\right]$.

In general, the only orbits contributing to R_{X} are disjoint unions of these.

or

$$
D_{1} / D^{D_{2}} /{ }^{D_{r}} \cdots
$$

Fundamental domain for R_{X}

$$
\begin{aligned}
& \begin{array}{ccccc}
C_{1} \\
C_{2} & C_{r} \\
C_{1}^{\prime} & \cdots & C_{2}^{\prime} \\
C_{2}^{\prime} & C_{r}^{\prime}
\end{array} \quad \text { or } \quad D_{1} / D_{2} /{ }^{D_{r}} \ldots{ }^{\prime} \text { with } \\
& \ell_{I}=s_{C_{1}+C_{1}^{\prime}} \circ \cdots \circ s_{C_{r}+C_{r}^{\prime}}: \quad x \mapsto x+2\left(x \cdot C_{1}\right)\left(C_{1}+C_{1}^{\prime}+\cdots+C_{r}+C_{r}^{\prime}\right), \\
& \ell_{I}=s_{D_{1}} \circ \cdots \circ s_{D_{r}}: \quad x \mapsto x+\left(x \cdot D_{1}\right)\left(D_{1}+\cdots+D_{r}\right)
\end{aligned}
$$

So R_{X} does preserve (and therefore act on) Pic $X \subset \operatorname{Pic} X^{s}$.
Proof that $\operatorname{Nef} X \cap \mathcal{C}_{X}$ is a fundamental domain for R_{X} acting on \mathcal{C}_{X} :
1 Case $\alpha \in \mathcal{C}_{X}$ has trivial stabiliser in $W\left(\operatorname{Pic} X^{s}\right)$. Then there is a unique $g \in W\left(\operatorname{Pic} X^{s}\right)$ with $g(\alpha) \in \operatorname{Nef} X^{s}$. Any $\sigma \in \Gamma_{k}$ preserves Nef X^{s}, so $\sigma(g(\alpha))=(\sigma g)(\sigma \alpha)=(\sigma g)(\alpha)$ also lies in Nef X^{s}. By uniqueness, $\sigma g=g$ for all $\sigma \in \Gamma_{k}$, so g lies in R_{X}.
2 Case $\alpha \in \mathcal{C}_{X}$ has non-trivial stabiliser (i.e. lies on a wall). Write it as the limit of elements with trivial stabiliser.

3 To show that two translates of $\left(\operatorname{Nef} X \cap \mathcal{C}_{X}\right)$ intersect only in their boundaries, use $\partial(\operatorname{Nef} X)=\partial\left(\operatorname{Nef} X^{s}\right) \cap(\operatorname{Pic} X)_{\mathbb{R}}$.

Descending finite kernel and image of finite index

Proposition (Bright, Logan, vL, 2018)

Let Λ be a lattice and $H \subset O(\Lambda)$ a subgroup such that $M=\Lambda^{H}$ is non-degenerate. Set $\mathrm{O}(\Lambda, M)=\{g \in \mathrm{O}(\Lambda): g(M)=M\}$. Then:
1 the natural map $\mathrm{O}(\Lambda, M) \rightarrow \mathrm{O}(M)$ has finite cokernel;
2 if M^{\perp} is definite, then $\mathrm{O}(\Lambda, M) \rightarrow \mathrm{O}(M)$ has finite kernel, and the centraliser $Z_{\mathrm{O}(\Lambda)} H$ has finite index in $\mathrm{O}(\Lambda, M)$.

Example I

- Over the complex numbers, whether Aut X is finite can be read off from Pic X. This is not true over arbitrary fields.
■ Let M, N be the block diagonal matrices

$$
M=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -8
\end{array}\right), \quad N=\left(\begin{array}{cc|c}
0 & 1 & \\
1 & 0 & \\
\hline & & -2 I_{4}
\end{array}\right)
$$

■ Over \mathbb{C}, a K 3 surface having intersection matrix M would have infinite automorphism group, whereas a K3 surface having intersection matrix N would have finite automorphism group.
■ Using elliptic surfaces, we construct a K 3 surface X over \mathbb{Q} such that Pic X has intersection matrix M, but Pic \bar{X} has intersection matrix N. So Aut \bar{X}, and a fortiori Aut X, is finite.

Example II

Example I was sort of cheating - with a finite automorphism group over \mathbb{C}.

- Let

$$
M=\left(\begin{array}{cc}
6 & 4 \\
4 & -4
\end{array}\right), \quad N=\left(\begin{array}{ccc}
6 & 2 & 2 \\
2 & -2 & 0 \\
2 & 0 & -2
\end{array}\right)
$$

■ Any K3 surface over \mathbb{C} with intersection lattice either M or N has infinite automorphism group.

- We constructed a K3 surface X over \mathbb{Q}, having intersection matrix M over \mathbb{Q} and intersection matrix N over $\overline{\mathbb{Q}}$, such that Aut X is finite.
- We took X to be the intersection of a quadric and a cubic in \mathbb{P}^{4}, containing a pair of disjoint Galois-conjugate conics and having geometric Picard number 3.

Example II

$$
M=\left(\begin{array}{cc}
6 & 4 \\
4 & -4
\end{array}\right), \quad N=\left(\begin{array}{ccc}
6 & 2 & 2 \\
2 & -2 & 0 \\
2 & 0 & -2
\end{array}\right)
$$

■ Pic X has intersection matrix M, and $\mathrm{O}(\operatorname{Pic} X)$ is easy to compute - it is related to the unit group of the field $\mathbb{Q}(\sqrt{10})$. In particular, it contains a copy of \mathbb{Z} with finite index.
■ A K3 surface over \mathbb{C} having this Picard lattice would contain no (-2)-curves, so would have infinite automorphism group.
■ However, X does contain a Galois-conjugate disjoint pair (C, C^{\prime}) of (-2)-curves, and in fact contains many.

- With H a hyperplane section, $6[H]-3[C]-4\left[C^{\prime}\right]$ is the class of another (-2)-curve D, disjoint from its conjugate D^{\prime}.
■ The two reflections in the (-4)-classes $[C]+\left[C^{\prime}\right]$ and $[D]+\left[D^{\prime}\right]$ generate an infinite dihedral subgroup of R_{X}, showing that R_{X} has finite index in $\mathrm{O}(\operatorname{Pic} X)$, and so $\operatorname{Aut} X$ is finite.

Example III

An example of actual arithmetic interest.
Theorem (Bright, Logan, vL, 2018)
Let k be a field of characteristic zero, let $c \in k^{\times}$be such that $\left[k\left(\zeta_{8}, \sqrt[4]{c}\right): k\right]=16$, and let $X \subset \mathbb{P}_{k}^{3}$ be the surface

$$
x^{4}-y^{4}=c\left(z^{4}-w^{4}\right)
$$

Then $\rho(X)=6$ and $\rho(\bar{X})=20$ and Aut X is finite.
Proof is computational, but not straightforward!

