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Definition. A K3 surface is a nice (smooth, projective, geometrically
integral) surface X over a field k with wx =~ Ox and H(X,Ox) = 0.

Examples:
m smooth quartic surface in P3;
m smooth double cover of P? ramified along a sextic curve;
m smooth complete intersection of quadric and cubic in P*;

m Kummer surface: desingularization of abelian surface modulo —1.

Picard lattice with intersection pairing.

m Pic(X) = NS(X) = Num(X).
Rank p(X) at most 22.
Hodge Index Theorem: signature (1,p — 1).
For divisor D, get x(Ox (D)) = 3D? + 2, so Pic(X) is even.
For divisor class D with D?> > —2, get D » 0 or —D » 0.
For a nice curve C < X, get 2p,(C) —2 = C?,s0 C%2 > 2.



Cones
Let X be a projective K3 surface over an algebraically closed field k.

m Inside (Pic X)r we have the cone
{ace (PicX)g | o > 0}

consisting of two components; the one that contains all the ample
divisor classes is the positive cone, denoted Cx.

m There is also the nef cone

Nef(X) = {a e (PicX)r | - C = 0 for all curves C < X}.

m The ample cone Amp(X) < Cx is R-generated by all ample classes.
Nakai—Moishezon—Kleiman:

Nef(X)® = Amp(X) € Amp(X) = Nef(X).

B Amp(X) =Cxn{a e (PicX)r | a-C > 0 for all (-2)-curves C = X }.
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Example.

Conic C < X < P2 quartic
Hyperplane section H.

Basis (H, C) for Pic(X).
Pic(X)z = (B2, (5 2

(aH + bC)? = 4a? + 4ab — 2b?

(—2)-class D = aH + bC

D?= 2«
(b—a)+aV3=+(2++3)"

D effective iff H- D > 0.

Residual conic ¢’ =H — C » 0.

Every ¢ € Aut(X) fixes:
Cx and Nef(X)
class of H (so ¢ is linear)
plane containing C and C’
set Cn C’

Aut(X) is finite!



Automorphisms and cones in general

Study Aut X by relating it to the group O(Pic X) of isometries of Pic X.

m Any ¢ € Aut X induces an isometry of Pic X fixing Cx and Nef(X).

m More isometries of Pic X: reflection s; in 6+ for any (—2)-class §.
ss(x) = x + (x - 6)d, where 6% = —2.

These fix Cx, but never fix Nef(X), since s; interchanges the two
half-spaces {(a - §) > 0} and {(a - J) < 0}.
m Weyl group W(Pic X) := (s5)5. From reflection groups theory:

Nef(X) nCx is a locally polyhedral fundamental domain
for the action of W(Pic X) on Cx.

(Where Nef(X) meets the boundary of Cx, it need not be locally
polyhedral.)



Example of hyperbolic picture for rank 3 [by A. Baragar]

Dark blue: Nef(X). Light blue: tiling by O(Pic(X))



Theorem (PjateckiT—gapiro—§afarevié, Sterk, Lieblich—-Maulik)

Let X be a K3 surfaces over k = k with char k # 2.

Nef(X) n Cx is a locally polyhedral fundamental domain for the
action of W(Pic X) on Cx.

The homomorphism
Aut X — O(Pic X)/W (Pic X)

has finite kernel and cokernel.
The group Aut X is finitely generated.

The action of Aut X on real convex hull Nef®(X) of Nef(X) n Pic(X)
admits a rational polyhedral fundamental domain.

For any d, there are only finitely many orbits under Aut X of classes
of irreducible curves of self-intersection 2d.

All five have analogues over non-algebraically closed fields, but first two
need adjustment. The last three then follow just as before.



Let X be a K3 surface over any field k and set X = X x k.

m The positive, ample and nef cones of X are just the intersections with
(Pic X)r < (Pic X)r of the positive, ample and nef cones of X.

m Suppose that X contains a pair of disjoint, conjugate (—2)-curves
C1, Go. The class [C1 + ] € Pic X defines a wall of the ample cone
that may not correspond to a (—2)-class defined over k.

m So we will need to replace the group W(Pic X).

m For g € O(Pic X) and § € Pic X with 62 = —2, get

-1
8568 = = Sg¢;

so

W (Pic X) is normal in O(Pic X), )

Aut(k/k) acts through O(Pic X) on W(Pic X) by conjugation,
may define Rx = W/(Pic X)Aut(k/k),

Rx is normal in O(Pic X)Aut(k/k),

Aut X acts through O(Pic X)Aut(%/K) on Ry by conjugation.



Theorem (Bright, Logan, vL, 2018)
Let X be a K3 surface over any field of characteristic # 2.
F Then Nef(X) n Cx is a fundamental domain for action of Rx on Cx.

B Fhe-mapAutX—ORie X/ Rx—hasfinite-kernel-and-cokernel-

There is a natural map Aut(X) x Rx — O(Pic X) with finite kernel
and image of finite index.

Proof. First replace k by k°. Let k  k be separably closed.
m The Picard scheme Picy  exists, with Picx (k) = Pic X and
Picx (k) = Pic X.
m HY(X, Ox) = 0 implies that Picy . is étale over k, and therefore
Pic X — Pic X is an isomorphism.
m This also shows that all (—2)-curves on X are defined over k.

m Similarly, H(X, Tx) = 0 shows that the automorphism scheme
Auty ), is étale over k, and so Aut X — Aut X is an isomorphism.



Acting on Pic X

Set 'y = Gal(k®/k).
m We have Pic X < (Pic X*)T, but they need not be equal.
(They are equal if X has a k-rational point).
m The quotient maps into Br k, so is finite.

m It is clear that the action of Ry = W/(Pic X*)"* on Pic X* preserves
(Pic X*)"«, but not immediately obvious that it preserves Pic X.

m Fortunately, we can see this from an explicit description of Rx.



Description of Rx

Theorem (Hée; Lusztig; Geck—lancu)

Let (W, T) be a Coxeter system. Let G be a group of permutations of T
that induce automorphisms of W. Let F be the set of G-orbits | ¢ T for
which W is finite, and for | € F let ¢; be the longest element of (W), 1).
Then (W, {¢;: I € F}) is a Coxeter system.

In our situation, we have W = W (Pic X®) and T = {s5: § a (—2)-curve}.

If two (—2)-curves have intersection number > 2, then
the corresponding reflections generate an infinite dihe-
dral group in W. So a Galois orbit containing two
such curves will not lie in F, and will not contribute a
generator to Rx.



Description of Ry

If an orbit consists of two (—2)-curves C, C’ intersect-
ing with multiplicity 1, then sc,sc/ generate a sub-
group of W isomorphic to S3 = W/(A,); the longest
element is the reflection scscsc = sciscscr: the
Galois-invariant reflection sjc)y[c/) associated to the
(—2)-class [C] + [C].

If an orbit consists of two disjoint (—2)-curves C, C’,
then s¢, scr commute and generate a subgroup of W
isomorphic to C; x G = W(A; x Ajp); the Galois-
invariant subgroup is generated by scsc/, which is the
reflection defined by the (—4)-class [C] + [C'].

In general, the only orbits contributing to Rx are disjoint unions of these.

G, G DyD; D,
aG C



Fundamental domain for Rx

G, G G D1, D, D,
aG  q

b =scciooscict x> x+2x-C)(G+ G+ +C+C)),
ly =sp,o---0sp,: x> x+ (x-D1)(D1+ -+ Dy)

So Rx does preserve (and therefore act on) Pic X c Pic X®.
Proof that Nef X n Cx is a fundamental domain for Rx acting on Cx:

Case a € Cx has trivial stabiliser in W (Pic X*).
Then there is a unique g € W(Pic X*®) with g(«) € Nef X*. Any
o € [k preserves Nef X*, so o(g(a)) = (0g)(ca) = (0g)(«) also lies
in Nef X*. By uniqueness, cg = g for all o € 'y, so g lies in Rx.
Case o € Cx has non-trivial stabiliser (i.e. lies on a wall).
Write it as the limit of elements with trivial stabiliser.

To show that two translates of (Nef X n Cx) intersect only in their
boundaries, use d(Nef X) = d(Nef X*) n (Pic X)r.



Descending finite kernel and image of finite index

Proposition (Bright, Logan, vL, 2018)

Let A be a lattice and H = O(NA) a subgroup such that M = A" is

non-degenerate. Set O(N\,M) = {g € O(A) : g(M) = M}.Then:
the natural map O(A, M) — O(M) has finite cokernel;

if M+ is definite, then O(A, M) — O(M) has finite kernel, and the
centraliser Zo(nyH has finite index in O(A, M).

Aut XS x W(Pic X5) —— O(Pic X*)

T ~

O((Pic X*)T«, Pic X) O(Pic X*, (Pic X*)")

/\/

O(Pic X) O((Pic X®)")



Example |

m Over the complex numbers, whether Aut X is finite can be read off
from Pic X. This is not true over arbitrary fields.

m Let M, N be the block diagonal matrices

01 0 0
M={1 0 0|, N=1|1
0 0 -8 —2ly
m Over C, a K3 surface having intersection matrix M would have

infinite automorphism group, whereas a K3 surface having
intersection matrix N would have finite automorphism group.
m Using elliptic surfaces, we construct a K3 surface X over Q such that

Pic X has intersection matrix M, but Pic X has intersection matrix N.
So Aut X, and a fortiori Aut X, is finite.



Example Il

Example | was sort of cheating — with a finite automorphism group over C.

m Let
6 2 2
MZ(Z _44>, N=[2 -2 0
2 0 2

m Any K3 surface over C with intersection lattice either M or N has
infinite automorphism group.

m We constructed a K3 surface X over QQ, having intersection matrix M
over Q and intersection matrix N over QQ, such that Aut X is finite.

m We took X to be the intersection of a quadric and a cubic in P*,
containing a pair of disjoint Galois-conjugate conics and having
geometric Picard number 3.



Example Il

6 2 2
M:(S _44), N={2 -2 0
2 0 -2

m Pic X has intersection matrix M, and O(Pic X) is easy to compute - it
is related to the unit group of the field Q(+/10). In particular, it
contains a copy of Z with finite index.

m A K3 surface over C having this Picard lattice would contain no
(—2)-curves, so would have infinite automorphism group.

m However, X does contain a Galois-conjugate disjoint pair (C, C’) of
(—2)-curves, and in fact contains many.

m With H a hyperplane section, 6] H| — 3[C] — 4[C’] is the class of
another (—2)-curve D, disjoint from its conjugate D’.

m The two reflections in the (—4)-classes [C] + [C'] and [D] + [D’]
generate an infinite dihedral subgroup of Rx, showing that Rx has
finite index in O(Pic X), and so Aut X is finite.



Example Il

An example of actual arithmetic interest.

Theorem (Bright, Logan, vL, 2018)

Let k be a field of characteristic zero, let c € k* be such that
[k(Cs, /) : k] = 16, and let X = P} be the surface

xt—yt = c(z4 = W4).

Then p(X) = 6 and p(X) = 20 and Aut X is finite.

Proof is computational, but not straightforward!
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