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A Heron triangle is a triangle with integral sides and integral area. The circum-
radius and circumdiameter of a triangle are respectively the radius and the diameter
of its circumcircle. In this article we will give a necessary and sufficient condition
for a positive integer to be the circumradius or the circumdiameter of some Heron
triangle. It is stated in the following theorem.

Theorem 1 Let k be a positive integer. Then the following are equivalent.

(i) There is a Heron triangle with circumradius k.

(ii) There is a Heron triangle with circumdiameter k.

(iii) There is a prime divisor p of k satisfying p ≡ 1 mod 4.

This theorem generalizes the results of Kramer and Luca [2, Proposition 6]
and Aassila [1, pp. 145–146]. They give identical proofs for the implication (iii) ⇒
(i). For the converse, Aassila had already conjectured that no prime p satisfying
p ≡ 11 mod 12 is the circumradius of a Heron triangle. This conjecture was proven
by Kramer and Luca, who showed that in fact no power of a prime p with p = 2 or
p ≡ 11 mod 12 is the circumradius of a Heron triangle.

Question The question of which rational numbers occur as the circumdiameter of a
Heron triangle remains open. It follows from Theorem 1 that if d is such a number,
then there is a prime divisor p of the numerator of d that satisfies p ≡ 1 mod 4.
We leave it as an exercise to the reader to show that every positive integer is the
denominator of the circumdiameter of some Heron triangle.

To prove the implication (iii) ⇒ (i) of Theorem 1, papers [1] and [2] take any
positive integer k with a prime divisor p as in (iii). Both first show that there
is a triangle with circumradius p that is Pythagorean, i.e., right-angled and with
integral sides. After scaling by a factor k/p they obtain a Pythagorean triangle with
circumradius k. It is easy to show that every Pythagorean triangle has integral area
and is thus a Heron triangle. The new implication (i) ⇒ (iii) of Theorem 1 tells us
that among all Heron triangles there are no more integral circumradii than among
just the Pythagorean triangles.

The construction above only yields a triangle with relatively prime sides if the
integer k is prime. This leaves a rather unsatisfactory feeling, which is resolved by
the following theorem. It gives necessary and sufficient conditions for an integer to
be the circumdiameter of some Heron triangle with sides that are relatively prime
to each other. Theorem 1 will follow as a consequence.

Theorem 2 Let d be a positive integer. Then the following are equivalent.

(i) There is a Pythagorean triangle with circumdiameter d and sides a, b, and c
satisfying gcd(a, b) = gcd(a, c) = gcd(b, c) = 1.

(ii) There is a Heron triangle with circumdiameter d and sides a, b, and c satisfying
gcd(a, b) = gcd(a, c) = gcd(b, c) = 1.

(iii) There is a Heron triangle with circumdiameter d and sides a, b, and c satisfying
gcd(a, b, c, d) = 1.
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(iv) There is a triangle with circumdiameter d and integral sides a, b, and c satis-
fying gcd(a, b, c, d) = 1.

(v) We have d > 1 and every prime divisor p of d satisfies p ≡ 1 mod 4.

(vi) There are positive integers x and y with x even and gcd(x, y) = 1, such that
d can be written as d = x2 + y2.

All we will use is some elementary number theory and two formulas. Heron’s
formula

(4A)2 = (a + b + c)(a + b − c)(a − b + c)(−a + b + c) (1)

relates the area A of a triangle to the lengths a, b, and c of its sides. The circumdi-
ameter d is related to these quantities through the equation

2Ad = abc. (2)

Remark In Lemma 3 we will deduce from Heron’s formula (1) that any triangle
with integral sides and rational area is a Heron triangle. Together with (2) this
proves the implication (iv) ⇒ (iii) of Theorem 2. The fact that (ii) implies (i) is a
priori not obvious. Neither is the implication (iii) ⇒ (ii), as a triangle with sides
a, b, c, and circumdiameter d may satisfy gcd(a, b, c, d) = 1 even if a, b, and c have
a divisor in common. The triangle with sides 15, 15, 24, and area 108, for example,
has circumdiameter 25. By Theorem 2 the existence of this example does imply that
there is a triangle with circumdiameter 25 whose sides are relatively prime. In this
case, for d = 25, the triangle with sides 7, 24, and 25 satisfies all conditions of (i),
and therefore also those of (ii).

The following lemmas will be useful in proving Theorem 1 and Theorem 2.

Lemma 3 Any triangle with integral sides and rational area is a Heron triangle.

Proof. The quantity in (1) is both an integer and the square of a rational number.
Hence, it is the square of the integer 4A. Equation (1) can be rewritten as (4A)2 =
4b2c2−(a2−b2−c2)2. Since −1 is not a square modulo 4, the quantity a2−b2−c2 is
even. Therefore, so are the four factors in the right-hand side of (1) and the quantity
in (1) is divisible by 16. It follows that A2, and thus A, is integral. �

For any prime p and any nonzero integer x, let vp(x) denote the largest integer
m for which pm divides x. Then vp extends uniquely to a group homomorphism
from the group Q∗ of nonzero rational numbers to the group Z of integers.

Lemma 4 Let p be a prime satisfying p 6≡ 1 mod 4. Let s, t, and m be integers with
m ≥ 0. Then p2m divides s2 + t2 if and only if pm divides both s and t.

Proof. The “if”-part is obvious. For the “only if”-part, we may replace s, t, and m
by αs, αt, and m + vp(α) for some α ∈ Q∗, and assume p ∤ gcd(s, t), say p ∤ s. By
choosing α appropriately, we may even assume s ≡ 1 mod p2. If p2 divided s2 + t2,
then we would have t2 ≡ −s2 ≡ −1 mod p2. This contradicts the fact that −1 is
neither a square modulo 4, nor modulo primes q satisfying q ≡ 3 mod 4, see [3,
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Theorem 3.1.d]. We conclude that p2 does not divide s2 + t2, so we have m = 0.
The result follows immediately. �

We are now ready to prove our theorems.

Proof of Theorem 2. Reduction modulo 4 shows that at least one of the sides
of a Pythagorean triangle other than the hypotenuse is even. Therefore, every
Pythagorean triangle has integral area, which proves implication (i) ⇒ (ii). The
implications (ii) ⇒ (iii) ⇒ (iv) are obvious. For (iv) ⇒ (v), let a, b, and c be the
sides of a triangle as in (iv). Because the equilateral triangle with sides 1 does not
have integral circumdiameter, we get max(a, b, c) > 1. The largest chord of a circle
being a diameter, we find d ≥ max(a, b, c) > 1. Let p be any prime divisor of d and
suppose p satisfies p 6≡ 1 mod 4. Without loss of generality, we may assume vp(a) ≥
vp(b) ≥ vp(c). As p does not divide gcd(a, b, c), we have vp(c) = 0. By Lemma 3 the
rational area A = abc/(2d) is integral. This implies that p divides abc, so p divides
a. Set m = vp(2a) > 0. After rewriting (1) as (4A)2 + (a2 + b2 − c2)2 = 4a2b2, we
see that p2m divides (4A)2 + (a2 + b2 − c2)2. By Lemma 4 this implies pm|4A and
pm|a2 + b2 − c2. Hence, p divides b2 − c2, and we find vp(b) = vp(c) = 0. We obtain
the contradiction m = vp(2a) = vp(2abc) = vp(4Ad) > vp(4A) ≥ m and conclude
that p satisfies p ≡ 1 mod 4. The implication (v) ⇒ (vi) is a well-known number
theoretic result, see [3, Theorem 5.15 and its proof]. For (vi) ⇒ (i), let x and y be
as described. Then the triangle with sides a = 2xy, b = |x2 − y2|, and c = x2 + y2

satisfies the requirements of (i). �

Corollary 5 Suppose the integer d is the circumdiameter of a triangle with integral
sides a, b, and c. Let p be a prime satisfying p 6≡ 1 mod 4 and set m = vp(d). Then
pm divides gcd(a, b, c).

Proof. After scaling the triangle if necessary, we may assume gcd(a, b, c, d) = 1.
Then Theorem 2 gives m = 0. �

Proof of Theorem 1. For (i) ⇒ (ii), let a, b, and c be the sides of a Heron triangle with
circumradius k. Then the circumdiameter 2k is even and by Corollary 5, so are a, b,
and c. The triangle with sides a/2, b/2, and c/2 is a Heron triangle by Lemma 3 and
has circumdiameter k. For (ii) ⇒ (iii), let a, b, and c be the sides of a Heron triangle
with circumdiameter k. Set r = gcd(a, b, c, k). Then the Heron triangle with sides
a/r, b/r, and c/r has circumdiameter k/r and we have gcd(a/r, b/r, c/r, k/r) = 1.
From Theorem 2 we find k/r > 1, so k/r has a prime divisor p, which by the same
theorem satisfies p ≡ 1 mod 4. For (iii) ⇒ (i), let p and k be as in (iii). According
to Theorem 2 there is a Heron triangle with circumdiameter p. Multiplication by
2k/p yields a Heron triangle with circumradius k. �
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