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Abstract. Given a curve C of genus 2 defined over a field k of characteristic different from 2,
with Jacobian variety J , we show that the two-coverings corresponding to elements of a large

subgroup of H1
`

Gal(ks/k), J [2](ks)
´

(containing the Selmer group when k is a global field) can

be embedded as intersection of 72 quadrics in P
15

k
, just as the Jacobian J itself. Moreover, we

actually give explicit equations for the models of these twists in the generic case, extending

the work of Gordon and Grant which applied only to the case when all Weierstrass points
are rational. In addition, we describe elegant equations on the Jacobian itself, and answer a
question of Cassels and the first author concerning a map from the Kummer surface in P

3 to
the desingularized Kummer surface in P

5.

1. Introduction

The number of rational points on a curve of geometric genus at least two defined over a number
field is finite by Faltings’ Theorem [7] . However, for any fixed number field k, it is not known
whether there exists an algorithm that takes such a curve C/k as input and computes the set C(k)
of all its rational points. There are advanced techniques that often work in practice, such as the
Chabauty-Coleman method [5] and the Mordell-Weil sieve (see [2, 11, 21]). Bjorn Poonen [18] has
shown, subject to two natural heuristic assumptions, that with probability 1 the latter method is
indeed capable of determining whether or not a given curve of genus at least 2 over a number field
contains a rational point; this assumes the existence of a Galois-invariant divisor of degree 1 on
the curve.

Both methods assume the knowledge of the finitely generated Mordell-Weil group J(k) of the
Jacobian J of the curve C over the number field k, or at least of a subgroup of finite index; in
particular it assumes the knowledge of the rank of the group J(k), which in general is hard to
find, but can be bounded by a so-called two-descent.

Let k be any field with separable closure ks and let C be a smooth projective curve over k with
Jacobian J . Taking Galois invariants of the short exact sequence

0 // J [2](ks) // J(ks)
[2] // J(ks) // 0

associated to multiplication by 2 gives a long exact sequence of which the first connecting map
induces an injective homomorphism

ι : J(k)/2J(k) → H1
(

Gal(ks/k), J [2](ks)
)

.

If J(k) is finitely generated and its torsion subgroup is known, then the rank of J(k) is easy to
read off from the size of J(k)/2J(k), and thus from its image under ι. A two-descent consists of
bounding this image. When k is a global field, the image of ι is contained in the so-called Selmer
group, which is finite and computable (see [3, 19, 20]).

We restrict our attention to the case that C has genus 2 and the characteristic of k is not
equal to 2. The elements of H1

(

Gal(ks/k), J [2](ks)
)

can be represented by two-coverings of J ,
which are twists of the multiplication-by-2 map as defined in the next section. The elements in
the image of ι correspond to those two-coverings that have a k-rational point. When k is a global
field, the elements of the Selmer group correspond to those two-coverings that are locally solvable
everywhere.
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The main goal of this paper is to show that the two-coverings corresponding to elements of a
large subgroup of H1

(

Gal(ks/k), J [2](ks)
)

(containing the Selmer group when k is a global field)

can be embedded as intersection of 72 quadrics in P15
k , just as the Jacobian itself. Moreover, we

investigate various representations of J [2](ks) and certain extensions, in order to actually give
explicit equations for the models of these twists, cf. Theorem 7.4. A better understanding of these
representations has allowed us to find simple and symmetric equations also for the Jacobian. We
work over a generic field k, where all coefficients in the equation y2 = f(x) for C are independent
transcendentals, as well as the coefficients of the element in k[X]/f that determines the twist of
J . This field is far to big to find the equations of the twist by brute force.

These models are useful in practice to find rational points on the twists, and thus to decide
whether a given two-covering corresponds to an element in the image of ι. As a further application,
we expect that our explicit models will prove useful in the study of heights on Jacobians. We also
answer a question by Cassels and the first author [4, Section 16.6] in Remark 3.8.

The explicit equations we shall give for nontrivial two-coverings corresponding to elements of
the Selmer group generalize to any curve of genus 2 those given by Gordon and Grant in [12] for
the special case where all Weierstrass points are rational.

In Section 2 we set up the necessary cohomological sequences, give a description of the large
subgroup of H1

(

Gal(ks/k), J [2](ks)
)

that was mentioned (see Corollary 2.9), define two-coverings,
Selmer groups, and prove some known results about two-coverings for completeness. In Section 3
we find models of the Jacobian J in P15, its Kummer surface X in P9, and the minimal desingu-
larization Y of X in P5 on which for every P ∈ J [2], the action of translation by P is just given
by negating some of the coordinates. Another description of the desingularized Kummer surface
is given in Section 4. This is used in Section 5 to understand how the linear action of J [2](ks) on
the model of J in P15 can be obtained from the action on X ⊂ P3 and Y ⊂ P5. In Section 6 we
first show theoretically how the action of J [2](ks) on J ⊂ P15 can be diagonalized and then also
do so explicitly. In Section 7 we describe how to use the models and this diagonalized action to
obtain the desired twists.

The authors thank Nils Bruin, Alexei Skorobogatov and Michael Stoll for useful discussions and
remarks. The first two authors thank EPSRC for support through grant number EP/F060661/1.
The first and third author thank the International Center for Transdisciplinary Studies at Jacobs
University Bremen for support and hospitality. The second author thanks Jacobs University
Bremen and was partially funded by DFG grant STO-299/4-1. The third author thanks the
University of British Columbia, Simon Fraser University, PIMS, and Warwick University.

2. Set-up

Let k be a field of characteristic not equal to two, ks a separable closure of k, and f =
∑6
i=0 fiX

i ∈ k[X] a separable polynomial with f6 6= 0. Denote by Ω the set of the six roots
of f in ks, so that k(Ω) is the splitting field of f over k in ks. Let C be the smooth projective
curve of genus 2 over k associated to the affine curve in A2

x,y given by y2 = f(x). Let J denote
the Jacobian of C and J [2] its two-torsion subgroup. We denote the multiplication-by-2 map on
J by [2]. All two-torsion points are defined over k(Ω), i.e., J [2](k(Ω)) = J [2](ks). Let W ⊂ C be
the set of Weierstrass points of C, corresponding to the set {(ω, 0) : ω ∈ Ω} of points on the
affine curve. Choose a canonical divisor KC of C. For any w ∈ W , the divisor 2(w) is linearly
equivalent to KC and

∑

w∈W (w) is linearly equivalent to 3KC .
There is a morphism C × C → J sending (P,Q) to the divisor class (P ) + (Q) − KC , which

factors through the symmetric square C(2). The induced map C(2) → J is birational and each
nonzero element of J [2](ks) is represented by (w1) − (w2) ∼ (w2) − (w1) ∼ (w1) + (w2) −KC for
a unique unordered pair {w1, w2} of distinct Weierstrass points. This yields a Galois equivariant
bijection between nonzero two-torsion points and unordered pairs of distinct elements in Ω.

Set L = k[X]/f and Ls = L⊗k k
s. By abuse of notation we denote the image of X in L and Ls

by X as well. For any ω ∈ Ω, let ϕω denote the ks-linear map Ls → ks that sends X to ω. By the
Chinese Remainder Theorem, the induced map ϕ =

⊕

ω∈Ω ϕω : Ls →
⊕

ω∈Ω k
s is an isomorphism
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of ks-algebras that sends X to (ω)ω. The induced Galois action on
⊕

ω k
s is given by

σ
(

(cω)ω
)

=
(

σ(cσ−1(ω))
)

ω

for all σ ∈ Gal(ks/k). For any commutative ring R we write µ2(R) for the kernel of the homo-
morphism R∗ → R∗ that sends x to x2. We sometimes abbreviate µ2(k

s) = µ2(k) to µ2. The
isomorphism ϕ induces an isomorphism of groups µ2(L

s) →
⊕

ω∈Ω µ2(k
s).

The norm map NL/k from L to k, sending α ∈ Ls to
∏

ω ϕω(α), induces homomorphisms
from µ2(L

s) and µ2(L
s)/µ2(k

s) to µ2(k
s), both of which we denote by N and refer to as norms.

The kernel M of N on µ2(L
s) is generated by elements αω1,ω2

defined by ϕω(αω1,ω2
) = −1 if

and only if ω ∈ {ω1, ω2}. Let β : M → J [2](ks) be the homomorphism that maps αω1,ω2
to the

difference of Weierstrass points
(

(ω1, 0)
)

−
(

(ω2, 0)
)

. Finally, let ǫ : J [2](ks) → µ2(L
s)/µ2(k

s) be

the homomorphism that sends
(

(ω1, 0)
)

−
(

(ω2, 0)
)

to the class of αω1,ω2
. We get the following

diagram of short exact sequences. For more details, see [19, Sections 6 and 7].

(1) 1

��

1

��
µ2(k

s)

��

µ2(k
s)

��
1 // M //

β

��

µ2(L
s)

��

N // µ2(k
s) // 1

1 // J [2](ks)
ǫ //

��

µ2(L
s)

µ2(ks)

N //

��

µ2(k
s) // 1

1 1

There are natural isomorphisms

Hom
(

µ2(L
s), µ2

)

∼= Hom

(

⊕

ω

µ2, µ2

)

∼=
⊕

ω

Hom(µ2, µ2) ∼=
⊕

ω

µ2
∼= µ2(L

s),

so µ2(L
s) is self-dual. The corresponding perfect pairing µ2(L

s) × µ2(L
s) → µ2 sends (α1, α2)

to (−1)r with r = #{ω ∈ Ω : ϕω(α1) = ϕω(α2) = −1}. The pairing induces a perfect pairing
on M × µ2(L

s)/µ2 and on J [2](ks) × J [2](ks), where it coincides with the Weil pairing, which we
denote by eW . We conclude that M and µ2(L

s)/µ2 are each other’s duals, that J [2](ks) is self-dual,
and that the entire Diagram (1) is self-dual under reflection in the obvious diagonal. The element
−1 ∈M corresponds to the character of µ2(L

s)/µ2 that is the norm map N : µ2(L
s)/µ2 → µ2.

We define the Brauer group Br(k) of k as H2(Gal(ks/k), (ks)∗). We only use its two-torsion
subgroup Br(k)[2], which is isomorphic to H2(Gal(ks/k), µ2(k

s)). Recall that there are natural
isomorphisms H1(Gal(ks/k), µ2(k

s)) ∼= k∗/(k∗)2 and H1(Gal(ks/k), µ2(L
s)) ∼= L∗/(L∗)2. Taking

long exact sequences of Galois cohomology, we find the following commutative diagram (cf. [19,
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Section 8]).

(2) k∗/(k∗)2

��

k∗/(k∗)2

��
µ2(L)

��

N // µ2(k) // H1(M)

β∗

��

// L∗/(L∗)2
N //

��

k∗/(k∗)2

H0
(

µ2(L
s)

µ2(ks)

)

N // µ2(k) // H1(J [2](ks))
ǫ∗ //

Υ

��

H1
(

µ2(L
s)

µ2(ks)

)

N∗ //

��

k∗/(k∗)2

Br(k)[2] Br(k)[2]

Here and from now on, H1(∗) stands for the Galois cohomological group H1(Gal(ks/k), ∗). We
often abbreviate H1(J [2](ks)) further to H1(J [2]). Let Υ denote the connecting homomorphism
Υ: H1(J [2]) → Br(k)[2] (see Diagram (2)).

Definition 2.1. A global field is a finite extension of Q or a finite extension of Fp(t) for some
prime p. A local field is the completion of a global field at some place.

Proposition 2.2. Assume that k is a global field or a local field. Then the composition of the
map ι : J(k)/2J(k) → H1(J [2]) with the map Υ is zero.

Proof. As in [19, Section 3], we let the period of a curve D over a field K be the greatest common
divisor of the degrees of all K-rational divisor classes of D. If k is a local field, then since the genus
g of C equals 2, by [19, Proposition 3.4], the period of C divides g − 1 = 1, so it equals 1, and
by [19, Proposition 3.2], this implies that the natural inclusion Pic0 C → H0(Pic0 Cks) = J(k) is an
isomorphism. If k is a global field, then by the local argument, the period of C over any completion
equals 1, and by [19, Proposition 3.3], this implies again that the inclusion Pic0 C → J(k) is an
isomorphism (see also last paragraph of [19, Section 4]). We conclude that in either case the

inclusion ρ : Pic0 C → J(k) is an isomorphism. Let Pic(2) C denote the subgroup of divisor classes

of even degree in PicC. By [19, Section 9], there is a homomorphism τ : Pic(2) C → H1(J [2])
whose image is contained in the kernel of Υ (see [19, Corollary 9.5]), and such that the restriction
of τ to Pic0 C factors as the composition of the map ρ : Pic0 C → J(k)/2J(k) induced by ρ and
the map ι. Since ρ is surjective, we conclude that the image of ι is indeed contained in the kernel
of Υ. �

We denote the kernel of Υ by P 1(J [2]).

Remark 2.3. Suppose k is a global field. For each place v of k we let kv denote the completion
of k at v and

ιv : J(kv)/2J(kv) → H1
(

Gal(ks
v/kv, J [2](ks

v))
)

the connecting map defined analogously to ι : J(k)/2J(k) → H1(J [2]). We get a natural diagram

J(k)/2J(k)
ι //

��

H1(k, J [2](ks)) //

))SSSSSSSSSSSSSS

��

H1(k, J(ks))

��
∏

v J(kv)/2J(kv)
(ιv)v // ∏

v H1(kv, J [2](ks
v))

// ∏
v H1(kv, J(ks

v))

and define the Selmer group Sel2(J, k) to be the kernel of H1(k, J [2](ks)) →
∏

v H1(kv, J(ks
v)), i.e.,

the inverse image under the middle vertical map of the image of the lower-left horizontal map.
Then the image of ι is contained in Sel2(J, k). It follows from Proposition 2.2, applied to all kv,
and the fact that the natural diagonal map Br k →

∏

v Br kv is injective, that the Selmer group

Sel2(J, k) is contained in P 1(J [2]).
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By Diagram (2), the kernel of the homomorphism H1
(

µ2(L
s)/µ2(k

s)
)

→ Br(k)[2] is isomorphic

to the image of L∗/L∗2 in H1
(

µ2(L
s)/µ2(k

s)
)

and this image is isomorphic to L∗/L∗2k∗. This

implies that ǫ∗ induces a homomorphism κ : P 1(J [2]) → L∗/L∗2k∗. By Proposition 2.2, we may
compose κ and ι.

Definition 2.4. The composition κ ◦ ι : J(k)/2J(k) → L∗/L∗2k∗ is called the Cassels map.

Proposition 2.5. The Cassels map J(k)/2J(k) → L∗/L∗2k∗ sends the class of the divisor
(

(x1, y1)
)

+
(

(x2, y2)
)

−KC on C to (X − x1)(X − x2).

Proof. See [8, Proposition 2] and [19, Sections 5 and 9]. �

The kernel of the homomorphism ǫ∗ appearing in Diagram (2) equals the image of µ2(k) in
H1(J [2]) and thus has order 1 or 2. As this image of µ2(k) is contained in the image of β∗ (see
Diagram (2)), it is contained in P 1(J [2]), so we have ker ǫ∗ = kerκ. The image of −1 ∈ µ2(k)
in H1(J [2]) is represented by any cocycle that sends σ to (σ(w0)) − (w0) for some fixed w0 ∈ W ,
see [19, Lemma 9.1]. There is a simple condition based on how the polynomial f factors that
says whether or not this cocycle represents the trivial class [19, Lemma 11.2] and thus whether
or not kerκ is trivial. More subtle is the Cassels kernel, which is defined as the intersection
kerκ ∩ Sel2(J, k), cf. Remark 2.3. The Cassels kernel measures the difference between the Selmer
group Sel2(J, k) and its image under κ, which is known as the fake Selmer group. Michael Stoll [28,
Section 5] gives conditions that tell whether or not the Cassels kernel is trivial. Whether or not the
kernel of the Cassels map, which injects through ι into the Cassels kernel, is trivial is a question
that is more subtle yet again, cf. [4, Lemmas 6.4.1 and 6.5.1].

We would like to get a better understanding of the elements of Sel2(J, k) and look more generally
at the elements of P 1(J [2]). To give a more concrete description of P 1(J [2]), we first give a
description of H1(M), which maps onto P 1(J [2]). Let Γ denote the subgroup of L∗×k∗ consisting
of all pairs (δ, n) satisfying NL/k(δ) = n2, and let χ : L∗ → Γ be the homomorphism that sends ε

to (ε2, N(ε)).

Proposition 2.6. There is a unique isomorphism γ : Γ/ im(χ) → H1(M) that sends the class of
(δ, n) to the class of the cocycle σ 7→ σ(ε)/ε, where ε ∈ Ls is any element satisfying ε2 = δ and
N(ε) = n. The composition of γ with the map H1(M) → L∗/(L∗)2 sends (δ, n) to δ. The kernel
ker ǫ∗ = kerκ is generated by the image of (1,−1) ∈ Γ/ im(χ) under the composition of γ with the
map β∗ : H1(M) → H1(J [2]).

Proof. Let Γs denote the subgroup of Ls∗×ks∗ consisting of all pairs (δ, n) satisfying NL/k(δ) = n2

and extend χ to a map from Ls∗ to Γs by χ(ε) = (ε2, N(ε)). Then χ is surjective and its kernel is
M . Let p denote the projection map p : Γs → Ls∗. Taking Galois invariants in the diagram

1 // M //

��

Ls∗
χ // Γs //

p

��

1

1 // µ2(L
s) // Ls∗ x7→x2

// Ls∗ // 1

we obtain the following diagram.

L∗
χ // Γ

d //

p

��

H1(M) //

��

H1(Ls∗)

L∗ x7→x2

// L∗ // H1(µ2(L
s)) // H1(Ls∗)

Let d : Γ → H1(M) be the connecting homomorphism in this diagram. It sends (δ, n) to the
class represented by the cocycle σ 7→ σ(ε)/ε for any fixed ε ∈ Ls∗ with χ(ε) = (δ, n), i.e., with
ε2 = δ and N(ε) = n. By a generalization of Hilbert’s Theorem 90 we have H1(Ls∗) = 1
(see [24, Exercise X.1.2]). We conclude that d is surjective and therefore induces an isomorphism
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γ : Γ/ imχ→ H1(M). We also recover the isomorphism H1(µ2(L
s)) ∼= L∗/(L∗)2 that was used to

get Diagram (2). From the commutativity of the diagram we conclude that the composition

Γ/ imχ→ H1(M) → H1(µ2(L
s∗)) → L∗/(L∗)2

is induced by p, i.e., it is given by sending (δ, n) to δ. Chasing the arrows in the last diagram (all
that is needed is the surjectivity of d and the left-most vertical map), we find that d maps the
kernel of p surjectively to the kernel of the map H1(M) → H1(µ2(L

s∗)) ∼= L∗/L∗2, which maps
surjectively to ker ǫ∗ = kerκ by Diagram (2). The last statement of the proposition now follows
from the fact that the kernel of p is generated by (1,−1). �

Remark 2.7. Note that for each (δ, n) ∈ Γ we can find an ε ∈ Ls as in Proposition 2.6 as follows.
For each ω ∈ Ω, choose an εω ∈ ks with ε2ω = ϕω(δ). Then the element

ε =
(

εω
)

ω∈Ω
∈
⊕

ω∈Ω

ks ∼= Ls

satisfies ε2 = δ and N(ε) =
∏

ω εω = ±n. By changing the sign of one of the εω if necessary, we
obtain N(ε) = n. The cocycle in Proposition 2.6 can then also be written as

σ 7→

(

σ(εσ−1(ω))

εω

)

ω∈Ω

∈M ⊂
⊕

ω∈Ω

µ2(k
s).

Note also that by changing the sign of an even number of the εω, we change ε by an element of
M , so we change the cocycle by a coboundary.

Remark 2.8. By [19, Section 6], the group M is isomorphic to the two-torsion subgroup Jm[2]
of the so-called generalized Jacobian Jm. In the general setting and notation of [19] it is possible
to prove as in the proof of Proposition 2.6 that H1(Jm[φ]) is isomorphic to Γp/χp(L

∗), where
Γp ⊂ L∗ × k∗ consists of all pairs (δ, n) with N(δ) = np and χp : L∗ → Γp sends ε to (εp, N(ε)).

The following corollary provides the description of the group P 1(J [2]) that we shall use in
Section 4.

Corollary 2.9. The composition of γ : Γ/ im(χ) → H1(M) of Proposition 2.6 with the map
β∗ : H1(M) → H1(J [2]) of Diagram 2 induces an isomorphism Γ/(k∗ · im(χ)) → P 1(J [2]).

Proof. The kernel P 1(J [2]) of Υ is isomorphic to the image of H1(M) in H1(J [2]), which is iso-
morphic to H1(M)/k∗. The statement now follows immediately from Proposition 2.6. �

We now interpret the elements of H1(J [2]) as certain twists of the Jacobian J . The remainder
of this section is well known.

Definition 2.10. Let K be any extension of k, and X a variety over k; a K/k-twist of X is a
variety Y over k such that there exists an isomorphism YK → XK . Two K/k-twists are isomorphic
if they are isomorphic over k.

Proposition 2.11. Let K be a Galois extension of k and let X be a quasi-projective variety over
k. There is a natural bijection between the set of isomorphism classes of K/k-twists of X and
H1(Gal(K/k),Aut(XK)) that sends a twist A to the class of the cocycle σ 7→ ϕ◦σ(ϕ−1) for a fixed
choice of isomorphism ϕ : Aks → Xks .

Proof. See [25, Chapter III, § 1, Proposition 5]. �

We can embed J [2](ks) into Aut(Jks) by sending P ∈ J [2](ks) to the automorphism TP that is
translation by P . This induces a map H1(J [2]) → H1(Aut(Jks)), through which every element in
H1(J [2]) is associated to some ks/k-twist of J by Proposition 2.11. These particular twists carry
the structure of a two-covering, defined below.
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Definition 2.12. A two-covering of J is a surface A over k together with a morphism π : A→ J
over k, such that there exists an isomorphism ρ : Aks → Jks with π = [2] ◦ ρ. In other words, ρ
makes the following diagram commutative.

Aks

π
!!DDDDDDDD

∼=

ρ
// Jks

[2]

��
Jks

An isomorphism (A1, π1) → (A2, π2) between two two-coverings is an isomorphism h : A1 → A2

over k with π1 = π2 ◦ h.

Although two 2-coverings (A1, π1) and (A2, π2) may be non-isomorphic while A1 and A2 are
isomorphic as twists, we often just talk about a two-covering A of J , regarding the covering map
π as implicit. For any two-torsion point P ∈ J [2](ks), let TP denote the automorphism of J given
by translation by P . The following lemma shows that the isomorphism ρ in Definition 2.12 is well
defined up to translation by a two-torsion point.

Lemma 2.13. Let (A, π) be a two-covering of J , and let ρ, ρ′ : Aks → Jks be two isomorphisms
satisfying [2] ◦ ρ = π = [2] ◦ ρ′. Then there is a unique point P ∈ J [2](ks) such that ρ′ = TP ◦ ρ.

Proof. Define a map τ : Aks → Jks by τ(R) = ρ′(R) − ρ(R). Then for each R ∈ A(ks) we have
2τ(R) = 2ρ′(R) − 2ρ(R) = π(R) − π(R) = 0, so τ(R) ∈ J [2](ks). Since J [2](ks) is discrete, τ is
continuous, and Aks is irreducible, we find that τ is constant, say τ(R) = P for some fixed P .
Then ρ′ = TP ◦ ρ. The point P is unique, because if ρ′ = TS ◦ ρ for some point S, then S = τ(R)
for all R ∈ A(ks). �

Lemma 2.14. Let A be a two-covering of J and choose an isomorphism ρ as in Definition 2.12.
Then for each Galois automorphism σ ∈ Gal(ks/k) there is a unique point P ∈ J [2](ks) satisfying
ρ◦σ(ρ−1) = TP . The map σ 7→ P induces a well-defined cocycle class τA in H1(J [2]) that does not
depend on the choice of ρ. The map that sends a two-covering B to τB yields a bijection between
the set of isomorphism classes of two-coverings of J and the set H1(J [2]).

Proof. The unique existence of P follows from Lemma 2.13 applied to ρ′ = σ(ρ). It is easily
checked that for fixed ρ the map σ 7→ P is a cocycle. By Lemma 2.13, another choice for ρ
differs from ρ by composition with TP for some P ∈ J [2](ks), so the corresponding cocycle differs
from the original one by a coboundary, and the cocycle class τA is independent of ρ. Suppose
A1 and A2 are two-coverings of J with the same corresponding cocycle class in H1(J [2]). For
i = 1, 2, choose an isomorphism ρi : (Ai)ks → Jks . Then the two cocycles σ 7→ ρ1 ◦ σ(ρ−1

1 ) and
σ 7→ ρ2 ◦ σ(ρ−1

2 ) differ by a coboundary. After composing ρ2 with TP for some P ∈ J [2](ks), we
may assume this coboundary is trivial, so ρ1 ◦ σ(ρ−1

1 ) = ρ2 ◦ σ(ρ−1
2 ) for all σ ∈ Gal(ks/k). It

follows that the isomorphism ρ−1
2 ◦ρ1 is Galois invariant, so A1 and A2 are isomorphic over k. We

deduce that the map B 7→ τB is injective. For surjectivity, suppose c : Gal(ks/k) → J [2](ks) is a
cocycle. Composition with the map J [2](ks) → AutJ(ks) gives a cocycle with values in Aut J(ks),
which corresponds by Proposition 2.11 to a twist A of J in the sense that there is an isomorphism
ϕ : Aks → Jks such that the cocycle σ 7→ ϕ ◦ σ(ϕ−1) equals c. It follows that [2] ◦ϕ is defined over
the ground field and makes A into a two-covering that maps to the cocycle class of c. �

Proposition 2.15. Let A be a two-covering of J corresponding to the cocycle class ξ ∈ H1(J [2]).
Then A contains a k-rational point if and only if ξ is in the image of ι : J(k)/2J(k) → H1(J [2]).

Proof. The inclusion T : J [2](ks) → AutJks that sends P ∈ J [2](ks) to TP induces a map
T∗ : H1(J [2]) → H1(Aut Jks). Set η = T (ξ). Suppose g : Aks → Jks is an isomorphism that
gives A its two-covering structure, so that the composition [2] ◦ g is defined over k. Then η is the
class of the cocycle ψ ∈ Z1(Aut Jks) given by ψ(σ) = g ◦ σ(g)−1.

Suppose there is a point P ∈ J(k) such that ξ = ι(P ) where P is the image of P in J(k)/2J(k).
Then η is also the class of the cocycle ϕ ∈ Z1(Aut Jks) given by ϕ(σ) = Tσ(Q)−Q for any fixed
Q with 2Q = P . This implies that ϕ and ψ are cohomologous, so there is an automorphism
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m ∈ Aut Jks such that ϕ(σ) = m ◦ ψ(σ) ◦ σ(m)−1 for all σ ∈ Gal(ks/k). Choose such an m and
set h = m ◦ g and R = h−1(−Q) ∈ A. Then for all σ ∈ Gal(ks/k) we have h ◦ σ(h)−1 = Tσ(Q)−Q,
so

σ(R) = σ(h−1(−Q)) = σ(h)−1(−σ(Q)) = (h−1 ◦ h ◦ σ(h)−1)(−σ(Q)) =

= (h−1 ◦ Tσ(Q)−Q)(−σ(Q)) = h−1(−Q) = R.

We conclude that R is k-rational.
Conversely, suppose that A contains a k-rational point, say R ∈ A(k). Set Q = −g(R) and

P = 2Q. Take any σ ∈ Gal(ks/k). Then by Lemma 2.14 there is a point S ∈ J [2](ks) such that
ψ(σ) = g ◦ σ(g)−1 = TS . We get

S − σ(Q) = TS(−σ(Q)) = g((σ(g)−1)(−σ(Q))

= g(σ(g−1(−Q))) = g(σ(R)) = g(R) = −Q,

so S = σ(Q) −Q. From 0 = 2S = 2σ(Q) − 2Q = σ(P ) − P we find that P is fixed by σ. As this
holds for all choices of σ we find that P is k-rational. Its image ι(P ) is the class represented by
the cocycle that sends σ to Tσ(Q)−Q, which by the above equals ξ. �

Remark 2.16. Let k be a global field. The Selmer group Sel2(J, k) ⊂ H1(J [2](ks)) consists
of those elements of H1(J [2](ks)) that restrict to elements in the image of ιv : J(kv)/2J(kv) →
H1(kv, J [2](ks

v)) for every place v of k, see Remark 2.3. By Proposition 2.15 these elements
correspond under the map of Lemma 2.14 to those two-coverings of J that have a point locally ev-
erywhere. Again by Proposition 2.15, an element of Sel2(J, k) maps to zero in the Tate-Shafarevich
group if and only if the corresponding two-covering contains a rational point.

Although we do not need it in this paper, it is worth noting that two-covers of J are not just
twists of J , but can in fact be given the structure of a k-torsor under J . This implies that if a
two-covering of J has a rational point, then it is in fact isomorphic to J over k. The following
proposition (see [26, Proposition 3.3.2 (ii)] for the proof) tells us how to give a two-covering the
structure of a k-torsor under J .

Proposition 2.17. Let (A, π) be a two-covering of J , and let ρ : Aks → Jks be an isomorphism
satisfying [2] ◦ ρ = π. Then there exists a unique morphism τ : J × A → A given by τ(R, a) =
ρ−1(R + ρ(a)), which is independent of the choice of ρ, and which gives A the structure of a
k-torsor under J .

As mentioned in the introduction, our goal is to give an explicit model in P15 of the two-
coverings of J corresponding to elements of P 1(J [2]), as defined just after Proposition 2.2. In
particular this includes the two-coverings corresponding to elements of Sel2(J, k), see Remarks 2.3
and 2.16.

3. Models of the Jacobian and its Kummer surface

We continue to use the notation of Section 2. Let [−1] denote the automorphism of J given by
multiplication by −1. The Kummer surface X of J is defined to be the quotient J/〈[−1]〉. It has 16
singularities, all ordinary double points coming from the fixed points of [−1], i.e., the two-torsion
points of J . Let Y be the blow-up of X in these singular points. Then Y is a smooth K3 surface,
which we call the desingularized Kummer surface of J to distinguish it from the singular Kummer
surface X of J . In many places in the literature, Y is also referred to as the Kummer surface
of J . We denote the (−2)-curve on Y above the singular point of X corresponding to P ∈ J [2]
by EP . Let J ′ be the blow-up of J in its two-torsion points. We denote the (−1)-curve on J ′

above the point P ∈ J [2] by FP . The involution [−1] on J lifts to an involution on J ′ such that
the quotient is isomorphic to Y. In other words, there is a morphism J ′ → Y, with ramification
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divisor
∑

P∈J[2] FP , that makes the following diagram commutative, cf. [14, Diagram (2.2)].

J ′

��

// J

��
Y // X

Let KC be the canonical divisor of C that is supported at the points at infinity, i.e., KC =
(∞+) + (∞−), where ∞+ and ∞− are the two points at infinity, which may not be defined over
the ground field individually. We let ιh denote the hyperelliptic involution on C that sends (x0, y0)
to (x0,−y0). We have ιh(∞

±) = ∞∓. For any point Q on C the divisor (Q) + (ιh(Q)) is linearly
equivalent to KC .

The map p : C × C → J that sends (P,Q) to the divisor (P ) + (Q) −KC factors through the
symmetric square C(2) of C. The induced map C(2) → J is birational (see [16, Theorem VII.5.1]).
In fact, it describes C(2) as the blow-up of J at the origin O of J ; the inverse image of O is the
curve on C(2) that consists of all (unordered) pairs {Q, ιh(Q)}. We may therefore identify the
function field k(J) of J with that of C(2), which consists of the functions in the function field

k(C × C) = k(x1, x2)[y1, y2]
/(

y2
1 − f(x1), y

2
2 − f(x2)

)

of C × C invariant under the exchange of the indices. As for any points P,Q on C the divisor
(P )+(Q)−KC is linearly equivalent to −(ιh(P )+ιh(Q)−KC), it follows that [−1] on J is induced
through p by the involution ιh. Therefore the induced automorphism [−1]∗ of k(J) fixes x1 and
x2 and changes the sign of y1 and y2. For any function g ∈ k(J) we say that g is even or odd if we
have [−1]∗(g) = g or [−1]∗(g) = −g respectively.

For any Weierstrass point w ∈ W of C we define Θw to be the divisor on J that is the image
under p of the divisor C×{w} on C×C. It consists of all divisor classes represented by (P )− (w)
for some point P on C. The doubles of these so-called theta-divisors are all linearly equivalent.
By abuse of notation, we will write 2nΘ for the divisor class of 2nΘw for any integer n and any
Weierstrass point w. Although Θ itself is not a well-defined divisor class modulo linear equivalence,
it is well defined modulo numerical equivalence. We have Θ2 = 2 (in general, on a Jacobian of
dimension g we have Θg = g!, see [17, Section 1]). Also, we have h0(nΘw) = n2 for any integer
n > 0 and any w ∈ W ; the linear systems |2Θw|, |3Θw|, and |4Θw| determine morphisms of J to
P3, P8, and P15 respectively.

Proposition 3.1. Suppose w ∈W is a Weierstrass point defined over k. The linear system |2Θw|
induces a morphism of J to P3

k that is the composition of the quotient map J → X and a closed
embedding of X into P3

k. The linear systems |3Θw| and |4Θw| induce closed embeddings of J into
P8
k and P15

k respectively.

Proof. See [17, Section 5, Case d)]. �

Unfortunately, in full generality we cannot use the linear system |3Θw| to give an explicit model
of J in P8

k, as this system may not be defined over the ground field k. If C contains a rational
Weierstrass point w, then Θw is defined over the ground field and a model of J in P8 can be found
by sending the rational Weierstrass point to infinity, thus reducing to the case that C is given
by an equation of the form y2 = h(x) where h is of degree 5, see [13]. The explicit twisting we
perform in Section 7 was done in [12] in the case that all Weierstrass points are defined over the
ground field.

For any divisor D on a variety S over k, let L(D) denote the k-vector space H0(S,OS(D)). Let
Θ± denote the divisor on J that is the image under p of the divisor C × {∞±} on C × C. Then
Θ+ +Θ− is a rational divisor in |2Θ|, so the maps induced by |2Θ| and |4Θ| can always be defined
over the ground field. The first author has given explicit bases for the vector spaces L(Θ+ + Θ−)
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and L(2(Θ+ + Θ−)) in [9]. Set

k1 = 1, k2 = x1 + x2, k3 = x1x2,

k4 =
2f0 + f1k2 + 2f2k3 + f3k2k3 + 2f4k

2
3 + f5k2k

2
3 + 2f6k

3
3 − 2y1y2

(x1 − x2)2
,

kij = kji = kikj (for 1 ≤ i, j ≤ 4),

bi =
xi−1

2 y1 − xi−1
1 y2

x1 − x2
(for 1 ≤ i ≤ 4),(3)

b5 =
1

2f6

G(x1, x2)y1 −G(x2, x1)y2
(x1 − x2)3

,

b6 = −
1

4f6

(

f1b1 + 2f2b2 + 3f3b3 + 4f4b4 + 4f5b5 − f5k3b3 + f5k2b4 − 2f6k3b4 + 2f6k2b5
)

,

with

G(r, s) = 4f0 + f1(r + 3s) + 2f2s(r + s) + f3s
2(3r + s) + 4f4rs

3 + f5s
4(5r − s) + 2f6rs

4(r + s).

Define the functions a0, a1, . . . , a15 by

(4)

a0 = k44, a1 = −f1b1 − 2
∑6
i=2 fibi, a2 = f5b4 + 2f6b5,

a3 = k34, a4 = 1
2 (k24 − f1k11 − f3k13 − f5k33), a5 = k14,

a6 = b4, a7 = b3, a8 = b2,

a9 = b1, a10 = k33, a11 = k23,

a12 = k13, a13 = k12, a14 = k11,

a15 = k22 − 4k13.

The functions a0, . . . , a15 are the functions used in [4, Sections 2.1–2] as z0, . . . , z15.

Proposition 3.2. The sequence (k1, k2, k3, k4) is a basis for L(Θ+ + Θ−). The sequences (ai)
15
i=0

and (k11, k12, . . . , k44, b1, . . . , b6) are bases for L(2(Θ+ + Θ−)).

Proof. One checks that the functions k1, k2, k3, k4 are regular except for a pole of order at most
one along Θ+ and Θ−, so they are contained in L(Θ+ + Θ−). Since the function y1y2 is not
contained in the subfield k(x1, x2) of k(J), it follows that these functions are linearly independent.
As L(Θ++Θ−) has dimension 4, they indeed form a basis. A similar argument works for the vector
space L(2(Θ+ + Θ−)). Alternatively, one checks that a0, . . . , a15 are the functions defined in [4,
Sections 2.1–2], where it is proved that they indeed form a basis of L(2(Θ++Θ−)). From (4) it then
follows immediately that the sequence (k11, k12, . . . , k44, b1, . . . , b6) is a basis of L(2(Θ+ + Θ−)) as
well. �

Corollary 3.3. The quotient map J → X is given by D 7→ [k1(D) : k2(D) : k3(D) : k4(D)] or
D 7→ [k1i(D) : k2i(D) : k3i(D) : k4i(D)] for any 1 ≤ i ≤ 4.

Proof. This follows immediately from Propositions 3.1 and 3.2. �

For any k-vector space V we denote the multiplication on the symmetric algebra SymV =
⊕∞

d=0 Symd V by (g, h) 7→ g ∗ h to avoid confusion with a possibly already existing product. In

particular this implies that for every positive integer d the natural quotient map V ⊗d → Symd V
is given by v1 ⊗ · · · ⊗ vd 7→ v1 ∗ · · · ∗ vd.

Remark 3.4. Under the natural map Sym2 L(Θ+ +Θ−) → L(2(Θ+ +Θ−)) that sends g ∗h to gh,
the element ki ∗ kj maps to kij. The fact that {kij}i,j is a linearly independent set is equivalent to
the fact that this map is injective, which is in turn equivalent to the fact that there are no quadratic
polynomials vanishing on the image of X in P3 embedded by |2Θ|. For the rest of this paper we
freely identify Sym2 L(Θ+ + Θ−) with its image in L(2(Θ+ + Θ−)).
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Remark 3.5. Note that (kij)i,j and (a0, a3, a4, a5, a10, . . . , a15) are bases of the 10-dimensional
space of even functions, while (bi)i and (a1, a2, a6, a7, a8, a9) are bases of the 6-dimensional space
of odd functions. It follows from Propositions 3.1 and 3.2 that together they give an embedding of
J into P15. By definition of the kij, the projection of P15 onto the 10 even coordinates factors as
the map from J to P3 given by k1, k2, k3, k4 and the 2-uple embedding from P3 to P9. Again by
Propositions 3.1 and 3.2 it follows that this map from J to P9 is the composition of the quotient
map J → X and a closed embedding of X into P9.

We now study the projection onto the odd coordinates; this gives the desingularization of X .
By abuse of notation we also write 2nΘ or Θ± for the divisor class on J ′ that is the pull-back of
2nΘ or Θ± on J under the blow-up map J ′ → J for any integer n.

Proposition 3.6. There are direct sum decompositions

L
(

2(Θ+ + Θ−)
)

= 〈even coordinates〉 ⊕ 〈odd coordinates〉

= Sym2
(

L(Θ+ + Θ−)
)

⊕ L
(

2(Θ+ + Θ−)
)

(−J [2])

≃ H0
(

X , ϕ∗OP3(2)
)

⊕ H0
(

J ′,OJ ′

(

2(Θ+ + Θ−) −
∑

P FP
))

where L
(

2(Θ+ +Θ−)
)

(−J [2]) is the subspace of L
(

2(Θ+ +Θ−)
)

of sections vanishing on the two-

torsion points and ϕ : X → P3 is the embedding of X into P3 associated to |Θ++Θ−|. Furthermore,
the projection of J ⊂ P15 away from the even coordinates determines a rational map

J 99K P5

D 7−→ [b1(D) : . . . : b6(D)]

which induces the morphism J ′ → P5 associated to the linear system |4Θ −
∑

P FP | on J ′, and
factors as the quotient map J ′ → Y and a closed embedding Y → P5.

Proof. The decomposition into even and odd coordinates is immediate, since the characteristic
of the field k is different from 2. The vector space L

(

2(Θ+ + Θ−)
)

(−J [2]) contains all the odd
functions; the reverse inclusion is a consequence of [1, Exercise VIII.22.9, p. 104]. This establishes
the second decomposition. The third decomposition follows at once from the previous ones. The
second part of the proposition follows. �

In the following diagram we summarize the maps that we described.

P15

odd

��

^adgk
p

v
~

�



�

�

�

�
�
 

even

��

` ^ [ W S N
H

A
8

2
-

)

%

"

 
�

J ′ //

��

|4Θ−
P

FP |

��~~~~~~~~~~~~~~~~
J

��

|4Θ|

OO

|2Θ|

  AAAAAAAAAAAAAAAAA
|3Θw| // P8

P5 Yoo // X // P3
2−uple

// P9

The ideal of the image of J in P15 is generated by 72 quadrics (see [9]). There are 21 linearly
independent quadrics in just the even functions, which define the image of X in P9. A 20-
dimensional subspace of the space generated by these quadrics is spanned by the equations of the
form kijkrs = kirkjs for 1 ≤ i, j, r, s ≤ 4, which define the image of P3 in P9 under the 2-uple
embedding. From the quartic that defines the image of X in P3 we find another quadric in only



12 E. VICTOR FLYNN, DAMIANO TESTA, AND RONALD VAN LUIJK

the even functions, namely

gX = (−4f0f2 + f2
1 )k2

11 − 4f0f3k11k12 − 2f1f3k11k13 − 4f0k11k14 − 4f0f4k
2
12 +

(4f0f5 − 4f1f4)k12k13 − 2f1k11k24 + (−4f0f6 + 2f1f5 − 4f2f4 + f2
3 )k2

13 −

4f2k11k34 − 4f0f5k12k22 + (8f0f6 − 4f1f5)k13k22 + (4f1f6 − 4f2f5)k13k23 −(5)

2f3k13k24 − 2f3f5k13k33 − 4f4k13k34 − 4k14k34 − 4f0f6k
2
22 − 4f1f6k22k23 −

4f2f6k
2
23 + k2

24 − 4f3f6k23k33 − 2f5k23k34 + (−4f4f6 + f2
5 )k2

33 − 4f6k33k34.

Set

e1 = 2f0b1 + f1b2,

e2 = f3b3 + 2(f4b4 + f5b5 + f6b6),

e3 = f5b4 + 2f6b5.

Then the four entries Q1, . . . ,Q4 of the vector

(6)









0 e1 −e2 −b4
−e1 0 −e3 b3
e2 e3 0 −b2
b4 −b3 b2 0

















k1

k2

k3

k4









=









Q1

Q2

Q3

Q4









are linear combinations of the functions kibl that vanish on J . Multiplying each Qi by any of the
four kj gives 16 linear combinations kjQi of the functions kijbl, and thus 16 vanishing quadrics
kjQi in the kij and the bj . Since the matrix in (6) is antisymmetric, the linear combination
k1Q1 + k2Q2 + k3Q3 + k4Q4 is identically zero. It can be checked that this is the only linear
combination of the kjQi that vanishes identically, so we obtain a 15-dimensional subspace of odd

quadrics that vanish on J . Replacing each bi by bi−1, with b0 defined so that
∑6
i=0 fibi = 0

for notational convenience, we get another 15-dimensional subspace of odd quadrics that also
vanish on J . These equations together give the full 30-dimensional subspace of the odd vanishing
quadrics.

We are 21 quadrics short of 72. Note that the space of quadratic polynomials in b1, . . . , b6 has
dimension 21. The remaining 21 vanishing quadrics express the quadratic polynomials in the bi
in terms of the kij . We have for instance

b21 = f2k
2
11 + f3k11k12 + k11k14 + f6k11k33 + f4k

2
12 − f5k12k13 + f5k12k22 − 2f6k13k22 + f6k

2
22,

2b1b2 = −f1k
2
11 + f3k11k13 + 2f4k11k23 + k11k24 − f5k11k33 − 2f6k12k33 + 2f5k13k22 + 2f6k22k23,

b22 = f0k
2
11 + f4k

2
13 + k13k14 + f5k13k23 + f6k22k33,

2b2b3 = 2f0k11k12 + f1k11k13 − f3k
2
13 + k13k24 + f5k13k33 + 2f6k23k33,

b23 = f0k11k22 + f1k11k23 + f2k11k33 + k14k33 + f6k
2
33,

2b3b4 = −f1k11k33 − 2f0k12k13 + 2f0k12k22 + 2f2k12k33 + 2f1k13k22 + f3k13k33 + k24k33 − f5k
2
33,

b24 = f0k11k33 − 2f0k13k22 − f1k13k23 + f0k
2
22 + f1k22k23 + f2k

2
23 + f3k23k33 + f4k

2
33 + k33k34.

(7)

For the full list, see [10].

Remark 3.7. The 42-dimensional space of even vanishing quadratic polynomials contains a 3-
dimensional subspace of quadratic polynomials that only involve b1, . . . , b6. These describe the
image of Y in P5. With respect to the sequence (b1, . . . , b6), the symmetric matrices RjT with

R =

















0 0 0 0 0 −f0f
−1
6

1 0 0 0 0 −f1f
−1
6

0 1 0 0 0 −f2f
−1
6

0 0 1 0 0 −f3f
−1
6

0 0 0 1 0 −f4f
−1
6

0 0 0 0 1 −f5f
−1
6

















and T =

















f1 f2 f3 f4 f5 f6
f2 f3 f4 f5 f6 0
f3 f4 f5 f6 0 0
f4 f5 f6 0 0 0
f5 f6 0 0 0 0
f6 0 0 0 0 0



















TWO-COVERINGS OF JACOBIANS OF CURVES OF GENUS TWO 13

and 0 ≤ j ≤ 2 correspond to quadratic polynomials that span this subspace. The reader is encour-
aged to compute the matrices RjT for 1 ≤ j ≤ 7, which will come back in Section 4.

Remark 3.8. Note that we can use the last 21 given even quadrics to describe the rational map
from X to Y. Indeed, a general point P on Y ⊂ P5 is given by [br(P )b1(P ) : · · · : br(P )b6(P )] for
any fixed r. As mentioned above, all quadratic polynomials in the bi can be expressed as quadratics
in the kij, or as quartics in the ki. The corresponding expressions for brb1, . . . , brb6 induce a map
from X to Y that is the rational inverse of the blow-up morphism Y → X . This morphism can be
described explicitly as

[b1 : · · · : b6] 7→ [k1 : k2 : k3 : k4] = [b1b3 − b22 : b1b4 − b2b3 : b2b4 − b23 :

f0b
2
1 + f1b1b2 + f2b

2
2 + f3b2b3 + f4b

2
3 + f5b3b4 + f6b

2
4],

which can be checked either by expressing the quadratic polynomials in the bi in terms of the kij,
or by checking directly that for instance b1b3−b

2
2 = −y1y2. Furthermore, as this map only involves

b1, b2, b3, and b4, it factors through the projection of P5 on the P3 with coordinates b1, . . . , b4. The
image of Y under this projection is the Weddle surface (see [4, Chapter 5]), which is given by

f0b
3
1b4 − 3f0b

2
1b2b3 + f1b

2
1b2b4 − f1b

2
1b

2
3 + 2f0b1b

3
2 − f1b1b

2
2b3 + f2b1b

2
2b4−

2f2b1b2b
2
3 − f3b1b

3
3 − f4b1b

2
3b4 − f5b1b3b

2
4 − f6b1b

3
4 + f1b

4
2 + f2b

3
2b3 + f3b

3
2b4+

2f4b
2
2b3b4 + f5b

2
2b

2
4 − f4b2b

3
3 + f5b2b

2
3b4 + 3f6b2b3b

2
4 − f5b

4
3 − 2f6b

3
3b4 = 0.

This answers the question in [4, Section 16.6] to describe the map X → Y explicitly.

4. Another description of the desingularized Kummer surface

The description of the desingularized Kummer surface given in this section is also given in [4,
Chapter 16]. As in [15], we also extend it to twists of the surface. This new description serves
several purposes. First of all, over ks it allows us a find a set of three diagonal quadratic forms
that describe Y. Second, it helps us to understand the action of J [2] on our explicit model of Y
in P5. In fact these two purposes are closely related.

Consider the projective space P(L) ∼= (L − {0})/k∗ over k with L = k[X]/f as before. Its

homogeneous coordinate ring is Sym(L̂) =
⊕

n≥0 Symn(L̂), where L̂ = Hom(L, k) is the dual of
L. One important basis of L, though not particularly convenient to work with, is the power basis
1,X, . . . ,X5. Its dual basis of L̂ is p0, . . . , p5, where pi just gives the coefficient of Xi, so that for
each z ∈ L we have z =

∑5
i=0 pi(z)X

i. This dual basis determines a coordinate system on P(L).

For any δ ∈ L∗, let C
(δ)
0 , . . . , C

(δ)
5 ∈ Sym2(L̂) be quadratic forms such that C

(δ)
j (z) = pj(δz

2),

and let Vδ ⊂ P(L) be the variety defined by C
(δ)
3 = C

(δ)
4 = C

(δ)
5 = 0. Then Vδ(k

s) is the image in
P(Ls) = (Ls \ {0})/ks∗ of the subset

Vδ = {ξ ∈ Ls \ {0} : δξ2 = rX2 + sX + t for some r, s, t ∈ ks} ⊂ Ls \ {0}

for any δ ∈ L∗. Recall that the Cassels map κ ◦ ι : J(k)/2J(k) → L∗/L∗2k∗ sends the class of
the divisor

(

(x1, y1)
)

+
(

(x2, y2)
)

−KC to (X − x1)(X − x2). Therefore, if the class of δ ∈ L∗ in

L∗/L∗2k∗ is in the image of the Cassels map, then there exists a ξ ∈ L∗ and s, t, c ∈ k∗ such that
δξ2 = c(X2 − sX + t), i.e., such that (ξ · k∗) ∈ P(L) is contained in Vδ.

In this section we will see that V1 is isomorphic to the desingularized Kummer surface Y and
that Vδ is a twist of V1 for every δ ∈ L∗. If δ has square norm, say N(δ) = n2, then there is a
two-covering A of the Jacobian J corresponding to the cocycle class in H1(J [2]) that is the image
of (δ, n) ∈ Γ under the map in Corollary 2.9; in Section 7 we will see that Vδ is a quotient of A.

Note that although we used pi to define C
(δ)
i ∈ Sym2(L̂), we have not yet expressed the quadrics

C
(δ)
i in terms of any basis of L̂. Before we do so, and thus describe Vδ explicitly with respect to

various bases of L̂, we make some basis-free remarks.
For any a ∈ L∗, let ma denote the linear automorphism of L given by multiplication by a,

and let m̂a be its dual automorphism of L̂, so that for every h ∈ L̂ and every z ∈ L we have
m̂a(h)(z) = h(ma(z)) = h(az). The automorphism of L̂⊗k . . .⊗k L̂ induced by the action of m̂a
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on each factor L̂ induces an automorphism of Symn(L̂) for every n, which we also denote by m̂a.

In particular we have m̂a(C
(δ)
i )(z) = pi(δ · (az)(az)) = pi(δa

2z2) = C
(δa2)
i (z) for all z ∈ Ls and all

i ∈ {0, . . . , 5}. The automorphism of L̂ ⊗k . . . ⊗k L̂ induced by the action of m̂a on exactly one

copy of L̂ induces an automorphism of Symn(L̂) that we denote by m̂◦
a. Note that on Symn(L̂)

we have (m̂◦
a)
n = m̂a.

Proposition 4.1. For any δ, ξ ∈ L∗, the automorphism mξ of P(L) induces an isomorphism from
Vδξ2 to Vδ.

Proof. As mentioned above, for i ∈ {0, . . . , 5} and for all z ∈ Ls we have m̂ξ(C
(δ)
i )(z) = C

(δξ2)
i (z).

Since Vδ is defined by C
(δ)
3 = C

(δ)
4 = C

(δ)
5 = 0 and Vδξ2 by C

(δξ2)
3 = C

(δξ2)
4 = C

(δξ2)
5 = 0, we

conclude that mξ induces an isomorphism from Vδξ2 to Vδ. �

Corollary 4.2. For any δ ∈ L∗, the surfaces Vδ and V1 are isomorphic over ks.

Proof. Choose ε ∈ Ls∗ with ε2 = δ and apply Proposition 4.1 with ξ = ε−1. �

Corollary 4.3. The map µ2(L
s) → Aut(P(Ls)) that sends ξ to mξ induces an injective homo-

morphism µ2(L
s)/µ2 → Aut

(

(Vδ)ks

)

.

Proof. By Proposition 4.1 we get a homomorphism ψ : µ2(L
s) → Aut

(

(Vδ)ks

)

. Clearly we have

µ2 ⊂ kerψ. Choose ε ∈ Ls∗ with ε2 = δ and let P ∈ P(L) be the image of ε−1 in P(L) =
(L − {0})/ks∗. Note that we have P ∈ (Vδ)ks . Suppose that ξ ∈ kerψ, so the automorphism mξ

induces the identity on Vδ. Then mξ(P ) = P , so ξε−1 = cε−1 for some c ∈ ks∗. We conclude ξ =
c ∈ µ2(L

s)∩ks∗ = µ2(k
s), so kerψ = µ2 and ψ induces an injection µ2(L

s)/µ2 → Aut
(

(Vδ)ks

)

. �

We have m̂◦
a(C

(δ)
j )(z) = pj(δ(az)z) = C

(δa)
j (z) for j ∈ {0, . . . , 5}, so in particular we find

m̂◦
δ(C

(1)
j ) = C

(δ)
j . Note, however, that the action of m̂◦

δ on Sym2 L̂ is not induced in the normal

way by the action of m̂δ on L̂, so this last equality does not imply that we get an isomorphism
between Vδ and V1 defined over the field of definition of δ. Still, it does help us to get a better
understanding of the quadrics that define Vδ. For a = X and any z ∈ L we have

5
∑

j=0

m̂◦
X(C

(δ)
j )(z)Xj =

5
∑

j=0

pj(δ(Xz)z)X
j = X · δz2 = X





5
∑

j=0

C
(δ)
j (z)Xj





= −
f0
f6
C

(δ)
5 (z) +

5
∑

j=1

(

C
(δ)
j−1(z) −

fj
f6
C

(δ)
5 (z)

)

Xj ,

where the last equality can also be interpreted as coming from the fact that with respect to the
basis (1,X, . . . ,X5), the action of mX on L is given by multiplication from the left by the matrix
R of Remark 3.7. Comparing coefficients of Xj+1, we conclude by downward induction on j that

f6C
(δ)
j = fj+1C

(δ)
5 + fj+2m̂

◦
XC

(δ)
5 + . . .+ f6(m̂

◦
X)5−jC

(δ)
5 ,(8)

for 0 ≤ j ≤ 5. For every integer j ≥ 0, set

(9) Q
(δ)
j = (m̂◦

X)jC
(δ)
5 = ((m̂◦

X)j ◦ m̂◦
δ)C

(1)
5 .

Then we can write (8) as

(10) f6
(

C
(δ)
0 C

(δ)
1 · · · C

(δ)
5

)

=
(

Q
(δ)
0 Q

(δ)
1 · · · Q

(δ)
5

)

· T,

with the matrix T of Remark 3.7. From (10) we deduce

Q
(δ)
0 = C

(δ)
5 ,

Q
(δ)
1 = C

(δ)
4 − f5f

−1
6 C

(δ)
5 ,(11)

Q
(δ)
2 = C

(δ)
3 − f5f

−1
6 C

(δ)
4 + (f2

5 f
−2
6 − f4f

−1
6 )C

(δ)
5 .

Proposition 4.4. For any δ ∈ L∗, the surface Vδ is given by Q
(δ)
0 = Q

(δ)
1 = Q

(δ)
2 = 0.
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Proof. This follows immediately from the fact that Q
(δ)
0 , Q

(δ)
1 , Q

(δ)
2 are linear combinations of

C
(δ)
3 , C

(δ)
4 , C

(δ)
5 and vice versa. �

Proposition 4.5. Write δ ∈ L∗ as δ =
∑5
i=0 diX

i. Then for any integer j ≥ 0 we have Q
(δ)
j =

∑5
i=0 di(m̂

◦
X)i+j(C

(1)
5 ).

Proof. We have m̂◦
δ =

∑5
i=0 di(m̂

◦
X)i, so this follows directly from (9). �

Propositions 4.4 and 4.5 show that in order to give explicit equations in terms of some coordinate

system on P(L) for Vδ with δ =
∑5
i=0 diX

i, it suffices to know C
(1)
5 in terms of the basis of L̂ that

corresponds to that system and m̂◦
X with respect to that basis. Note also that for ξ =

∑5
i=0 ciX

i

we have m̂◦
ξ =

∑5
i=0 ci(m̂

◦
X)i, so knowing m̂◦

X with respect to any basis, we know which linear
combination of its powers gives m̂◦

ξ with respect to that basis.

We now mention a few bases. The first we have already seen, namely the basis (1,X, . . . ,X5)
of L over k with corresponding dual basis (p0, p1, . . . , p5). For the second, note that the set

{ϕω : ω ∈ Ω} is an unordered basis of L̂s over ks with ϕω : Ls → ks,X 7→ ω as before. Set
Pω =

∏

θ∈Ω\{ω}(X − θ) and λω = Pω(ω). Then Pω = λ−1
ω Pω is the corresponding Lagrange

polynomial. We have ϕω(Pθ) = Pθ(ω) = δωθ, where δωθ is the Kronecker-delta function, which
equals 1 if ω = θ and 0 otherwise. So {Pω : ω ∈ Ω} is the unordered basis of Ls over ks that is
dual to {ϕω : ω ∈ Ω}, with Pω corresponding to ϕω for all ω ∈ Ω. The set {P i : ω ∈ Ω} is also
an unordered basis of Ls, whose dual basis is {ϕω : ω ∈ Ω} with ϕω = λ−1

ω ϕω. This gives a third
pair of bases. Note that Pω · Pθ = δωθPω, so we have a very easy multiplication table for the Pω.

Proposition 4.6. In terms of the ϕω and the ϕω we have

Q
(δ)
j =

∑

ω

ωjλ−1
ω ϕω(δ)ϕ2

ω =
∑

ω

ωjϕω(δ)ϕ2
ω =

∑

ω

ωjλωϕω(δ)ϕ2
ω

for all integers j ≥ 0 and all δ ∈ L∗.

Proof. For any z ∈ L and δ ∈ L∗ we have z =
∑

ω φω(z)Pω and δ =
∑

ω φω(δ)Pω, so from
Pi · Pj = δijPi we find δXjz2 =

∑

ω ω
jφω(δ)φω(z)2Pω. We conclude that for all z ∈ Ls we have

Q
(δ)
j (z) = (m̂◦

X)j(C
(δ)
5 )(z) = p5(δ(X

jz)z) = p5

(

∑

ω

ωjϕω(δ)ϕω(z)2Pω

)

.

Since the coefficient of X5 in Pω is λ−1
ω , we find Q

(δ)
j =

∑

ω ω
jλ−1
ω ϕω(δ)ϕ2

ω. The other expressions

follow immediately from ϕω = λ−1
ω ϕω. �

Because multiplication among the Pω is very easy, and multiplication by X is just multiplication
of Pω by ω for each ω, the equations come out as simple as they do. Unfortunately, the Pω and
corresponding ϕω are in general not defined over the ground field k. The fourth basis (g1, . . . , g6)
with

g1 = f1 + f2X + f3X
2 + f4X

3 + f5X
4 + f6X

5,

g2 = f2 + f3X + f4X
2 + f5X

3 + f6X
4,

g3 = f3 + f4X + f5X
2 + f6X

3,

g4 = f4 + f5X + f6X
2,

g5 = f5 + f6X,

g6 = f6,

is defined over k. Note that while multiplication by X with respect to the basis (1,X, . . . ,X5)
is given by multiplication from the left by the matrix R of Remark 3.7, with respect to the basis
(g1, . . . , g6) it is given by multiplication from the left by the transpose Rt of R, or, equivalently,
by multiplication from the right by R. Also multiplication among the gi is given by relatively easy
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formulas. Note that the matrix T of Remark 3.7 describes the transformation between the bases
(1,X, . . . ,X5) and (g1, . . . , g6). Let (v1, . . . , v6) be the basis of L̂ dual to the basis (g1, . . . , g6) of
L.

Proposition 4.7. Take δ =
∑5
i=0 diX

i ∈ L∗. Then for every integer j ≥ 0, in terms of v1, . . . , v6

the quadratic form f−1
6 Q

(δ)
j corresponds to the symmetric matrix

∑5
i=0 diR

i+jT .

Proof. For every z ∈ Ls we have z =
∑6
i=1 vi(z)gi. Writing z2 as a linear combination of

1,X, . . . ,X5, we find that the quadratic form C
(1)
5 in terms of the vi corresponds to the symmetric

matrix f6T . As mentioned before, multiplication by X with respect to the basis (g1, . . . , g6) corre-
sponds to multipliction by the matrix R from the right. This describes exactly the induced action
on the vi, so we conclude that for all integers j ≥ 0, with respect to the basis (v1, . . . , v6), the

quadratic form (m̂◦
X)j(C

(1)
5 ) corresponds to the symmetric matrix RjT . The proposition therefore

follows from Proposition 4.5. �

Remark 4.8. As Vδ is given by Q
(δ)
0 = Q

(δ)
1 = Q

(δ)
2 = 0, we only need Proposition 4.7 for

j = 0, 1, 2 to find equations for Vδ. Therefore, the required exponents of R in Ri+j vary from 0 to
7. As mentioned in Remark 3.7, it is worth writing down RnT for all n with 0 ≤ n ≤ 7 to see
how simple the equations are.

Corollary 4.9. In terms of the coordinates v1, . . . , v6 of P(L), the surface V1 is given by quadratic
polynomials that correspond to the symmetric matrices T , RT , and R2T .

Proof. The surface V1 is given by Q
(1)
0 , Q

(1)
1 , and Q

(1)
2 . The corollary therefore follows immediately

from Proposition 4.7. �

By Remark 3.7, the surface Y ⊂ P5 is given in terms of the coordinates b1, . . . , b6 by quadratic
forms that correspond to the symmetric matrices T , RT , and R2T . These are the same matrices
as in Corollary 4.9, so Y and V1 are isomorphic.

Definition 4.10. Let rY denote the isomorphism rY : Y → V1 given by [b1 : . . . : b6] 7→
∑6
i=1 bigi,

or equivalently, in terms of the coordinate system v1, . . . , v6, by vi = bi for all i, and let rJ : J 99K

V1 denote the composition of rY with the rational quotient map J 99K Y, so that rJ (D) =
∑6
i=1 bi(D)gi ∈ Ls (see Proposition 3.6).

Cassels and the first author [4, Section 16.3] also describe a rational map J 99K V1, which sends
the class of the divisor D =

(

(x1, y1)
)

+
(

(x2, y2)
)

− KC to the image in P(Ls) of the element

ξ = M(X)(X − x1)
−1(X − x2)

−1, where M(X) is the unique cubic polynomial such that the
curve y = M(x) meets the curve given by y2 = f(x) twice at (x1, y1) and (x2, y2). Moreover,
if H(X) denotes the quadratic polynomial whose image in Ls equals ξ2, then the roots of H(x)
are the x-coordinates of the points R1, R2 on C with 2D ∼ R1 + R2 − KC and in fact we have
(

(y −M(x))/H(x)
)

= 2D − (R1 + R2 − KC). The following proposition tells us that this map
coincides with rJ .

Proposition 4.11. Let P1 = (x1, y1), P2 = (x2, y2) be points of C and suppose that they are not
Weierstrass points and that x1 6= x2. Let M(X) be the unique cubic polynomial such that the
curve y = M(x) meets the curve given by y2 = f(x) twice in P1 and P2 and set ξ = M(X)(X −

x1)
−1(X − x2)

−1 ∈ Ls. Then we have y1y2ξ =
∑6
i=1 bi(D)gi with D = [(P1) + (P2) −KC ].

Proof. First note that bi(D) is as given in (3), except that x1, x2, y1, y2 are now elements of the
ground field ks, rather than transcendental elements over k in the function field of C×C. For any
distinct c, d ∈ ks, set

gc,d(X) = (c− d)−2(X − c)2(X − d), and hc,d(X) = (c− d)−3(X − c)2(2X + c− 3d).

Then

gc,d(c) = g′c,d(c) = hc,d(c) = h′c,d(c) = gc,d(d) = h′c,d(d) = 0, g′c,d(d) = hc,d(d) = 1,



TWO-COVERINGS OF JACOBIANS OF CURVES OF GENUS TWO 17

so the polynomial

M̃(X) =
f ′(x2)

2y2
gx1,x2

(X) +
f ′(x1)

2y1
gx2,x1

(X) + y2hx1,x2
(X) + y1hx2,x1

(X)

satisfies M̃(xi) = yi and M̃ ′(xi) = f ′(xi)
2yi

for i = 1, 2. From M(xi) = yi and M ′(xi) = f ′(xi)
2yi

we

find that x1 and x2 are distinct double roots of the cubic polynomial M − M̃ , and we conclude
M = M̃ . Note that for any constant d ∈ ks, the quintic polynomial (f(X)− f(d))/(X − d) equals
∑6
i=1 d

i−1gi. In Ls we have f(X) = 0, so if f(d) 6= 0, then we have

1

X − d
= −f(d)−1 ·

f(X) − f(d)

X − d
= −f(d)−1

6
∑

i=1

di−1gi,

and thus for any c ∈ ks we find

(c− d)3hc,d
(X − c)(X − d)

= 2X − c− d−
(c− d)2

X − d
= 2X − c− d+

(c− d)2

f(d)

6
∑

i=1

di−1gi.

We also have (c− d)3gc,d(X − c)−1(X − d)−1 = (c− d)(X − c) and may therefore write

2(x1 − x2)
3y1y2ξ = 2(x1 − x2)

3y1y2M(X)(X − x1)
−1(X − x2)

−1

=f ′(x2)y1(x1 − x2)(X − x1) − f ′(x1)y2(x2 − x1)(X − x2)

+ 2y1y2(2X − x1 − x2)(y2 − y1)(12)

+ 2y1y2

(

y2
(x1 − x2)

2

f(x2)

6
∑

i=1

xi−1
2 gi − y1

(x1 − x2)
2

f(x1)

6
∑

i=1

xi−1
1 gi

)

.

The last line of (12) is already written as a linear combination of g1, . . . , g6. To write the first two
lines of the right-hand side of (12) as a linear combination of g1, . . . , g6 as well, we use 1 = f−1

6 g6
and X = f−1

6 g5 − f5f
−1
6 g6. Using y2

i = f(xi), we obtain y1y2ξ =
∑6
i=1 bigi for

bi =
xi−1

2 y1 − xi−1
2 y2

x1 − x2
, 1 ≤ i ≤ 4,

b5 =
G(x1, x2)y1 −G(x2, x1)y2

2f6(x1 − x2)3
,

b6 =
H(x1, x2)y1 −H(x2, x1)y2

2f2
6 (x1 − x2)3

,

with

G(r, s) = 2f6(r − s)2s4 + (r − s)f ′(s) + 4f(s),

H(r, s) = 2f2
6 s

5(r − s)2 − (r − s)(f5 + f6r)f
′(s) − 2(2f5 + f6(r + s))f(s).

Indeed, from (3) we get bi = bi(D), which proves the proposition. �

Remark 4.12. Cassels and the first author [4] also show how to make the rational quotient map
J 99K Y explicit. However, their formula (16.3.8) is missing a factor x−u and u−x in the terms
−2F (x,X) and −2F (u,X) respectively. Here x and u stand for our x1 and x2.

By Propositions 4.4 and 4.6, we have three diagonal quadratic forms in terms of the coordinate
system {ϕω}ω that describe V1 over ks and, through rY , also Y. We could have already given
an explicit linear automorphism of P5 to give these equations for Y in the previous section, but
through the relation between Y and V1 it comes more natural.

Remark 4.13. By Corollary 4.3 we have an action of µ2(L
s)/µ2 on V1. Through the injection

ǫ : J [2](ks) → µ2(L
s)/µ2 of Section 2, this induces an action of J [2](ks) on V1, and thus on Y.

On the coordinate system {ϕω}ω this action corresponds to negating some of the coordinates, so
we have simultaneously diagonalized the action of all two-torsion points on V1 and Y.
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It is, however, a priori not obvious that this action of J [2] coincides with the action on Y that
is induced by the action on J given by translation, even though it may be hard to imagine any
other action by J [2]. This is indeed never claimed in [4], even though the action is mentioned [4,
Section 16.2]. In the next section we will see that the actions do coincide.

5. The action by the two-torsion subgroup

For any P ∈ J [2](ks) the translation TP ∈ Aut(Jks) commutes with [−1], so it induces auto-
morphisms of X and Y, both of which we denote by TP as well. Unless specifically mentioned
otherwise, whenever we refer to the action of J [2](ks) on X , Y or J , we mean this action. In this
section we describe the action of J [2](ks) on J in P15 by first analyzing its action on the models of
X in P3 and P9 and the model of Y in P5. These actions are all linear, induced by actions on the
k(Ω)-vector spaces L(2(Θ++Θ−)), L(Θ++Θ−), Sym2 L(Θ++Θ−), and L(2(Θ++Θ−)−

∑

P FP )
respectively. As no model is contained in a hyperplane, the actions on these vector spaces are well
defined up to a constant.

Purely for notational convenience, we first define some groups isomorphic to the groups in
Diagram (1). Let Ξ denote the group of subsets of Ω, where the multiplication is given by taking
symmetric differences, i.e., for I1, I2 ⊂ Ω we have I1 · I2 = (I1 ∪ I2) \ (I1 ∩ I2). The identity
element of Ξ is the empty set. To each element x ∈ µ2(L

s) ∼=
⊕

ω µ2 we can associate the set
{ω ∈ Ω : ϕω(x) = −1}, which induces an isomorphism e : µ2(L

s) → Ξ. We have e(−1) = Ω,
and multiplication by −1 on µ2(L

s) corresponds to taking complements. There is an induced
isomorphism e : µ2(L

s)/µ2 → Ξ/〈Ω〉 and elements of Ξ/〈Ω〉 can be viewed as partitions of Ω into
two subsets. The perfect pairing described in Section 2 corresponds to the pairing Ξ × Ξ → µ2

that sends (I1, I2) to (−1)r with r = #(I1 ∩ I2). We denote this pairing by (I1, I2) 7→ (I1 : I2).
The subgroup M = e(M) ⊂ Ξ consist of subsets of even cardinality. The subgroup e(J [2](ks)) =
M/〈Ω〉 ⊂ Ξ/〈Ω〉 consists of partitions of Ω into two subsets of even cardinality; any nontrivial such
partition has a subset of cardinality 2, say {ω1, ω2}, and it corresponds to the class of the divisor
(

(ω1, 0)
)

+
(

(ω2, 0)
)

− KC . The partitions of Ω into two parts of odd cardinality are contained

in
(

Ξ/〈Ω〉
)

\
(

M/〈Ω〉
)

= (Ξ \ M)/〈Ω〉, where the last quotient is not a quotient of groups, but
a quotient of the set Ξ \ M by the group action induced by multiplication by Ω, i.e., by taking
complements. We get the following commutative diagram, cf. Diagram (1).

M //

��

Ξ

��

M //

β

��

∼=

e

99sssssssssss
µ2(L

s)

��

e
∼=

88rrrrrrrrrrr

M/〈Ω〉 // Ξ/〈Ω〉

J [2](ks)
ǫ

//

∼=

e

99sssssssss
µ2(L

s)/µ2

e
∼=

99ssssssssss

First we describe the action of J [2](ks) on the model of X in P3, that is, the action, up to a
constant, on L(Θ+ + Θ−). Note that saying that {ω1, ω2} is contained in the partition e(P ) for
P ∈ J [2](ks) is equivalent to saying that P is nonzero and corresponds to the pair {ω1, ω2}, or
more precisely, to the class of the divisor

(

(ω1, 0)
)

+
(

(ω2, 0)
)

−KC .

Proposition 5.1. Take P ∈ J [2](ks) and ω1, ω2 ∈ Ω such that {ω1, ω2} ∈ e(P ). Set g(x) =
(x− ω1)(x− ω2) and h(x) = f(x)/g(x). Write g = x2 + g1x+ g0 and h = h4x

4 + h3x
3 + . . .+ h0.

The automorphism TP on the model of X ⊂ P3 defined by L(Θ+ + Θ−) is induced by the linear

automorphism L(Θ++Θ−) defined by
∑4
i=1 aiki 7→

∑4
i=1 a

′
iki with (a′1 a

′
2 a

′
3 a

′
4) = (a1 a2 a3 a4)·MP
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where

MP =









h0 + g0h2 − g2
0h4 g0h3 − g0g1h4 g1h3 − g2

1h4 + 2g0h4 1
−g0h1 − g0g1h2 + g2

0h3 h0 − g0h2 + g2
0h4 h1 − g1h2 − g0h3 −g1

−g2
1h0 + 2g0h0 + g0g1h1 −g1h0 + g0h1 −h0 + g0h2 + g2

0h4 g0
M4,1 M4,2 M4,3 M4,4









,

and

M4,1 = −g1h0h1 + g2
1h0h2 + g0h

2
1 − 4g0h0h2 − g0g1h1h2 + g0g1h0h3 − g2

0h1h3

M4,2 = g2
1h0h3 − g3

1h0h4 − 2g0h0h3 − g0g1h1h3 + 4g0g1h0h4 + g0g
2
1h1h4 − 2g2

0h1h4

M4,3 = −g0h1h3 − g0g1h2h3 + g0g1h1h4 + g0g
2
1h2h4 + g2

0h
2
3 − 4g2

0h2h4 − g2
0g1h3h4

M4,4 = −h0 − g0h2 − g2
0h4

Moreover, we have detMP = Res(g, h)2 and M2
P = Res(g, h) · Id, where Res(g, h) is the resultant

of g and h.

Proof. See [4, Section 3.2]. �

Remark 5.2. Note that as MP in Proposition 5.1 is acting from the right on the coefficients with
respect to the basis (k1, k2, k3, k4), it acts from the left on the dual and we can describe the action
of TP on X ⊂ P3 by [k1 : k2 : k3 : k4] 7→ [k′1 : k′2 : k′3 : k′4] with (k′1 k

′
2 k

′
3 k

′
4)

t = MP (k1 k2 k3 k4)
t.

Definition 5.3. For nonzero P ∈ J [2](ks), let T4,P denote the linear automorphism of L(Θ++Θ−)

described in Proposition 5.1 and let T10,P denote the linear automorphism of Sym2 L(Θ+ + Θ−)

defined by T10,P = (Res(g, h))−1 Sym2 T4,P with g, h as in Proposition 5.1. Let T4,0 and T10,0

denote the identity of L(Θ+ + Θ−) and Sym2 L(Θ+ + Θ−) respectively.

The integer n in the subscript of Tn,P equals the dimension of the vector space on which the
automorphism Tn,P acts. For any finite-dimensional vector space W of dimension n, let SL(W )
denote the group of linear automorphisms ofW with determinant 1, and set PSL(W ) = SL(W )/µn,
where µn ⊂ SL(W ) is the subgroup of scalar automorphisms induced by multiplication by the n-th
roots of unity.

Proposition 5.4. If P ∈ J [2](ks) is nonzero, then T10,P has characteristic polynomial (λ−1)6(λ+

1)4, and we have T10,P ∈ SL(Sym2 L(Θ+ + Θ−)).

Proof. Let r ∈ ks satisfy r2 = Res(g, h) with g, h as in Proposition 5.1. From Proposition 5.1
we conclude that the four eigenvalues λ1, . . . , λ4 of T4,P satisfy λ2

i = Res(g, h) = r2. Not all
eigenvalues are the same, as otherwise the action of TP on X ⊂ P3 would be trivial. From
∏

i λi = detT4,P = r4 we conclude that the characteristic polynomial of T4,P equals (λ2 − r2)2.

Standard formulas imply that the characteristic polynomial of T10,P = r−2 Sym2 T4,P is as claimed.
It then also follows that the determinant equals 1. �

Proposition 5.5. Let P ∈ J [2](ks) be any point. The automorphism TP on the model of X ⊂ P9

defined by Sym2 L(Θ+ + Θ−) is induced by the linear automorphism T10,P of Sym2 L(Θ+ + Θ−).

Proof. For P = 0 this is trivial. Suppose P is nonzero. The model of X in P9 is the 2-uple
embedding of its model in P3, so the first statement follows from Proposition 5.1, as T10,P equals

Sym2 T4,P up to a constant. �

Definition 5.6. Let α : M → µ2 be the function given by α(m) = (−1)r, where 2r is the number
of ω ∈ Ω with ϕω(m) = −1.

Note that for all m,m′ ∈M we have

(13) eW
(

β(m), β(m′)
)

= α(mm′)α(m)α(m′)

where eW is the Weil pairing, as before.
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Remark 5.7. Michael Stoll ([27]) defines the group T ′ to be the group on the set µ2 × J [2](ks)
with multiplication given by

(

α1, P1

)

·
(

α2, P2

)

=
(

α1α2eW (P1, P2), P1 + P2

)

where eW is the Weil pairing. It follows from (13) that the map M → T ′, m 7→ (α(m), β(m)) is
an isomorphism.

Let ρ10 : M → SL
(

Sym2 L(Θ+ + Θ−)
)

be the function given by ρ10(m) = α(m)T10,β(m).

Proposition 5.8. The function ρ10 is a representation of M .

Proof. For any P,Q ∈ J [2](ks) there is a constant c(P,Q), given explicitly in [4, Section 3.3],
such that T4,PT4,Q = c(P,Q)T4,P+Q. As also noted in [27, Section 4], these constants are such
that for all P,Q ∈ J [2](ks) we have T10,PT10,Q = eW (P,Q)T10,P+Q. We conclude that there

is a representation T ′ → SL
(

Sym2 L(Θ+ + Θ−)
)

given by (α, P ) 7→ αT10,P , where T ′ is as in
Remark 5.7. The function ρ10 is the composition of this representation and the homomorphism
M → T ′ of Remark 5.7, so it is a representation as well. �

Remark 3.8 contains explicit equations for the morphism Y → X and its birational inverse.
Together with Proposition 5.1 this allows us to construct explicit equations for the action of J [2]
on the model of Y in P5(b1, . . . , b6). These equations are too large to include here. From the
corresponding action on the coordinate system {ϕω}ω, however, one would be able to see that the
action is induced by the action of µ2(L

s)/µ2 on V1 ⊂ P(Ls) through the inclusion ǫ : J [2](ks) →
µ2(L

s)/µ2, cf. Remark 4.13. In Proposition 5.10 we prove this without heavy computations, using
Section 4 instead of Proposition 5.1.

The isomorphism rY : Y → V1 given by vi 7→ bi of Definition 4.10 induces an isomorphism

r∗Y : L̂s → L

(

2(Θ+ + Θ−) −
∑

P

FP

)

,

defined over k. The natural action of M ⊂ µ2(L
s) on L̂s is given by M → Aut(L̂s), a 7→ m̂a as

in Section 4. The determinant of m̂a equals the norm NLs/ks(a) = 1 for a ∈ M . This yields an
injective representation

ρ6 : M →֒ SL

(

L

(

2(Θ+ + Θ−) −
∑

P

FP

))

, a 7→ r∗Y ◦ m̂a ◦ (r∗Y)−1.

Proposition 5.9. For any a ∈ M the eigenvalues of ρ6(a) are (ϕω(a))ω∈Ω. For a 6= ±1 the

characteristic polynomial equals
(

λ+ α(a)
)4(

λ− α(a)
)2

.

Proof. For each ω ∈ Ω the element ϕω ∈ L̂s is an eigenvector of m̂a with eigenvalue ϕω(a) ∈ µ2.
The eigenvalues of ρ6(a) are the same as those of m̂a. Suppose that a 6= ±1; exactly four of the
eigenvalues equal −1 if and only if α(a) = 1, otherwise exactly two of the eigenvalues equal −1.
It follows that the characteristic polynomial is as claimed. �

Proposition 5.10. For any a ∈ M the automorphism Tβ(a) on the model of Y ⊂ P5 defined by
L(2(Θ+ + Θ−) −

∑

P FP ) is induced by ρ6(a) ∈ AutL(2(Θ+ + Θ−) −
∑

P FP ).

Proof. Take S ∈ J [2](ks), and let D ∈ J(ks)\J [2](ks) be represented by the divisor P1 +P2−KC .
Write P1 = (x1, y1), P2 = (x2, y2) and suppose that P1, P2 are not Weierstrass points and that x1 6=
x2. Let MD(X) be the unique cubic polynomial such that the curve y = MD(x) meets the curve
given by y2 = f(x) twice in P1 and P2 and set ξD = MD(X)(X−x1)

−1(X−x2)
−1 ∈ Ls, where, by

the usual abuse of notation, MD(X) refers to both the polynomial and its image in Ls. Let HD(X)
be the quadratic polynomial whose image in Ls equals ξ2D. By the remark before Proposition 4.11,
the roots of HD(x) are the x-coordinates of the points R1, R2 with [(R1) + (R2) − KC ] = 2D.
Since 2D = 2(D+S), the polynomials HD and HD+S have the same roots, so ξ2D+S and ξ2D differ
by a constant factor. If D is general enough, then ξD and ξD+S are invertible in Ls; it follows
that ξD+S/ξD is contained in the subset ks∗ · µ2(L

s) of Ls∗, and its image in Ls∗/ks∗ is therefore
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contained in µ2(L
s)/µ2. We obtain a rational map J 99K µ2(L

s)/µ2,D 7→ ξD+S/ξD ∈ Ls∗/ks∗,
depending on S. Since µ2(L

s)/µ2 is discrete and J is connected, this map is constant with image
{ζS}. Let ζk : J [2](ks) → µ2(L

s)/µ2 be the map defined by ζk(S) = ζS . From the equalities

ζS+S′ =
ξD+S+S′

ξD
=
ξD+S+S′

ξD+S
·
ξD+S

ξD
= ζS′ · ζS

we find that ζk is a homomorphism. By Proposition 4.11 the map rJ of Definition 4.10 sends
D to the image of ξD in P(Ls). Suppose S 6= 0. Then for general D we have D + S 6= ±D,
so rJ (D) 6= rJ(D + S), and therefore ζS = ξD+S/ξD 6= 1 in Ls∗/ks∗. We conclude that ζk is a
Galois-equivariant injective homomorphism. We now show that ζk coincides with ǫ.

Consider the field E = k(W1, . . . ,W6, F6), where W1, . . . , W6, F6 are independent transcen-
dental elements over k, let K ⊂ E be the field generated by the coefficients of the polynomial
F (X) = F6

∏

i(X −Wi) in X, and set Λs = Ks[X]/(F (X)). Thus Spec(K) is the generic point of
the space of polynomials over k of degree 6 and E is a splitting field over K of the universal poly-
nomial F . Let J be the Jacobian of the universal curve given by y2 = F (x). Apply the argument
above with k, f , and Ls replaced by K, F , and Λs respectively to obtain a Galois-equivariant
injective homomorphism ζK : J [2](Ks) → µ2(Λ

s)/µ2, and let ǫK : J [2](Ks) → µ2(Λ
s)/µ2 be the

analogue of ǫ. The Galois group Gal(E/K) is isomorphic to the permutation group S6 act-
ing on {W1, . . . ,W6}. Let Q ∈ J [2](Ks) be non-zero, represented by the pair {Wi,Wj}, and
identify µ2(Λ

s)/µ2 with the group of partitions of {W1, . . . ,W6} into two subsets. Since ζK is
Galois-equivariant, the element ζK(Q) is identified with a partition fixed by the stabilizer of
the pair {Wi,Wj}. The element ζK(Q) is non-trivial because ζK is injective, so it follows that
ζK(Q) ∋ {Wi,Wj} and thus ζK(Q) = ǫK(Q). We conclude that ζK coincides with ǫK on the
generic point Spec(K). Therefore, the analogous homomorphisms coincide on a Zariski dense
open set of the space of polynomials over k. By continuity, ζk and ǫ coincide as well.

We conclude that in (Ls \ {0})/ks∗ we have ξD+S = ǫ(S) · ξD for all S ∈ J [2](ks) and all D in
a dense open subset of J . Take any a ∈ M . For a = ±1 the statement is trivial, so we assume
a 6= ±1 and set P = β(a), so P 6= 0. The image of a in µ2(L

s)/µ2 is ǫ(β(a)) = ǫ(P ), so identifying
P(Ls) with (Ls \ {0})/ks∗, we find

rJ(TP (D)) = ξD+P = ǫ(P )ξD = a · ξD = ma(ξD) = ma(rJ (D))

in (Ls \ {0})/ks∗ for all D ∈ J . Hence the automorphism of V1 induced by the action of TP on J

is induced by m̂a ∈ Aut L̂s. Since rJ is the composition of the rational quotient map J 99K Y and
the isomorphism rY : Y → V1, conjugation by rY and r∗Y concludes the proof. �

Recall that L(2(Θ+ + Θ−) −
∑

P FP ) and Sym2 L(Θ+ + Θ−) can be viewed as subspaces of
L(2(Θ+ + Θ−)) (Propositions 3.2 and 3.6 and Remark 3.4) and we have

(14) L(2(Θ+ + Θ−)) ∼= L
(

2(Θ+ + Θ−) −
∑

P

FP
)

⊕ Sym2 L(Θ+ + Θ−).

For convenience, we abbreviate L(2(Θ+ + Θ−)) by L from now on. Let ρ : M → SL(L) be the
representation ρ = ρ6 ⊕ ρ10.

Proposition 5.11. For all m ∈M the automorphism ρ(m) of L induces the automorphism Tβ(m)

on J ⊂ P15.

Proof. First we show that there is a function χ : M → ks∗ such that for all m ∈ M the automor-
phism ρ6(m) ⊕ χ(m) · ρ10(m) of L(2(Θ+ + Θ−)) induces the automorphism Tβ(m) on J ⊂ P15.
For m = ±1 we have β(m) = 0 ∈ J [2](ks), while ρ6(m) = m · Id and ρ10(m) = m · Id, so we
set χ(±1) = 1. Assume m 6= ±1. The action of TP on J is linear, so it is induced by a linear
automorphism T of L(2(Θ+ + Θ−)). Since multiplication by −1 on J commutes with translation
by two-torsion points, the induced action of T ∗

P on the function field sends even functions to even
functions and odd functions to odd functions. We conclude that T induces linear transformations
of the subspace Sym2 L(Θ+ +Θ−) of even functions and of the subspace L(2(Θ+ +Θ−)−

∑

P FP )
of odd functions. These linear transformations induce the action of TP on X ⊂ P9 and Y ⊂ P5
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respectively, so up to constants they coincide with ρ10(m) and ρ6(m) respectively by Proposi-
tions 5.5 and 5.10. We conclude that there are c, d ∈ ks∗ such that T = d · ρ6(m) ⊕ c · ρ10(m).
After rescaling T we may assume d = 1, so there is a c such that T = ρ6(m)⊕c·ρ10(m) induces TP .
Set χ(m) = c; this shows the existence of the function χ as claimed. Note that for all m,m′ ∈M ,
both

(ρ6(m) ⊕ χ(m)ρ10(m)) · (ρ6(m
′) ⊕ χ(m′)ρ10(m

′)) = ρ6(mm
′) ⊕ χ(m)χ(m′)ρ10(mm

′)

and ρ6(mm
′) ⊕ χ(mm′)ρ10(mm

′) induce Tβ(mm′). It follows that we have χ(m)χ(m′) = χ(mm′),
so χ is a representation. Since χ is 1-dimensional, it corresponds to an element of Hom(M,µ2) ∼=
µ2(L

s)/µ2.
Set τ = ρ6 ⊕ (χ · ρ10), so that for each m ∈ M the automorphism Tβ(m) on J is induced

by τ(m). Note that ρ6 and ρ10 are Gal(k(Ω)/k)-equivariant. For each σ ∈ Gal(k(Ω)/k) and
m ∈ M the automorphism σ(Tβ(m)) = Tβ(σ(m)) is induced by both σ(τ(m)) and τ(σ(m)), so τ is
also Gal(k(Ω)/k)-equivariant, and therefore χ is as well. If Gal(k(Ω)/k) is isomorphic to the full
permutation group S6, then this implies that χ is constant, and thus trivial. As in the proof of
Proposition 5.10, this is the case at the generic point of the space of polynomials over k of degree
6, therefore on a Zariski dense open subset of this space, and thus, by continuity, on the entire
space. It follows that we have τ = ρ and we are done. �

Since M is abelian of exponent 2, its only irreducible representations are characters into µ2. We
have already seen in Section 2 that the character group Hom(M,µ2) is isomorphic to µ2(L

s)/µ2.
Therefore, over ks the representation ρ is the direct sum of 16 characters, corresponding to elements
in µ2(L

s)/µ2. In characteristic 0, standard computations allow us to decide which characters
exactly. In positive characteristic the same works, as long as we lift the characters to modular
characters in characteristic 0, cf. [23, Chapter 18].

Proposition 5.12. The representation ρ : M → SL(L) is the direct sum of all characters of M
that are not contained in ǫ(J [2](ks)), i.e., of all characters corresponding to the partitions of Ω
into two parts of odd size. The subrepresentation ρ6 is the direct sum of characters corresponding
to partitions where one part consists of a single element. The subrepresentation ρ10 is the direct
sum of characters corresponding to partitions into two parts of size 3.

Proof. For any m ∈ M with m 6= ±1, the characteristic polynomial of ρ10(m) equals (λ −
α(m))6(λ + α(m))4 by Proposition 5.4. We find that the character χ10, in case of character-
istic 0, or the modular character χ10 associated to ρ as in [23, Chapter 18], in case of positive
characteristic, is given by

χ10(m) =

{

10α(m) if m = ±1,
2α(m) if m 6= ±1.

Let τ be the direct sum of all ten characters of M in µ2(L
s)/µ2 that are associated to partitions of

Ω into two parts of size 3. The (modular) character associated to τ is equal to χ10. In characteristic
0, a representation of a finite group is determined up to isomorphism by its character, so we find
that ρ and τ are isomorphic. In characteristic p > 0, a semisimple representation of a finite group
whose order is not a multiple of p is determined up to isomorphism by its modular character by
Brauer’s Theorem (see [23, Section 18.2, Theorem 42, Corollary 1]). The representation ρ10 is
semisimple because M is a finite 2-group and the characteristic of k is different from 2, so we
conclude that ρ10 and τ are isomorphic in positive characteristic as well. Similarly, the (modular)
character χ6 associated to ρ6 is given by

χ6(m) =

{

6α(m) if m = ±1,
−2α(m) if m 6= ±1,

from which we deduce that ρ6 is isomorphic to the direct sum of characters of M corresponding
to partitions where one part consists of a single element. From ρ = ρ6 ⊕ ρ10 we conclude that ρ
is isomorphic to the direct sum of all characters corresponding to partitions into two odd parts.
These are exactly the characters of M that are not contained in ǫ(J [2](ks)). �
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Remark 5.13. The argument for characteristic 0 in the proof of the statement of Proposition 5.12
about ρ10 is from Michael Stoll [27, Section 4]. Michael Stoll deduces the result for positive char-
acteristic from an explicit computation that we also perform in the next section.

6. Diagonalizing the action by the two-torsion subgroup

By Proposition 5.12, the representation ρ : M →֒ SL(L) is the direct sum of all characters of
M that are not contained in ǫ(J [2](ks)), i.e., the characters χ with χ(−1) = −1. These characters
correspond to partitions of Ω into two parts of odd size. Generically there are two Galois orbits,
one consisting of ten partitions into parts of size 3, and one of six partitions of which one part
contains only a single element. In this section we find an explicit Galois-invariant basis for L with
each basis element corresponding to a character of M , so that the action of M on L is diagonal
with respect to this basis.

Note that Sym(L) is the homogeneous coordinate ring of P(L̂). For any nonnegative integer

d, the vector space Symd L is generated by all elements g1 ∗ g2 ∗ · · · ∗ gd with g1, g2, . . . , gd ∈ L
(for notation see the comment before Remark 3.4). The action of [−1]∗ on L, mapping g(x) to
g(−x), induces an action on Sym(L) and we call g ∈ Sym(L) even or odd if [−1]∗ fixes or negates
g respectively.

For each character χ ∈ µ2(L
s)/µ2 of M with χ(−1) = −1, choose a function cχ ∈ L so that

ρ coincides on the space generated by cχ with the character χ. Until we make explicit choices,
in Definitions 6.10 and 6.12, we state some results that do not depend on these choices. By
Proposition 5.12 such cχ exist, are well defined up to a scalar, and form a basis of L. If π is the
partition of Ω into two parts of odd size corresponding to χ, then we also write cπ = cχ. We endow
the coordinate ring Sym(L) with a µ2(L

s)/µ2-grading where the weight of cχ is χ. The grading
does not depend on the choice of the cχ. For χ ∈ µ2(L

s)/µ2, we let (Sym(L))χ denote the subspace

of homogeneous elements of weight χ; for any positive integer d, we set L
(d)
χ = (Sym(L))χ∩Symd L,

and we let L
(d)
χ,+ and L

(d)
χ,− denote the subspaces of L

(d)
χ of even and odd elements respectively.

Proposition 6.1. For any χ ∈ µ2(L
s)/µ2 and any nonnegative integer d we have decompositions

L
(d)
χ

∼= L
(d)
χ,+ ⊕ L

(d)
χ,− and

Symd L ∼=
⊕

χ∈µ2(Ls)/µ2

L(d)
χ

∼=
⊕

χ∈µ2(Ls)/µ2

(

L
(d)
χ,+ ⊕ L

(d)
χ,−

)

.

Proof. The monomials of degree d in {cχ}χ∈µ2(Ls)/µ2
form an unordered basis of Symd L as a

k-vector space. By Proposition 5.12 these monomials are eigenfunctions for [−1]∗. It is also clear
that all these monomials are homogeneous with respect to the grading by µ2(L

s)/µ2, so the various
decompositions follow. �

Proposition 6.2. For any χ ∈ µ2(L
s)/µ2 and any nonnegative integer d, the representation

Symd ρ : M → GL(Symd L) acts as multiplication by χ on the subspace L
(d)
χ ⊂ Symd L, i.e., for

each m ∈M and each x ∈ L
(d)
χ we have (Symd ρ)(m)(x) = χ(m) · x.

Proof. By definition, the space L
(d)
χ is generated by elements g = g1 ∗ g2 ∗ · · · ∗ gd with gi of degree

χi for some χi ∈ µ2(L
s)/µ2 and

∏d
i=1 χi = χ. For any m ∈M we then have

(Symd ρ)(m)(g) = ρ(m)(g1) ∗ · · · ∗ ρ(m)(gd) = χ1(m)g1 ∗ · · · ∗ χd(m)gd

= (χ1(m) · · ·χd(m)) · (g1 ∗ · · · ∗ gd) = χ(m) · g.

It follows that we have (Symd ρ)(m)(x) = χ(m) · x, for all x ∈ L
(d)
χ and m ∈M . �

Proposition 6.3. The representation Sym2 ρ : M → GL(Sym2 L) has kernel µ2 and induces a
representation from the quotient M/µ2

∼= J [2](ks) to SL(Sym2 L).

Proof. For any m 6= ±1 the characteristic polynomial of ρ(m) equals (λ2−1)8 by Propositions 5.4
and 5.9. It follows that Sym2 ρ(m) has 64 of its eigenvalues equal to −1 and 72 of them equal to 1, so
det Sym2 ρ(m) = 1 and we find Sym2 ρ(m) ∈ SL(Sym2 L). By Proposition 5.12, the representation
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ρ is the direct sum of characters χ of M not contained in ǫ(J [2](ks)). For any two such characters
χ1, χ2 we have (χ1⊗χ2)(−1) = χ1(−1)·χ2(−1) = (−1)2 = 1. This implies (ρ⊗ρ)(−1) = Id, so µ2 is
contained in the kernel of ρ⊗ρ : M → L⊗L and therefore also in the kernel of the subrepresentation
Sym2 ρ. Therefore, Sym2 ρ induces a representation ρ(2) : J [2](ks) → SL(Sym2 L). �

Definition 6.4. Let ρ(2) denote the representation J [2](ks) → SL(Sym2 L) induced by Sym2 ρ.

Definition 6.5. For P ∈ J [2](ks) we set L
(2)
P = L

(2)
ǫ(P ) and L

(2)
P,± = L

(2)
ǫ(P ),± with ǫ as in Section 2.

Recall that J [2](ks) is self-dual through the perfect pairing J [2](ks) × J [2](ks) → µ2 described
in Section 2, which coincides with the Weil pairing. For each P ∈ J [2](ks), let χP : J [2](ks) → µ2

denote the corresponding character.

Proposition 6.6. For P ∈ J [2](ks), the representation ρ(2) : J [2](ks) → SL(Sym2 L) acts as

multiplication by χP on the subspace L
(2)
P ⊂ Sym2 L, i.e., for each R ∈ J [2](ks) and each x ∈ L

(2)
P

we have ρ(2)(R)(x) = χP (R) · x.

Proof. The representations Sym2 ρ : M → GL(Sym2 L) and ρ(2) : J [2](ks) → SL(Sym2 L) are re-
lated by Sym2 ρ = ρ(2) ◦ β according to Proposition 6.3, with β : M → J [2](ks) as in Section 2.

Take P ∈ J [2](ks). The character ǫ(P ) ∈ µ2(L
s)/µ2 of M equals χP ◦ β. For any g ∈ L

(2)
P and

any R ∈ J [2](ks) we choose m ∈M such that β(m) = R and we find

ρ(2)(R)(x) = ρ(2)(β(m))(x) = (Sym2 ρ)(m)(x) = (ǫ(P ))(m) · x = χP (β(m)) · x = χP (R) · x.

This proves the proposition. �

Proposition 6.7. The spaces L
(2)
P,± are ρ(2)-invariant and we have

Sym2 L ∼=
⊕

P∈J[2]

(

L
(2)
P,+ ⊕ L

(2)
P,−

)

.

We have dimL
(2)
o,+ = 16, dimL

(2)
o,− = 0 and dimL

(2)
P,+ = dimL

(2)
P,− = 4 for nonzero P ∈ J [2].

Furthermore, L
(2)
o,+ is generated by {cπ ∗ cπ}π. For nonzero P ∈ J [2](ks), corresponding to the pair

{ω1, ω2}, the spaces L
(2)
P,+ and L

(2)
P,− are generated by

{cω1
∗ cω2

} ∪ {cθ1θ2ω1
∗ cθ1θ2ω2

: θ1, θ2 ∈ Ω \ {ω1, ω2}, θ1 6= θ2}

and
{cθ ∗ cω1ω2θ : θ ∈ Ω \ {ω1, ω2}}

respectively, where in the subscript of cπ the partition π is abbreviated by the list of elements in
one of the two parts.

Proof. The spaces L
(2)
P,± are ρ(2)-invariant by Proposition 6.6. The µ2(L

s)/µ2-grading on Sym(L)

takes values on L that are all outside ǫ(J [2](ks)). The product of any two such elements is

contained in ǫ(J [2](ks)), so for any χ ∈ µ2(L
s)/µ2 with χ 6∈ ǫ(J [2](ks)) we have L

(2)
χ = 0. From

Proposition 6.1 we conclude

Sym2 L ∼=
⊕

χ∈ǫ(J[2](ks))

L(2)
χ =

⊕

P∈J[2](ks)

L
(2)
P

∼=
⊕

P∈J[2](ks)

(

L
(2)
P,+ ⊕ L

(2)
P,−

)

.

We identify µ2(L
s)/µ2 with the group of partitions of Ω into two parts, and J [2](ks) with the

subgroup of partitions into parts of even size. For any partitions π, π′ into odd parts the weight
in µ2(L

s)/µ2 of the monomial cπ ∗ cπ′ is the weight associated to the partition π · π′, where the
multiplication π · π′ is induced by the multiplication in the group Ξ of subsets of Ω, namely by

taking symmetric differences. It follows that indeed cπ ∗ cπ is contained in L
(2)
o,+ for each π. For

nonzero P corresponding to the pair {ω1, ω2} it also follows that the elements that are claimed

to generate L
(2)
P,+ and L

(2)
P,− are indeed contained in L

(2)
P . The fact that their parity is as claimed

follows from Proposition 5.12 which says that cπ is even if π has two parts of size 3 and odd if
one part of π consists of a single element. It follows that the claimed dimensions are at least a
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lower bound for the dimensions. As the dimensions have to add up to 136, we find that the lower
bounds are exact and that the spaces are indeed generated as claimed. �

Note that Sym(L) is the homogeneous coordinate ring of P(L̂). The ideal I ⊂ Sym(L) of J is
generated by 72 quadratic forms described in Section 3. Set I = I2 = I ∩ Sym2 L, so that I is the
72-dimensional subspace of Sym2 L of quadratic forms that vanish on J . In other words, I is the
kernel of the map Sym2 L → L(4(Θ+ +Θ−)) that sends g∗h to gh. Note that I is a ρ(2)(J [2](ks))-

invariant subspace of Sym2 L because J ⊂ P15 is J [2](ks)-invariant. Set IP,± = I ∩ L
(2)
P,± for any

point P ∈ J [2](ks) and every sign.

Proposition 6.8. The spaces IP,± are ρ(2)-invariant and we have

I ∼=
⊕

P∈J[2]

(IP,+ ⊕ IP,−) .

We have dim Io,+ = 12, dim Io,− = 0 and dim IP,+ = dim IP,− = 2 for nonzero P ∈ J [2]. The

representation ρ(2) induces a representation σ : J [2](ks) → SL(I).

Proof. The spaces IP,± = I ∩L
(2)
P,± are ρ(2)-invariant because I and the spaces L

(2)
P,± are. For any

g ∈ I ⊂ Sym2 L we can write g =
∑

P∈J[2](gP,+ +gP,−) with gP,± ∈ L
(2)
P,±. Set gP = gP,+ +gP,− ∈

L
(2)
P . Take any Q ∈ J [2](ks). Then we have

∑

R∈kerχQ

ρ(2)(R)(g) −
∑

R 6∈kerχQ

ρ(2)(R)(g)

=
∑

R∈kerχQ

∑

P∈J[2]

ρ(2)(R)(gP ) −
∑

R 6∈kerχQ

∑

P∈J[2]

ρ(2)(R)(gP )

=
∑

P∈J[2]





∑

R∈kerχQ

χP (R)gP −
∑

R 6∈kerχQ

χP (R)gP





=
∑

P∈J[2]





∑

R∈J[2]

χQ(R)χP (R)



 gP =
∑

P∈J[2]





∑

R∈J[2]

χP+Q(R)



 gP = 16gQ,

where the last identity follows from the fact that for any P 6= Q the character χP+Q is nontrivial,

so we have
∑

R∈J[2] χP+Q(R) = 0 (see [22, Section VI.1, Proposition 4]). Since I is ρ(2)-invariant,

we conclude gQ ∈ I. As we have gQ,±(x) = 1
2 (gQ(x) ± gQ(−x)), we find gQ,±(x) ∈ I, and thus

gQ,±(x) ∈ IQ,±. This holds for all Q, so we get
∑

Q∈J[2] (IQ,+ + IQ,−) = I. Since all subspaces in

this sum intersect trivially, the sum is a direct sum, which proves the first statement. In Section 3
we saw that the subspace of odd vanishing quadratic forms has dimension 30. This means that
∑

P∈J[2] dim IP,− = 30. From dim Io,− = 0 and symmetry we conclude dim IP,− = 2 for nonzero

P ∈ J [2]. Set a = dim Io,+ and b = dim IP,+ for any nonzero P ∈ J [2]. Then by symmetry we
have b = dim IP,+ for all nonzero P ∈ J [2]. We get a + 15b =

∑

P∈J[2] dim IP,+ = 72 − 30 = 42.

From a, b ≥ 0 and a ≤ dimL
(2)
o,+ = 16, we find a = 12 and b = 2. For any P,Q ∈ J [2](ks) and any

sign, the eigenvalues of ρ(2)(Q) on IP,± are all the same and in µ2; because the dimension dim IP,±
is even, the determinant of ρ(2)(Q) restricted to IP,± equals 1. It follows that det ρ(2)(Q) = 1 for

all Q ∈ J [2](ks) so ρ(2)(Q) ∈ SL(I). �

Corollary 6.9. The ideal I ⊂ Sym(L) of J is homogeneous with respect to the µ2(L
s)/µ2-grading.

Proof. From Proposition 6.8 it follows that I can be generated by homogeneous elements. Since
I generates I, it follows that also the ideal I can be generated by homogeneous elements, which
proves that I is homogeneous. �

We are now ready to make everything explicit, including the choices of the cπ. However, instead
of choosing a function cπ ∈ L for each partition of Ω into two parts of odd size as in Proposition 6.7,
we choose a function cI for each subset I ⊂ Ω of size 1 or 3 such that cI = −cΩ\I if I has size 3.
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To obtain an explicit function cπ for each partition π = {π1, π2} one could choose a part πi with
#πi ∈ {1, 3} and set cπ = cπi

. As in Proposition 6.7, we often abbreviate the set I in the index
by the list of its elements.

Definition 6.10. For all ω ∈ Ω define an element cω ∈ L(2(Θ+ + Θ−)) so that for all j ∈
{1, . . . , 6} the relation bj =

∑

ω ω
j−1cω holds.

Note that {cω}ω is an unordered basis for L(2(Θ+ + Θ−) −
∑

P FP ), as the transformation
matrix from it, with any order, to the basis (b1, . . . , b6) is a Vandermonde matrix with nonzero
determinant.

Lemma 6.11. We have r∗Y(ϕω) = f6cω for the isomorphism r∗Y : k(V1) → k(Y) induced by rY .

Proof. The polynomial Pω =
∏

θ∈Ω\{ω}(X − θ) from Section 4 satisfies

f6Pω =
f(X) − f(ω)

X − ω
=

6
∑

j=0

fj
Xj − ωj

X − ω
=

6
∑

j=0

j
∑

i=1

fjω
i−1Xj−i =

6
∑

i=1

ωi−1gi.

This relation between the unordered basis {P}ω of Ls and the basis (g1, . . . , g6) induces a relation

between their dual bases of L̂s, namely f6bj =
∑

ω ω
j−1ϕω. Applying r∗Y , we obtain f6vj =

f6r
∗
Y(bj) =

∑

ω ω
j−1r∗Y(ϕω). From the definition of cω we conclude r∗Y(ϕω) = cω. �

The following functions, up to a constant factor, were also used by Michael Stoll [27, Section 10].

Definition 6.12. For any subset I ⊂ Ω with #I = 3, let cI be defined by

4





∏

ω∈I

∏

ψ∈Ω\I

(ψ − ω)



 · cI =
∑

1≤i≤j≤4

λij(I)kij

with

λ11 = σ2σ3τ1τ2 + (4σ1σ3 − σ2
2)τ1τ3 − σ1σ3τ

2
2 + (σ1σ2 − σ3)τ2τ3 + σ2

3τ2 + σ2τ
2
3 − σ2σ3τ3,

λ12 = −4σ3τ1τ3 + 2σ3τ
2
2 − 2σ2τ2τ3 − 2σ2σ3τ2 + (−4σ1σ3 + 2σ2

2)τ3,

λ13 = 2σ2τ1τ3 + 2σ2σ3τ1 + 2σ1τ2τ3 + 2σ1σ3τ2 − 2τ2
3 + 4σ3τ3 − 2σ2

3 ,

λ14 = 2f−1
6 (σ3τ1 + σ1τ3),

λ22 = −σ3τ1τ2 + σ2τ1τ3 + σ1σ3τ2 + (−σ1σ2 + 4σ3)τ3,

λ23 = 2σ3τ
2
1 − 2σ1τ1τ3 − 2σ1σ3τ1 − 4σ3τ2 + (2σ2

1 − 4σ2)τ3,

λ24 = −2f−1
6 (τ3 + σ3),

λ33 = −σ2τ
2
1 + σ1τ1τ2 + τ1τ3 + (σ1σ2 − σ3)τ1 + (−σ2

1 + 4σ2)τ2 − σ1τ3 + σ1σ3,

λ34 = 2f−1
6 (τ2 + σ2),

λ44 = f−2
6 ,

where σi = σi(I) and τi = τi(I) are the i-th elementary symmetric polynomials in the elements of
I and Ω \ I respectively.

Note that for all i, j ∈ {1, 2, 3, 4} with i ≤ j and all I ⊂ Ω with #I = 3 we have λij(I) =
λij(Ω \ I), while the coefficient

∏

ω∈I

∏

ψ∈Ω\I(ψ − ω) of cI in Definition 6.12 is negated when we

replace I by Ω \ I. We conclude that cI + cΩ\I = 0 for all I. The cI generate Sym2 L(Θ+ + Θ−).
More precisely, we have the following statement.
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Proposition 6.13. For all i, j with 1 ≤ i ≤ j ≤ 4 we have kij =
∑

I κij(I)cI with

κ11 = σ1,

κ12 = σ2,

κ13 = σ3,

κ14 = f6
(

σ1τ1τ3 + 2σ2τ3 + σ3τ
2
1

)

,

κ22 = σ2τ1 + σ3,

κ23 = σ3τ1,

κ24 = f6
(

σ1τ2τ3 + σ2τ1τ3 + σ2
3

)

,

κ33 = σ3τ2,

κ34 = f6
(

σ2
2τ3 + σ2τ2τ3 + 2σ3τ1τ3

)

,

κ44 = f2
6

(

σ2
1σ2τ2τ3 + 4σ2

1σ3τ1τ3 + σ1σ2σ3τ1τ2 + σ1σ2τ
2
3 + σ1σ

2
3τ2

+ σ1σ3τ1τ
2
2 + 3σ1σ3τ2τ3 + σ2

2τ
2
1 τ3 + 4σ2σ3τ

2
2 + 4σ2

3τ3 + σ3τ1τ2τ3
)

,

where σi = σi(I) and τi = τi(I) are as in Definition 6.12.

Proof. Choose 10 subsets I1, . . . , I10 ⊂ Ω with #Ir = 3 for all r, so that every partition of Ω in
two parts of size 3 contains one of I1, . . . , I10. Let G be the matrix whose r-th row is

1

4





∏

ω∈Ir

∏

ψ∈Ω\Ir

(ψ − ω)−1



 · ( λ11(Ir) λ12(Ir) λ13(Ir) · · · λ44(Ir) ) ,

that is, the entries of G in the r-th row are the coefficients of cIr
with respect to the basis

(k11, k12, . . . , k44). Then the r-th column of G−1 is










κ11(Ir) − κ11(Ω \ Ir)
κ12(Ir) − κ12(Ω \ Ir)

...
κ44(Ir) − κ44(Ω \ Ir)











and its rows give the coefficients of the kij in terms of the basis (cI1 , . . . , cI10). We therefore have

kij =
∑10
r=1(κij(Ir) − κij(Ω \ Ir))cIr

=
∑

I κij(I)cI , where the last sum is over all subset I ⊂ Ω
with #I = 3. �

For any set I ⊂ Ω we let χI ∈ µ2(L
s)/µ2 be the character of M associated to the partition

π = {I,Ω \ I}. If #I is even, then µ2 is contained in the kernel of χI and the induced character of
J [2](ks) equals χP where e(P ) = π and χP is defined just before Proposition 6.6. Recall that Ξ is
the group of all subsets of Ω. For any set R ⊂ Ξ of representatives of all partitions of Ω into two
parts of size 3, the set {cI : I ∈ R} is an unordered basis for Sym2 L(Θ+ + Θ−); the following
proposition says that, with respect to the unordered basis {cI : I ∈ R}∪{cω : ω ∈ Ω} of L, the
representation ρ is diagonal.

Proposition 6.14. Let I ⊂ Ω be a subset of size 1 or 3. Then for each a ∈M we have ρ(a)(cI) =
χI(a)cI .

Proof. For a = ±1 the action of ρ(a) on L is given by multiplication by ±1, so the statement is
trivial. Suppose that a 6= ±1. First assume I = {ω} for some ω ∈ Ω so that cI = cω = f−1

6 r∗Y(ϕω)
by Proposition 6.11. Then we have

ρ(a)(cI) = ρ6(a)(cI) = (r∗Y ◦ m̂a ◦ (r∗Y)−1)(cI) = f−1
6 r∗Y(m̂a(ϕω))

= f−1
6 ϕω(a)r∗Y(ϕω) = ϕω(a)cI = χI(a)cI .

Now assume #I = 3. Recall that we have a perfect pairing Ξ × Ξ → µ2 on the group Ξ of
all subsets of Ω given by (I1, I2) 7→ (I1 : I2) = (−1)r with r = #(I1 ∩ I2), and that the map
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e : M → M ⊂ Ξ associates to each m ∈M a subset of Ω of even size. We have χI(a) = (e(a) : I).
Let vI denote the vector

vI = ( λ11(Ir) λ12(Ir) λ13(Ir) · · · λ44(Ir) )

with λij as in Definition 6.12. Set P = β(a) 6= 0 and let {ω1, ω2} be the pair of roots defining P ,
so that Ω \ {ω1, ω2} = e(α(a) · a). With a computer algebra system it is easy to check that vI is

an eigenvector on the left of the symmetric square M
(2)
P of the matrix MP as in Proposition 5.1.

In fact, for M ′ = Res(g, h)−1M
(2)
P with g, h as in Proposition 5.1 as well, we have

vI ·M
′ = (Ω \ {ω1, ω2} : I) · vI = (e(α(a) · a) : I) · vI = α(a)(e(a) : I) · vI = α(a)χI(a) · vI .

Since the action of T4,P is given by multiplication from the right by MP by Proposition 5.1, the
action of T10,P is given by multiplication by M ′ from the right. Up to a scalar, the entries of
vI are the coefficients of cI with respect to the basis (k11, k12, . . . , k44), so we find T10,P (cI) =
α(a)χI(a) · cI . We therefore get ρ(a)(cI) = ρ10(a)(cI) = α(a)T10,P (cI) = χI(a) · cI . �

For each P ∈ J [2](ks) and each sign we now give quadratic forms that generate the subspace

L
(2)
P,±. All together these generate the ideal defining J in P(L̂). The reason for defining functions

cI for each I ⊂ Ω of size 3 with cI = −cΩ\I , rather than defining a function for each partition into
two parts of size 3, is that the quadratic forms are simpler if written in terms of the cI . For each
quadratic form we make choices whether to use cI or cΩ\I for several I. It is worth checking that
the quadratic forms obtained from different choices generate the same subspace.

Take any nonzero P ∈ J [2](ks), corresponding to the pair {ω1, ω2}. Then L
(2)
P,− is generated by

the monomials cθ ∗ cω1ω2θ for θ 6∈ {ω1, ω2} by Proposition 6.7. From the discussion around (6) in
Section 3 we know that for each l ∈ {0, 1} the quadratic form Q4,l = k11b3+l − k12b2+l + k13b1+l

is contained in I ⊂ I. By Proposition 6.8, the projection of Q4,l to L
(2)
P,− is also contained in I.

From bj =
∑

ω ω
j−1cω and k1j =

∑

I σj(I)cI for 1 ≤ j ≤ 3, we find that this projection equals

∑

θ 6=ω1,ω2

(

3
∑

n=1

(σn({θ, ω1, ω2}) − τn({θ, ω1, ω2}))θ
3+l−n

)

cθ ∗ cω1ω2θ

=
∑

θ 6=ω1,ω2



θl
∏

ψ 6=θ,ω1,ω2

(θ − ψ)



 cθ ∗ cω1ω2θ.(15)

By Proposition 6.8 we have dim IP,− = 2, so the quadratic forms in (15) for l = 0, 1 generate IP,−.

By Proposition 6.7 the space L
(2)
P,+ is generated by the monomials cω1

∗ cω2
and cθ1θ2ω1

∗ cθ1θ2ω2

for θ1, θ2 6= ω1, ω2 and θ1 6= θ2. The projection of 1
2 (k2

12 − k11k22) ∈ I to L
(2)
P,+ equals

(16)
∑

π={{θ1,θ2},{ψ1,ψ2}}

ν(π) · cθ1θ2ω1
∗ cθ1θ2ω2

,

where the sum ranges over all three partitions of Ω \ {ω1, ω2} into two sets of cardinality 2 and
ν(π) = (θ1 −ψ1)(θ1 −ψ2)(θ2 −ψ1)(θ2 −ψ2) for π = {{θ1, θ2}, {ψ1, ψ2}}. From Proposition 6.8 we
conclude that the quadratic form (16) is contained in IP,+. Write f = gh with g = X2+g1X+g0 =
(X−ω1)(X−ω2) and h = h4X

4 +h3X
3 +h2X

2 +h1X+h0, and set λ = 2h2 +h3g1−g
2
1 +2g0. Let

Q denote the right-hand side of the first equation in (7). Then we have 1
4

(

2(b21 −Q) + f6λ(k2
12 −

k11k22)
)

∈ I. The projection of this quadratic form to L
(2)
P,+ equals

cω1
∗ cω2

+ f6 ·
∑

π={{θ1,θ2},{ψ1,ψ2}}

ν(π)(θ1 + θ2)(ψ1 + ψ2) · cθ1θ2ω1
∗ cθ1θ2ω2

.(17)

By Proposition 6.8 this projection is contained in IP,+. Again by Proposition 6.8 we have
dim IP,+ = 2, so the quadratic forms in (16) and (17) generate IP,+.
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For I0,+ we do not have generators that are as simple as those in (15), (16), and (17). The
only simple quadratic forms in I0,+ that we know are

∑

ω

ωjλωc
2
ω(18)

for j = 0, 1, 2. By Lemma 6.11 these correspond to Q
(1)
j in Proposition 4.6. Six quadratic forms

that give a basis for I0,+ ∩ Sym2 L(Θ+ + Θ−) are the projections to L
(2)
0,+ of the quadratic forms

k2
12 − k11k22, k12k13 − k11k23, k

2
13 − k11k33, k13k23 − k12k33, k

2
23 − k22k33, and the quadric gX

in (5) that defines the model of X inside the 2-uple embedding of P3 into P9. The first five of
these quadrics together with the 15 quadrics (16) for all nonzero P ∈ J [2](ks) define the 2-uple
embedding of P3 into P9. The whole subspace I0,+ is generated by these nine quadrics and the

projections to L
(2)
0,+ of the differences of the left- and right-hand side of the equations in (7). This

concludes the description of generators for all subspaces IP,±. Explicit formulas are given in
Appendix A.

7. The twists of the Jacobian

Let ξ ∈ H1(J [2]) be contained in the kernel P 1(J [2]) of the map Υ: H1(J [2]) → Br(k)[2] as
defined in Section 2. In this section we determine explicitly a two-covering A of J whose k-
isomorphism class corresponds to ξ. The kernel of Υ equals the image of the map β∗ : H1(M) →
H1(J [2]) by the exactness of the left vertical sequence in Diagram (2). Let ξ ∈ H1(M) be a lift of
ξ under β∗. By Proposition 2.6 there are elements ε ∈ Ls, δ ∈ L∗ and n ∈ k∗ such that ε2 = δ,
NLs/ks(ε) = n, and the class ξ is represented by the cocycle σ 7→ σ(ε)/ε. For all ω ∈ Ω we write

εω = ϕω(ε) and δω = ϕω(δ), so that ε2ω = δω and
∏

ω εω = n. For any subset I ⊂ Ω of cardinality
1 or 3, set

tI =

{

εω if #I = 1,
∏

ω∈I εω +
∏

ω∈Ω\I εω if #I = 3.

We assume that for all I ⊂ Ω with #I = 3 we have that tI is non-zero; if the field k is infinite,
then it is easy to see that this can be achieved by choosing carefully ε, δ and n representing the
class ξ. Let g : P(L̂) → P(L̂) be the linear automorphism induced by the linear map g∗ : L → L
given by cI 7→ tI · cI . Note that the action on L is well defined, as tI = tΩ\I for any I ⊂ Ω with
#I = 3. Even in the case ε = δ = n = 1 the automorphism g is not the identity, though this can
be arranged by replacing tI by 1

2 tI for I with #I = 3 throughout the rest of the paper. For each
positive integer d, the automorphism g∗ extends naturally to an automorphism of the ks-vector
space Symd L, which we also denote by g∗. Note that g∗ preserves the µ2(L

s)/µ2-grading. Recall
that for any subset I ⊂ Ω we have a character χI ∈ µ2(L

s)/µ2 defined just before Proposition 6.14.

Lemma 7.1. For any I ⊂ Ω and any Galois automorphism σ ∈ Gal(ks/k) we have
∏

ω∈I

εσ(ω) = χσ(I)

(

σ(ε)/ε
)

· σ
(

∏

ω∈I

εω

)

.

If I has cardinality 1 or 3, then we have

tσ(I) = χσ(I)

(

σ(ε)/ε
)

· σ(tI),

σ(g∗(cI)) = χσ(I)

(

σ(ε)/ε
)

· g∗(σ(cI)).

Proof. Let m = σ(ε)/ε and I0 = {ω ∈ Ω : εσ(ω) = −σ(εω)} = σ−1(e(m)) and set r = #(I ∩ I0).

Thus we have χσ(I)(m) = (σ(I) : e(m)) = (I : σ−1(e(m))) = (I : I0) = (−1)r and similarly

χΩ\σ(I)(m) = (−1)6−r = (−1)r. By definition of I0 we have
∏

ω∈I

εσ(ω) = (−1)r
∏

ω∈I

σ(εω) = χσ(I)(m) · σ
(

∏

ω∈I

εω

)

,

and the first part of the lemma is proved. The second equality follows immediately from the
definition of tI . We then have σ(g∗(cI)) = σ(tI)σ(cI) = χσ(I)(m)tσ(I)cσ(I) = χσ(I)(m)g∗(σ(cI)),
which proves the last equality. �
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Let Aξ be the surface g−1(J) where J is embedded in P(L̂) as before. Then g restricts to an
isomorphism Aξ → J , defined over ks, which we also denote by g. Note that Aξ depends on the
choice of δ, n, and ε.

Proposition 7.2. The surface Aξ is defined over k.

Proof. Take any P ∈ J [2](ks) and set χ = ǫ(P ) ∈ µ2(L
s)/µ2. Let I1, I2 ⊂ Ω be subsets of odd

cardinality such that cI1 ∗ cI2 ∈ L
(2)
P = L

(2)
χ . For j = 1, 2, set χj = χIj

∈ µ2(L
s)/µ2, so that cIj

has weight χj and cI1 ∗ cI2 has weight χ1χ2 = χ. Set m = σ(ε)/ε. Let σ ∈ Gal(ks/k) be any
Galois automorphism. From Lemma 7.1 we find

σ(g∗(cI1 ∗ cI2)) = σ(g∗(cI1)) ∗ σ(g∗(cI2))(19)

= σ(χ1)(m)g∗(σ(cI1)) ∗ σ(χ2)(m)g∗(σ(cI2)) = σ(χ)(m)g∗(σ(cI1 ∗ cI2)).

Since σ(χ)(m) only depends on σ and P , and L
(2)
P is generated by monomials by Proposition 6.1,

we find σ(g∗(q)) = σ(χ)(m) · g∗(σ(q)) = ±g∗(σ(q)) for each q ∈ L
(2)
P . Set E = {q : q ∈

IP for some P}. The set E generates the ideal I that defines the Jacobian J , so the set g∗(E)
generates the ideal that defines Aξ. Since J is defined over k, we have σ(E) = E from Proposi-
tion 6.8. We therefore have

g∗(E) = g∗(σ(E)) = {g∗(σ(q)) : q ∈ E} = {±σ(g∗(q)) : q ∈ E} = σ(g∗(E)).

We conclude that the ideal that defines Aξ, which is generated by g∗(E), is Galois invariant. By
descent this implies that Aξ is defined over k. �

We can make Proposition 7.2 explicit and give a Galois-invariant set of quadratic forms defining
Aξ, each defined over k(Ω). We have

t{ω1}t{ω2} = εω1
εω2

,

t{θ}t{θ,ω1,ω2} = εω1
εω2

(

δθ + nδ−1
ω1
δ−1
ω2

)

,

t{θ1,θ2,ω1}t{θ1,θ2,ω2} = εω1
εω2

(

δθ1δθ2 + δψ1
δψ2

+ n(δ−1
ω1

+ δ−1
ω2

)
)

,

t2{ω} = δω,

t2I =
∏

ω∈I

δω +
∏

ω∈Ω\I

δω + 2n (#I = 3),

where in the third identity ψ1 and ψ2 denote the two roots in Ω \ {ω1, ω2, θ1, θ2}. Note that n ∈ k
and for each ω we have δω ∈ k(Ω). This implies t2I ∈ k(Ω) for each I with #I ∈ {1, 3}. Since

L
(2)
0 is generated by square monomials cI ∗ cI , we find that g∗(q) is defined over k(Ω) for each

q ∈ I0 that is itself defined over k(Ω). As before it is not worth writing this down here for a set
of generators of I0 except for q as in (18), in which case we get

g∗(q) =
∑

ω

ωjλωδωc
2
ω.(20)

Suppose P ∈ J [2](ks) is nonzero and corresponds to the pair {ω1, ω2}. Then for each q ∈ L
(2)
P

defined over k(Ω) the quadratic form ε−1
ω1
ε−1
ω2
g∗(q) is defined over k(Ω). Applying this to (15),

(16), and (17), we find that the intersection of the ideal of Aξ with L
(2)
P is generated by

(21)
∑

θ 6=ω1,ω2



θl
∏

ψ 6=θ,ω1,ω2

(θ − ψ)





(

δθ + nδ−1
ω1
δ−1
ω2

)

· cθ ∗ cω1ω2θ (l = 0, 1),

(22)
∑

π={{θ1,θ2},{ψ1,ψ2}}

ν(π)
(

δθ1δθ2 + δψ1
δψ2

+ n(δ−1
ω1

+ δ−1
ω2

)
)

· cθ1θ2ω1
∗ cθ1θ2ω2

,
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cω1
∗ cω2

+(23)

f6 ·
∑

π={{θ1,θ2},{ψ1,ψ2}}

ν(π)(θ1 + θ2)(ψ1 + ψ2)
(

δθ1δθ2 + δψ1
δψ2

+ n(δ−1
ω1

+ δ−1
ω2

)
)

· cθ1θ2ω1
∗ cθ1θ2ω2

.

Proposition 7.3. For any Galois automorphism σ ∈ Gal(ks/k) there is a unique point P (σ) ∈
J [2](ks) such that g◦σ(g)−1 = TP (σ) in AutJ . The class ξ ∈ H1(J [2]) is represented by the cocycle
σ 7→ P (σ).

Proof. Set P (σ) = β(σ(ε)/ε) for all σ ∈ Gal(ks/k). By Proposition 2.6 the class ξ ∈ H1(M)
is represented by the cocycle σ 7→ σ(ε)/ε, so ξ ∈ H1(J [2]) is represented by the cocycle σ 7→
β(σ(ε)/ε) = P (σ). Fix any Galois automorphism σ ∈ Gal(ks/k) and set m = σ(ε)/ε. Then
β(m) = P (σ), so the translation TP (σ) on J ⊂ P15 is induced by the automorphism ρ(m) ∈ SL(L)
by Proposition 5.11. Take any subset I ⊂ Ω with #I ∈ {1, 3}. Then by Proposition 6.14 and
Lemma 7.1 we have

σ(g∗)(σ(cI)) = σ(g∗(cI)) = χσ(I)(m)g∗(σ(cI)) = g∗
(

χσ(I)(m)σ(cI)
)

= g∗
(

ρ(m)(σ(cI))
)

.

This holds for all I, so we get (g−1)∗ ◦ σ(g∗) = ρ(m). From m2 = 1 we get ρ(m) = ρ(m)−1, so we
have ρ(m) = σ(g−1)∗ ◦ g∗ and thus ρ(m) induces the automorphism g ◦σ(g−1) on J . We conclude
TP (σ) = g ◦σ(g−1). Clearly there is at most one point P such that TP = g ◦σ(g−1), so uniqueness
follows. �

Let π : Aξ → J denote the composition π = [2] ◦ g. We are now ready to prove our main result.

Theorem 7.4. The map π endows Aξ with the structure of a two-covering of J whose isomorphism
class corresponds to the cocycle class ξ.

Proof. Let σ ∈ Gal(ks/k) be any Galois automorphism. By Proposition 7.3 there is a unique point
P ∈ J [2](ks) such that g ◦ σ(g)−1 = TP , so σ(g) = TP ◦ g. Then

σ(π) = σ([2]) ◦ σ(g) = [2] ◦ TP ◦ g = [2] ◦ g = π,

because [2] ◦ TP = [2] as 2P = 0. This holds for all σ, so π is defined over k. Also Aξ is defined
over k by Proposition 7.2. There is an isomorphism g : (Aξ)ks → Jks such that π = [2] ◦ g, so
π endows Aξ with the structure of a two-covering of J . By Lemma 2.14 and Proposition 7.3 its
k-isomorphism class corresponds to the cocycle class ξ. �

Recall that for any two-covering (A, π) of J the isomorphism h : Aks → Jks is well defined
up to translation TP by a two-torsion point P (Lemma 2.13). Since multiplication by −1 on J
commutes with TP , there is a well-defined involution ι : A → A, x 7→ h−1(−h(x)) of A, defined
over k. On our two-covering Aξ this involution is given by negating all six coordinates cω. The
quotient Xδ is the projection of Aξ onto the 10 coordinates cI for all I ⊂ Ω with #I = 3. This
quotient is isomorphic to X over ks. The projection Yδ of Aξ onto the coordinates cω for all ω is
isomorphic to the blow-up of Xδ in its 16 singular points. The surface Yδ is the vanishing set of

the three quadratic forms given in (20). These correspond to the polynomials Q
(δ)
0 , Q

(δ)
1 , Q

(δ)
2 in

Proposition 4.6. This shows that the blow-up Yδ of the quotient Xδ of the twist Aξ of the Jacobian
J is isomorphic to the twist Vδ of the blow-up Y of the quotient X of J .

Appendix A. Generators for I0,+

Choose a set S of ten subsets of Ω, each of cardinality 3, such that for each partition π =
{π1, π2} ∈ Ξ/〈Ω〉 of Ω into two parts of cardinality 3 there is a unique element of S, denoted Iπ,
with Iπ ∈ π. For each partition π = {π1, π2} ∈ Ξ/〈Ω〉 with #π1 = #π2 = 3 we set cπ = cIπ

; for
all integers i, j with 1 ≤ i ≤ j ≤ 4 we set

µij(π) = κij(Iπ) − κij(Ω \ Iπ),

with κij as in Proposition 6.13. Note that cπ and µij(π) depend on the choice of S, but their
product µij(π)cπ, as well as cπ ∗ cπ and µi1j1(π) · µi2j2(π) for any i1, j1, i2, j2 do not, and we can
write

kij =
∑

π

µij(π) cπ
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unambiguously, where π runs over all partitions of Ω into two parts of cardinality 3.
As mentioned at the end of Section 6, the space I0,+ ∩ Sym2 L(Θ+ + Θ−) is generated by the

projection onto L
(2)
0,+ of the quadratic forms k2

12 − k11k22, k12k13 − k11k23, k
2
13 − k11k33, k13k23 −

k12k33, k
2
23 − k22k33, and the quadric gX in (5) that defines the model of X inside the 2-uple

embedding of P3 into P9. These projections are
∑

π

(µ12(π)2 − µ11(π)µ22(π)) cπ ∗ cπ,

∑

π

(µ12(π)µ13(π) − µ11(π)µ23(π)) cπ ∗ cπ,

∑

π

(µ13(π)2 − µ11(π)µ33(π)) cπ ∗ cπ,

∑

π

(µ13(π)µ23(π) − µ12(π)µ33(π)) cπ ∗ cπ,

∑

π

(µ2
23(π) − µ22(π)µ33(π)) cπ ∗ cπ,

∑

π

µX(π) cπ ∗ cπ,

with

µX =(−4f0f2 + f2
1 )µ2

11 − 4f0f3µ11µ12 − 2f1f3µ11µ13 − 4f0µ11µ14 − 4f0f4µ
2
12+

(4f0f5 − 4f1f4)µ12µ13 − 2f1µ11µ24 + (−4f0f6 + 2f1f5 − 4f2f4 + f2
3 )µ2

13−

4f2µ11µ34 − 4f0f5µ12µ22 + (8f0f6 − 4f1f5)µ13µ22 + (4f1f6 − 4f2f5)µ13µ23−

2f3µ13µ24 − 2f3f5µ13µ33 − 4f4µ13µ34 − 4µ14µ34 − 4f0f6µ
2
22 − 4f1f6µ22µ23−

4f2f6µ
2
23 + µ2

24 − 4f3f6µ23µ33 − 2f5µ23µ34 + (−4f4f6 + f2
5 )µ2

33 − 4f6µ33µ34,(24)

and where π runs again over all partitions of Ω into two parts of size 3. The three quadratic forms
∑

ω

ωjλωcω ∗ cω(25)

for j = 0, 1, 2, mentioned in (18), are also contained in I0,+. The 12-dimensional space I0,+ is

generated by these 9 quadratic forms and the projection onto L
(2)
0,+ of the forms given in (7). These

projections are
∑

ω∈Ω

ωrcω ∗ cω −
∑

π

νr(π) cπ ∗ cπ

for r = 0, . . . , 6 respectively, with

ν0 = f2µ
2
11 + f3µ11µ12 + µ11µ14 + f6µ11µ33 + f4µ

2
12 − f5µ12µ13 + f5µ12µ22 − 2f6µ13µ22 + f6µ

2
22,

2ν1 = −f1µ
2
11 + f3µ11µ13 + 2f4µ11µ23 + µ11µ24 − f5µ11µ33 − 2f6µ12µ33 + 2f5µ13µ22 + 2f6µ22µ23,

ν2 = f0µ
2
11 + f4µ

2
13 + µ13µ14 + f5µ13µ23 + f6µ22µ33,

2ν3 = 2f0µ11µ12 + f1µ11µ13 − f3µ
2
13 + µ13µ24 + f5µ13µ33 + 2f6µ23µ33,

ν4 = f0µ11µ22 + f1µ11µ23 + f2µ11µ33 + µ14µ33 + f6µ
2
33,

2ν5 = −f1µ11µ33 − 2f0µ12µ13 + 2f0µ12µ22 + 2f2µ12µ33 + 2f1µ13µ22 + f3µ13µ33 + µ24µ33 − f5µ
2
33,

ν6 = f0µ11µ33 − 2f0µ13µ22 − f1µ13µ23 + f0µ
2
22 + f1µ22µ23 + f2µ

2
23 + f3µ23µ33 + f4µ

2
33 + µ33µ34.

Note that all 16 quadratic forms in I0,+ given in this appendix are Galois invariant and can
therefore also be expressed in the coordinates k11, k12, . . . , k44, b1, . . . , b6 with coefficients in the
ground field k.
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Appendix B. Galois-invariant equations for the twist of the Jacobian

We continue with the notation of Section 7. In particular we have ξ ∈ P 1(J [2]) ⊂ H1(J [2]) and
δ ∈ L and n ∈ k, such that NL/k(δ) = n2 and such that γ

(

(δ, n)
)

= ξ with γ as in Proposition 2.6.

We also have an element ε ∈ Ls such that ε2 = δ and NLs/ks(ε) = n, and Aξ is the two-covering
associated to ξ.

In this appendix we combine the previously given equations for Aξ to Galois-invariant equations
in terms of Galois-invariant coordinates. For the odd coordinates we use b1, . . . , b6 as before. For
the even coordinates we do not use a specific system as it seems very plausible that the equations
can be expressed more compactly in terms of other coordinates than k11, k12, . . . , k44.

Let ρ0, . . . , ρ9 be functions from the set of all subsets of Ω of cardinality 3 to k(Ω) such that
for each i and each I we have ρi(I) = −ρi(Ω \ I) and for each Galois automorphism σ we have
σ(ρi(I)) = ρi(σ(I)) and such that if I1, ..., I10 are subsets of size 3 representing all partitions in
two parts of size 3, then the matrix H = (ρi(Ij))i,j is invertible. Then there is a unique basis

(u0, . . . , u9) of Sym2(Θ+ + Θ−) of Galois-invariant elements determined by

cI =

9
∑

i=0

ρi(I)ui

for all subsets I ⊂ Ω of size 3. This is the basis of Sym2(Θ+ + Θ−) that we use, and it depends
on the functions ρi. For instance, if we index the ρi and ui by pairs i, j, abbreviated by ij, with
1 ≤ i ≤ j ≤ 4, rather than by integers, and we set

ρij(I) =
λij(I)

4
∏

ω∈I

∏

ψ 6∈I(ψ − ω)
,

with λij as in Definition 6.12, then we get uij = kij .

Remark B.1. Note that if in a specific case the set of ten partitions into two parts of size three
is the disjoint union of smaller Galois orbits, then for each Galois orbit T we could find a basis of
Galois-invariant elements for the space generated by {cπ : π ∈ T}. This may yield more efficient
equations than those coming from the general case.

Choose 15 functions h1, . . . , h15 from the set J [2](ks) \ {0}, or equivalently, the set of the
15 unordered pairs {ω1, ω2} ⊂ Ω, to k(Ω) so that each hr is Galois equivariant (i.e., for each
P ∈ J [2](ks) \ {0} and each Galois automorphism σ we have hr(σ(P )) = σ(hr(P ))) and such that
the matrix

(

hr(P )
)

1≤r≤15

P∈J[2](ks)\{0}

is invertible. Then for fixed l ∈ {0, 1} the 15-dimensional subspace of Sym2 L generated by all
quadratic forms of the form (21) with nonzero P ∈ J [2](ks) is also generated by the 15 quadratic
forms

∑

P↔{ω1,ω2}

hr(P )





∑

θ 6=ω1,ω2

(

θl
∏

ψ 6=θ,ω1,ω2

(θ − ψ)
)

(δω1
δω2

δθ + n) cθ ∗ cω1ω2θ





=
∑

P↔{ω1,ω2}

hr(P )





∑

θ 6=ω1,ω2

(

θl
∏

ψ 6=θ,ω1,ω2

(θ − ψ)
)

(δω1
δω2

δθ + n)
(

6
∑

j=1

(S−1)θj · bj

)

∗
(

9
∑

i=0

ρi({ω1, ω2, θ})ui

)





=
6
∑

j=1

9
∑

i=0





∑

{ω1,ω2}

hr(P )
∑

θ 6=ω1,ω2

(S−1)θj

(

θl
∏

ψ 6=θ,ω1,ω2

(θ − ψ)
)

ρi({ω1, ω2, θ}) (δω1
δω2

δθ + n)



 bj ∗ ui
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with 1 ≤ r ≤ 15, where (S−1)θj is the entry in the row corresponding to θ and column j in the
inverse of the matrix

S =











1 1 · · · 1
ω1 ω2 · · · ω6

...
...

...
ω5

1 ω5
2 · · · ω5

6











.

For each l ∈ {0, 1} these 15 quadratic forms are all Galois invariant.

Remark B.2. Note that in specific cases, instead of summing over all nontrivial two-torsion
points, in order to obtain Galois-invariant quadratic forms, it suffices to sum over all points in a
Galois orbit; each orbit yields a quadratic form for each hr, so that fewer than 15 functions hr
will suffice.

Similarly, the subspace of Sym2 L generated by all quadratic forms of the form (22) with nonzero
P ∈ J [2](ks) is also generated by the 15 quadratic forms

9
∑

i=0

9
∑

j=0





∑

{ω1,ω2}

hr(P )
∑

π={{θ1,θ2},{ψ1,ψ2}}

ν(π) ρi({θ1, θ2, ω1})ρj({θ1, θ2, ω2})·

(δω1
δω2

(δθ1δθ2 + δψ1
δψ2

) + n(δω1
+ δω2

))



ui ∗ uj

for 1 ≤ r ≤ 15, each defined over k. And finally, the subspace of Sym2 L generated by all quadratic
forms of the form (23) with nonzero P ∈ J [2](ks) is also generated by the 15 quadratic forms

6
∑

i=1

6
∑

j=1





∑

{ω1,ω2}

hr(P )(S−1)ω1i(S
−1)ω2j



 bi ∗ bj

+ f6 ·

9
∑

i=0

9
∑

j=0





∑

{ω1,ω2}

hr(P )
∑

π={{θ1,θ2},{ψ1,ψ2}}

ν(π)(θ1 + θ2)(ψ1 + ψ2) ρi({θ1, θ2, ω1})ρj({θ1, θ2, ω2})·

(δω1
δω2

(δθ1δθ2 + δψ1
δψ2

) + n(δω1
+ δω2

))



ui ∗ uj

for 1 ≤ r ≤ 15, each defined over the ground field k. All together, in this appendix we have seen

60 Galois-invariant quadratic forms generating the subspace of
⊕

P 6=0 L
(2)
P ⊂ Sym2 L consisting of

those forms that vanish on Aξ. Recall that for each subset I ⊂ Ω of size 3, the element

t2I =
∏

ω∈I

δω +
∏

ω 6∈I

δω + 2n

is defined over k(Ω), with δω = ϕω(δ). The 12-dimensional subspace of L
(2)
0,+ of quadratic forms

vanishing on Aξ is generated by the forms obtained from those in Appendix A by substitution of
tIcI for cI for each I. These new forms are

∑

π

(µ12(π)2 − µ11(π)µ22(π))
(

∏

ω∈π1

δω +
∏

ω∈π2

δω + 2n
)

cπ ∗ cπ,

=

9
∑

i=0

9
∑

j=0

(

∑

π

(µ12(π)2 − µ11(π)µ22(π))ρi(π1)ρj(π1)
(

∏

ω∈π1

δω +
∏

ω∈π2

δω + 2n
)

)

ui ∗ uj
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and, similary,

9
∑

i=0

9
∑

j=0

(

∑

π

(µ12(π)µ13(π) − µ11(π)µ23(π))ρi(π1)ρj(π1)
(

∏

ω∈π1

δω +
∏

ω∈π2

δω + 2n
)

)

ui ∗ uj ,

9
∑

i=0

9
∑

j=0

(

∑

π

(µ13(π)2 − µ11(π)µ33(π))ρi(π1)ρj(π1)
(

∏

ω∈π1

δω +
∏

ω∈π2

δω + 2n
)

)

ui ∗ uj ,

9
∑

i=0

9
∑

j=0

(

∑

π

(µ13(π)µ23(π) − µ12(π)µ33(π))ρi(π1)ρj(π1)
(

∏

ω∈π1

δω +
∏

ω∈π2

δω + 2n
)

)

ui ∗ uj ,

9
∑

i=0

9
∑

j=0

(

∑

π

(µ2
23(π) − µ22(π)µ33(π))ρi(π1)ρj(π1)

(

∏

ω∈π1

δω +
∏

ω∈π2

δω + 2n
)

)

ui ∗ uj ,

9
∑

i=0

9
∑

j=0

(

∑

π

µX (π)ρi(π1)ρj(π1)
(

∏

ω∈π1

δω +
∏

ω∈π2

δω + 2n
)

)

ui ∗ uj ,

and
6
∑

i=1

6
∑

j=1

(

∑

ω

ωrλω(S−1)ωi(S
−1)ωjδω

)

bi ∗ bj

for 0 ≤ r ≤ 2 and

6
∑

i=1

6
∑

j=1

(

∑

ω

ωr(S−1)ωi(S
−1)ωjδω

)

bi ∗ bj−

9
∑

i=0

9
∑

j=0

(

∑

π

νr(π)ρi(π1)ρj(π1)
(

∏

ω∈π1

δω +
∏

ω∈π2

δω + 2n
)

)

ui ∗ uj

for 0 ≤ r ≤ 6 with νr(π) as in Appendix A. These quadratic polynomials are all defined over the
ground field k and so we have found a set of Galois-invariant quadratic forms that generate the
ideal of polynomials vanishing on Aξ.

Remark B.3. If δ ∈ L = k[X]/(f) is given as δ =
∑5
i=0 diX

i, then we have δω =
∑5
i=0 diω

i

for each ω. Thus the given quadratic forms in terms of the coordinates u0, . . . , u9, b1, . . . , b6 have
coefficients that are themselves polynomials in terms of d0, . . . , d5 and n with coefficients that are
symmetric in the roots of f , so these coefficients can be expressed in terms of f0, . . . , f6.

After finding Galois-invariant equations for the two-covering Aξ, we end by giving the associated
map Aξ → J that is a twist of multiplication by 2 on J . Let G be the matrix whose r-th row is

1

4





∏

ω∈Ir

∏

ψ∈Ω\Ir

(ψ − ω)−1



 · ( λ11(Ir) λ12(Ir) λ13(Ir) · · · λ44(Ir) ) ,

i.e., the coefficients of cIr
with respect to the basis (k11, k12, . . . , k44). Then G−1 is described in

the proof of Proposition 6.13. Let H be the invertible matrix whose r-th row is

( ρ0(Ir) ρ1(Ir) ρ2(Ir) · · · ρ9(Ir) ) .

Let T1 be the diagonal matrix whose r-th diagonal entry is tIr
for 1 ≤ r ≤ 10, and let T2 be the

diagonal matrix whose r-th diagonal entry is t{ωr} for 1 ≤ r ≤ 6, where the elements of Ω are
numbered as in the definition of the matrix S. Then the isomorphism g : (Aξ)ks → Jks of Section 7
is given by

(u0 : · · · : u9 : b1 : · · · : b6) 7→ (k11 : k12 : · · · : k44 : b′1 : · · · : b′6)

with (k11, k12, . . . , k44)
t = G−1T1H(u0, . . . , u9)

t and (b′1, . . . , b
′
6)

t = ST2S
−1(b1, . . . , b6)

t. This
map depends on the choice of ε, but the composition [2] ◦ g does not. This composition is defined
over k and endows Aξ with the structure of a two-covering by Theorem 7.4.
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