Explicit computations on the Manin conjectures

Ronald van Luijk UC Berkeley CRM, Montreal

July 21, 2005, Oberwolfach

Describing the set of rational points on a variety

curve C/\mathbb{Q} of genus g

 $C(\mathbb{Q}) = \emptyset$

$$C(\mathbb{Q}) = \{P_1, \ldots, P_n\}$$

 $C(\mathbb{Q})$ is dense in C:

• fin. gen. group
$$(g = 1)$$

•
$$\exists$$
 a parametrization ($g = 0$)

satisfying answers

Describing the set of rational points on a variety

curve C/\mathbb{Q} of genus g	X of dimension $d > 1$				
$C(\mathbb{Q}) = \emptyset$	dim(Zariski closure) $< d$				
$C(\mathbb{Q}) = \{P_1, \ldots, P_n\}$	$X(\mathbb{Q})$ is dense in X:				
$C(\mathbb{Q})$ is dense in C :	• fin. gen. grp. (abelian var.)				
• fin. gen. group $(g = 1)$	 ∃ parametrization (rat. var.) 				
• \exists a parametrization ($g = 0$)	• ???				

satisfying answers

not so much

Measuring the number of points

Let $X \subset \mathbb{P}^n/\mathbb{Q}$ be smooth, geometrically integral, projective. Let the **height** $H \colon \mathbb{P}^n(\mathbb{Q}) \to \mathbb{R}_{>0}$ be defined by

$$H(x) = \max_i(|x_i|) \quad \text{if} \left\{ egin{array}{c} x = [x_0 : x_1 : \ldots : x_n] \ x_i \in \mathbb{Z} \ \gcd(x_0, \ldots, x_n) = 1 \end{array}
ight.$$

The height function restricts to $X(\mathbb{Q})$.

Measuring the number of points

Let $X \subset \mathbb{P}^n/\mathbb{Q}$ be smooth, geometrically integral, projective. Let the **height** $H \colon \mathbb{P}^n(\mathbb{Q}) \to \mathbb{R}_{>0}$ be defined by

$$H(x) = \max_i(|x_i|) \quad \text{ if } \left\{ egin{array}{ll} x = [x_0 \colon x_1 \colon \dots \colon x_n] \ x_i \in \mathbb{Z} \ \gcd(x_0, \dots, x_n) = 1 \end{array}
ight.$$

The height function restricts to $X(\mathbb{Q})$.

For any open $U \subset X$ we set

$$N_U(B) = \#\{x \in U(\mathbb{Q}) : H(x) \le B\}.$$

We want to understand the asymptotic behavior of N_U .

$$N_U(B) = \#\{x \in U(\mathbb{Q}) : H(x) \le B\}$$

Examples

(1)
$$N_{\mathbb{P}^n}(B) \approx \frac{1}{2} (2B+1)^{n+1} \prod_{p < B} \left(1 - \frac{1}{p^{n+1}}\right) \approx \frac{2^n B^{n+1}}{\zeta(n+1)}$$

$$N_U(B) = \#\{x \in U(\mathbb{Q}) : H(x) \le B\}$$

Examples

(1)
$$N_{\mathbb{P}^n}(B) \approx \frac{1}{2} (2B+1)^{n+1} \prod_{p < B} \left(1 - \frac{1}{p^{n+1}}\right) \approx \frac{2^n B^{n+1}}{\zeta(n+1)}$$

Fact: After the Segre embedding into \mathbb{P}^{rs+r+s} , the height on the product of $X_1 \subset \mathbb{P}^r$ and $X_2 \subset \mathbb{P}^s$ is equal to the product of their heights.

(2) $X = \mathbb{P}^1 \times \mathbb{P}^1$, i.e., a quadric in \mathbb{P}^3 $N_{\mathbb{P}^1 \times \mathbb{P}^1}(B) \approx CB^2 \log(B)$ Sometimes a large contribution comes from a small set

(3) Let
$$X \subset \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$$
 be given by $x_1 x_2 x_3 = y_1 y_2 y_3$.
Let E_{ij} be the line $x_i = y_j = 0$ for $i \neq j$, and $U = X - \bigcup E_{ij}$.
 $N_U(B) \approx \frac{1}{6} \left(\prod_p \left(1 - \frac{1}{p} \right)^4 \left(1 + \frac{4}{p} + \frac{1}{p^2} \right) \right) B(\log B)^3$
 $N_{E_{ij}}(B) \approx CB^2$

Sometimes a large contribution comes from a small set

(3) Let
$$X \subset \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$$
 be given by $x_1 x_2 x_3 = y_1 y_2 y_3$.
Let E_{ij} be the line $x_i = y_j = 0$ for $i \neq j$, and $U = X - \bigcup E_{ij}$.
 $N_U(B) \approx \frac{1}{6} \left(\prod_p \left(1 - \frac{1}{p} \right)^4 \left(1 + \frac{4}{p} + \frac{1}{p^2} \right) \right) B(\log B)^3$
 $N_{E_{ij}}(B) \approx CB^2$

In all cases there are C, a, b, U such that

 $N_U(B) \approx CB^a(\log B)^b$

Question: how are C, a, b related to the geometry of X?

 K_X is canonical divisor, H is a hyperplane section, $\rho = \operatorname{rk} \operatorname{NS}(X)$

X	$-K_X$	ho	$\exists U, C : N_U(B) \approx$
\mathbb{P}^n	(n + 1)H	1	CB^{n+1}
$\mathbb{P}^1 imes \mathbb{P}^1$ quadric in \mathbb{P}^3	2H	2	$CB^2 \log B$
$x_1x_2x_3 = y_1y_2y_3$ in $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ del Pezzo of deg 6 in $\mathbb{P}^6 \subset \mathbb{P}^7$	H	4	$CB(\log B)^3$

 K_X is canonical divisor, H is a hyperplane section, $\rho = \operatorname{rk} \operatorname{NS}(X)$

X	$-K_X$	ρ	$\exists U, C : N_U(B) \approx$
\mathbb{P}^n	(n + 1)H	1	CB^{n+1}
$\mathbb{P}^1 imes \mathbb{P}^1$ quadric in \mathbb{P}^3	2H	2	$CB^2 \log B$
$x_1x_2x_3 = y_1y_2y_3$ in $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ del Pezzo of deg 6 in $\mathbb{P}^6 \subset \mathbb{P}^7$	Η	4	$CB(\log B)^3$
X	aH, a > 0	b + 1	$CB^a(\log B)^b$?

 K_X is canonical divisor, H is a hyperplane section, $\rho = \operatorname{rk} \operatorname{NS}(X)$

X	$-K_X$	ρ	$\exists U, C : N_U(B) \approx$
\mathbb{P}^n	(n + 1)H	1	CB^{n+1}
$\mathbb{P}^1 imes \mathbb{P}^1$ quadric in \mathbb{P}^3	2H	2	$CB^2 \log B$
$x_1x_2x_3 = y_1y_2y_3$ in $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ del Pezzo of deg 6 in $\mathbb{P}^6 \subset \mathbb{P}^7$	H	4	$CB(\log B)^3$
X	aH, a > 0	b + 1	$CB^a(\log B)^b$?

Problem: may need a finite field extension to avoid obstructions

Conjecture 1 (Batyrev, Manin). Let X be a smooth, geometrically integral, projective variety over a number field k, and let H be a hyperplane section. Assume that the canonical sheaf K_X satisfies $-K_X = aH$ for some a > 0. Then there exists a finite field extension l, a constant C, and an open subset $U \subset X$, such that with $b = \operatorname{rk} \operatorname{NS}(X_l) - 1$ we have

 $N_{U_l}(B) \approx CB^a(\log B)^b.$

Conjecture 1 (Batyrev, Manin). Let X be a smooth, geometrically integral, projective variety over a number field k, and let H be a hyperplane section. Assume that the canonical sheaf K_X satisfies $-K_X = aH$ for some a > 0. Then there exists a finite field extension l, a constant C, and an open subset $U \subset X$, such that with $b = \operatorname{rk} \operatorname{NS}(X_l) - 1$ we have

 $N_{U_l}(B) \approx CB^a(\log B)^b.$

Conjecture 2 (generalization). The same, except that K_X is only assumed not to be effective. If C_{eff} denotes the closed cone inside $NS(X_l)_{\mathbb{R}}$ generated by effective divisors, then a and b are given by

 $a = \inf\{\gamma \in \mathbb{R} : \gamma H + K_X \in C_{eff}\}$ b + 1 = the codimension of the minimal face of $\partial C_{eff} \text{ containing } aH + K_X.$

We will only consider K3 surfaces.

Then the asymptotics are probably not true in general, as such a surface may contain an elliptic fibration with infinitely many fibers contributing too many points. K3 surfaces X with rkNS(X) = 1 do not admit such a fibration. a = 0 $CB^{a}(\log B)^{b} \approx C$?

K3 surfaces X with
$$rkNS(X) = 1$$
 do not admit such a fibration.
 $a = 0$
 $CB^{a}(\log B)^{b} \approx C$?

Let $X \subset \mathbb{P}^3$ be given by

$$x^4 + 2y^4 = z^4 + 4w^4.$$

Then $\operatorname{rk} NS(X) = 1$ (over \mathbb{Q}).

Question (Swinnerton-Dyer, 2002):

Does X have more than 2 rational points?

K3 surfaces X with rkNS(X) = 1 do not admit such a fibration. a = 0 b = 0 $CB^{a}(\log B)^{b} \approx C$?

Let $X \subset \mathbb{P}^3$ be given by

$$x^4 + 2y^4 = z^4 + 4w^4.$$

Then $\operatorname{rk} NS(X) = 1$ (over \mathbb{Q}).

Question (Swinnerton-Dyer, 2002): Does *X* have more than 2 rational points?

Answer (Elsenhans, Jahnel, 2004):

 $1484801^4 + 2 \cdot 1203120^4 = 1169407^4 + 4 \cdot 1157520^4$

Theorem (vL, 2004) The K3 surface X in \mathbb{P}^3 given by $w(x^3+y^3+z^3+x^2z+xw^2) = 3x^2y^2-4x^2yz+x^2z^2+xy^2z+xyz^2-y^2z^2$ is smooth and satisfies rkNS $(X_{\overline{\mathbb{O}}}) = 1$.

Theorem (vL, 2004)

The K3 surface X in \mathbb{P}^3 given by

$$w(x^{3}+y^{3}+z^{3}+x^{2}z+xw^{2}) = 3x^{2}y^{2}-4x^{2}yz+x^{2}z^{2}+xy^{2}z+xyz^{2}-y^{2}z^{2}$$

is smooth and satisfies $\operatorname{rk} \operatorname{NS}(X_{\overline{\mathbb{Q}}}) = 1$.

Sketch of proof

- $NS(X_{\overline{\mathbb{Q}}}) \hookrightarrow NS(X_{\overline{\mathbb{F}}_p})$ for primes p of good reduction.
- $\operatorname{rk} \operatorname{NS}(X_{\overline{\mathbb{F}_p}}) = 2$ for p = 2, 3.
- $NS(X_{\overline{\mathbb{F}_2}})_{\mathbb{Q}} \cong NS(X_{\overline{\mathbb{F}_3}})_{\mathbb{Q}}$ as inner product spaces.

Picture taken by William Stein

$$\int B^{a-1} dB = \begin{cases} CB^a & \text{if } a \neq 0\\ \log(B) & \text{if } a = 0 \end{cases}$$

$$\int B^{a-1} dB = \begin{cases} CB^a & \text{if } a \neq 0\\ \log(B) & \text{if } a = 0 \end{cases}$$

Questure: Let X be a K3 surface over a number field k with $\operatorname{rk} \operatorname{NS}(X_{\overline{k}}) = 1$. Is there a finite field extension l, a constant C, and an open subset $U \subset X$, such that U contains no curve of genus 1 over l and

$$N_{U_l}(B) \approx C \log B?$$