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Describing the set of rational points on a variety

curve C'/Q of genus g
c(Q) =0
C(Q) = {Pr, ..., Pa}

C(Q) is dense in C:

e fin. gen. group (g =1)

e J a parametrization (g = 0)

satisfying answers



Describing the set of rational points on a variety

curve C'/Q of genus g X of dimension d > 1
C(Q) =0 dim(Zariski closure) < d
C(Q)={P,..., P} X (Q) is dense in X:

C(Q) is dense in C: e fin. gen. grp. (abelian var.)
e fin. gen. group (¢ = 1) e 1 parametrization (rat. var.)
e J a parametrization (g =0) | e ?77?

satisfying answers not so much




Measuring the number of points

Let X C P"/Q be smooth, geometrically integral, projective.

Let the height H: P*(Q) — Ry be defined by

x=[rg:x1:...:Tn]
H(ac) = maxz(|a:-2|) if x; € 1
gcd(zg,...,zn) =1

The height function restricts to X(Q).



Measuring the number of points

Let X C P"/Q be smooth, geometrically integral, projective.

Let the height H: P*(Q) — Ry be defined by

x=[rg:x1:...:Tn]
H(ac) = maxz(|a:-2|) if x; € 1
gcd(zg,...,zn) =1

The height function restricts to X(Q).

For any open U C X we set
No(B) =7z cU(Q) = H(z) < B}.

We want to understand the asymptotic behavior of Ny;.



Ny(B) = #{z € U(Q) : H(z) < B}

Examples

nnn+1
(1) Npu(B) = 3(2B+1)" T[] 5 (1_]ﬁ) ~ STy



Ny(B) = #{z € U(Q) : H(z) < B}
Examples
nnn+1
(1) Npu(B) = 3(2B+1)" T[] 5 (1 - ]ﬁ) ~ STy

Fact: After the Segre embedding into P"St7+s the height
on the product of X1 C P" and X» C P*® is equal to

the product of their heights.

(2) X =Pl xPl ie. aquadricinP3



Sometimes a large contribution comes from a small set

(3) Let X c P! x P! x P! be given by rixoxr3z = y1y2y3.
Let Eij be the line x; = Yj = O fori#= 3, and U = X — UEz]

Nu(B) ~ (T, (1-3) (14 £+ L)) Blog B)3

Ng,(B) = CB?



Sometimes a large contribution comes from a small set

(3) Let X c P! x P! x P! be given by rixoxr3z = y1y2y3.
Let Eij be the line x; = Yj = O fori#= 3, and U = X — UEz]

Nu(B) ~ (T, (1-3) (14 £+ L)) Blog B)3
Ng,(B) = CB?

In all cases there are C,a,b,U such that

Ny (B) ~ CB%(log B)b

Question: how are C,a,b related to the geometry of X7



K x is canonical divisor, H is a hyperplane section, p =rkNS(X)

del Pezzo of deg 6 in P® c P’

X —KX P HU,C . NU(B) ~
P (n+1)H| 1 | ¢cpntl
P! x P! quadric in P3 2H 2 | CB%log B
— ; 1 1 1
r12223 = Y1y2y3 in PXP*XP 7 4 | CB(log B)3




K x is canonical divisor, H is a hyperplane section, p =rkNS(X)

X — Ky p | dU,C : Ny(B) =
P (n+1H| 1 | cpntl
Pl x P! quadric in P3 2H 2 | CB?log B
T1T2T3 = Y1Y2y3 in ?1><P1><]P)1 7 4 | CB(log B)3
del Pezzo of deg 6 in P® c P’
X aH,a>0b+ 1| CB%(log B)® P




K x is canonical divisor, H is a hyperplane section, p =rkNS(X)

X — Ky p | dU,C : Ny(B) =
P (n+1H| 1 | cpntl
Pl x P! quadric in P3 2H 2 | CB?log B
T1T2T3 = Y1Y2y3 in ?1><]P)1><]P)1 7 4 | CB(log B)3
del Pezzo of deg 6 in P® c P’
X aH,a>0b+ 1| CB%(log B)® P

Problem: may need a finite field extension to avoid obstructions



Conjecture 1 (Batyrev, Manin). Let X be a smooth, geometrically
integral, projective variety over a number field k, and let H be a
hyperplane section. Assume that the canonical sheaf Ky satisfies
—Kx = aH for some a > 0. Then there exists a finite field extension [,
a constant C, and an open subset U C X, such that with
b=rkNS(X;) — 1 we have

Ny, (B) ~ CB%log B)®.



Conjecture 1 (Batyrev, Manin). Let X be a smooth, geometrically
integral, projective variety over a number field k, and let H be a
hyperplane section. Assume that the canonical sheaf Ky satisfies
—Kx = aH for some a > 0. Then there exists a finite field extension [,
a constant C, and an open subset U C X, such that with
b=rkNS(X;) — 1 we have

Ny, (B) ~ CB%log B)®.

Conjecture 2 (generalization). The same, except that Ky is only
assumed not to be effective. If Cgsf denotes the closed cone inside
NS(X;)r generated by effective divisors, then a and b are given by

a=inf{yeR : yH 4+ Kx € Cqr}
b+ 1 = the codimension of the minimal face of
0Cqfr containing aH + K.



Limiting case, Ky =0 /

We get a =0 and b = rk NS(X) — 1. /

KX == —CLH
We will only consider K3 surfaces.

Then the asymptotics are probably not true in general, as
such a surface may contain an elliptic fibration with
infinitely many fibers contributing too many points.



K3 surfaces X with rk NS(X) = 1 do not admit such a fibration.

—a =20 —b=20
CB%(logB)? ~ C 7



K3 surfaces X with rk NS(X) = 1 do not admit such a fibration.
— a =20 —b=20

CB%(logB)? ~ C 7
Let X C P3 be given by

4 -+ 2y4 — 4 -+ 4w*.
Then rk NS(X) =1 (over Q).

Question (Swinnerton-Dyer, 2002):
Does X have more than 2 rational points?



K3 surfaces X with rk NS(X) = 1 do not admit such a fibration.
— a =20 —b=20

CB%logB) =~ C 7
Let X C P3 be given by

4 -+ 2y4 — 4 -+ 4w*.
Then rk NS(X) =1 (over Q).

Question (Swinnerton-Dyer, 2002):
Does X have more than 2 rational points?

Answer (Elsenhans, Jahnel, 2004):

14848014 4+ 2.1203120% = 11694074+ 4 -1157520%



Theorem (vL, 2004)
The K3 surface X in P3 given by

w(z3 4342342224 aw?) = 32y’ —4r2yz422 22yl st ryzS —y2 22

is smooth and satisfies rk NS(X@) = 1.



Theorem (vL, 2004)
The K3 surface X in P3 given by

w(z3+y3+ 23+ 2224 zw?) = 3:1:2y2—4:1:2yz—|—:132z2—|—:1:y22—|—:cyz2—y222
is smooth and satisfies rk NS(X ) =

Sketch of proof
o NS(X ) — NS(Xg- ) for primes p of good reduction.

o 'KNS(Xz )—2forp_23
o NS(XE)@ 2= NS(XE)@ as inner product spaces.






D

40

30

20

10 -




Picture taken by William Stein



/B“_ldB:{ CB® ifa#0
log(B) ifa=0



a—1 ) CB*® if a =0
/B dB_{Iog(B) ifa=0

Questure: Let X be a K3 surface over a number field k£ with
rk NS(X%) = 1. Is there a finite field extension [, a constant C,

and an open subset U C X, such that U contains no curve of
genus 1 over [ and

NUZ(B) ~ (C'log B?



