# Explicit computations on the Manin conjectures 

Ronald van Luijk<br>UC Berkeley<br>CRM, Montreal

July 21, 2005, Oberwolfach

Describing the set of rational points on a variety

| curve $C / \mathbb{Q}$ of genus $g$ |
| :--- |
| $C(\mathbb{Q})=\emptyset$ |
| $C(\mathbb{Q})=\left\{P_{1}, \ldots, P_{n}\right\}$ |
| $C(\mathbb{Q})$ is dense in $C:$ |
| - fin. gen. group $(g=1)$ |
| - $\exists$ a parametrization $(g=0)$ |

satisfying answers

Describing the set of rational points on a variety

| curve $C / \mathbb{Q}$ of genus $g$ | $X$ of dimension $d>1$ |
| :--- | :--- |
| $C(\mathbb{Q})=\emptyset$ | $\operatorname{dim}($ Zariski closure) $<d$ |
| $C(\mathbb{Q})=\left\{P_{1}, \ldots, P_{n}\right\}$ | $X(\mathbb{Q})$ is dense in $X:$ |
| $C(\mathbb{Q})$ is dense in $C:$ | $\bullet$ fin. gen. grp. (abelian var.) |
| $\bullet$ fin. gen. group $(g=1)$ | $\bullet \exists$ parametrization (rat. var.) |
| $\bullet \exists$ a parametrization $(g=0)$ | $\bullet$ ??? |

satisfying answers
not so much

## Measuring the number of points

Let $X \subset \mathbb{P}^{n} / \mathbb{Q}$ be smooth, geometrically integral, projective.
Let the height $H: \mathbb{P}^{n}(\mathbb{Q}) \rightarrow \mathbb{R}_{>0}$ be defined by

$$
H(x)=\max _{i}\left(\left|x_{i}\right|\right) \quad \text { if }\left\{\begin{array}{l}
x=\left[x_{0}: x_{1}: \ldots: x_{n}\right] \\
x_{i} \in \mathbb{Z} \\
\operatorname{gcd}\left(x_{0}, \ldots, x_{n}\right)=1
\end{array}\right.
$$

The height function restricts to $X(\mathbb{Q})$.

## Measuring the number of points

Let $X \subset \mathbb{P}^{n} / \mathbb{Q}$ be smooth, geometrically integral, projective.
Let the height $H: \mathbb{P}^{n}(\mathbb{Q}) \rightarrow \mathbb{R}_{>0}$ be defined by

$$
H(x)=\max _{i}\left(\left|x_{i}\right|\right) \quad \text { if }\left\{\begin{array}{l}
x=\left[x_{0}: x_{1}: \ldots: x_{n}\right] \\
x_{i} \in \mathbb{Z} \\
\operatorname{gcd}\left(x_{0}, \ldots, x_{n}\right)=1
\end{array}\right.
$$

The height function restricts to $X(\mathbb{Q})$.
For any open $U \subset X$ we set

$$
N_{U}(B)=\#\{x \in U(\mathbb{Q}): H(x) \leq B\} .
$$

We want to understand the asymptotic behavior of $N_{U}$.

$$
N_{U}(B)=\#\{x \in U(\mathbb{Q}): H(x) \leq B\}
$$

## Examples

(1) $N_{\mathbb{P}^{n}}(B) \approx \frac{1}{2}(2 B+1)^{n+1} \prod_{p<B}\left(1-\frac{1}{p^{n+1}}\right) \approx \frac{2^{n} B^{n+1}}{\zeta(n+1)}$

$$
N_{U}(B)=\#\{x \in U(\mathbb{Q}): H(x) \leq B\}
$$

## Examples

(1) $N_{\mathbb{P}^{n}}(B) \approx \frac{1}{2}(2 B+1)^{n+1} \prod_{p<B}\left(1-\frac{1}{p^{n+1}}\right) \approx \frac{2^{n} B^{n+1}}{\zeta(n+1)}$

Fact: After the Segre embedding into $\mathbb{P}^{r s+r+s \text {, the height }}$ on the product of $X_{1} \subset \mathbb{P}^{r}$ and $X_{2} \subset \mathbb{P}^{s}$ is equal to the product of their heights.
(2) $\quad X=\mathbb{P}^{1} \times \mathbb{P}^{1}$, i.e., a quadric in $\mathbb{P}^{3}$

$$
N_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(B) \approx C B^{2} \log (B)
$$

Sometimes a large contribution comes from a small set
(3) Let $X \subset \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ be given by $x_{1} x_{2} x_{3}=y_{1} y_{2} y_{3}$.

Let $E_{i j}$ be the line $x_{i}=y_{j}=0$ for $i \neq j$, and $U=X-\cup E_{i j}$.

$$
\begin{aligned}
& N_{U}(B) \approx \frac{1}{6}\left(\Pi_{p}\left(1-\frac{1}{p}\right)^{4}\left(1+\frac{4}{p}+\frac{1}{p^{2}}\right)\right) B(\log B)^{3} \\
& N_{E_{i j}}(B) \approx C B^{2}
\end{aligned}
$$

Sometimes a large contribution comes from a small set
(3) Let $X \subset \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ be given by $x_{1} x_{2} x_{3}=y_{1} y_{2} y_{3}$.

Let $E_{i j}$ be the line $x_{i}=y_{j}=0$ for $i \neq j$, and $U=X-\cup E_{i j}$.

$$
\begin{aligned}
& N_{U}(B) \approx \frac{1}{6}\left(\Pi_{p}\left(1-\frac{1}{p}\right)^{4}\left(1+\frac{4}{p}+\frac{1}{p^{2}}\right)\right) B(\log B)^{3} \\
& N_{E_{i j}}(B) \approx C B^{2}
\end{aligned}
$$

In all cases there are $C, a, b, U$ such that

$$
N_{U}(B) \approx C B^{a}(\log B)^{b}
$$

Question: how are $C, a, b$ related to the geometry of $X$ ?
$K_{X}$ is canonical divisor, $H$ is a hyperplane section, $\rho=\operatorname{rk} \operatorname{NS}(X)$

| $X$ | $-K_{X}$ | $\rho$ | $\exists U, C: N_{U}(B) \approx$ |
| :--- | :---: | :---: | :--- |
| $\mathbb{P}^{n}$ | $(n+1) H$ | 1 | $C B^{n+1}$ |
| $\mathbb{P}^{1} \times \mathbb{P}^{1}$ quadric in $\mathbb{P}^{3}$ | $2 H$ | 2 | $C B^{2} \log B$ |
| $x_{1} x_{2} x_{3}=y_{1} y_{2} y_{3}$ in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ |  |  |  |
| del Pezzo of deg 6 in $\mathbb{P}^{6} \subset \mathbb{P}^{7}$ | $H$ | 4 | $C B(\log B)^{3}$ |

$K_{X}$ is canonical divisor, $H$ is a hyperplane section, $\rho=\operatorname{rk} \operatorname{NS}(X)$

| $X$ | $-K_{X}$ | $\rho$ | $\exists U, C: N_{U}(B) \approx$ |
| :--- | :---: | :---: | :--- |
| $\mathbb{P}^{n}$ | $(n+1) H$ | 1 | $C B^{n+1}$ |
| $\mathbb{P}^{1} \times \mathbb{P}^{1}$ quadric in $\mathbb{P}^{3}$ | $2 H$ | 2 | $C B^{2} \log B$ |
| $x_{1} x_{2} x_{3}=y_{1} y_{2} y_{3}$ in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ | $H$ | 4 | $C B(\log B)^{3}$ |
| del Pezzo of deg 6 in $\mathbb{P}^{6} \subset \mathbb{P}^{7}$ | $H$ |  |  |
| $X$ | $a H, a>0$ | $b+1$ | $C B^{a}(\log B)^{b}$ |

$K_{X}$ is canonical divisor, $H$ is a hyperplane section, $\rho=\operatorname{rk} \operatorname{NS}(X)$

| $X$ | $-K_{X}$ | $\rho$ | $\exists U, C: N_{U}(B) \approx$ |
| :--- | :---: | :---: | :--- |
| $\mathbb{P}^{n}$ | $(n+1) H$ | 1 | $C B^{n+1}$ |
| $\mathbb{P}^{1} \times \mathbb{P}^{1}$ quadric in $\mathbb{P}^{3}$ | $2 H$ | 2 | $C B^{2} \log B$ |
| $x_{1} x_{2} x_{3}=y_{1} y_{2} y_{3}$ in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ | $H$ | 4 | $C B(\log B)^{3}$ |
| del Pezzo of deg 6 in $\mathbb{P}^{6} \subset \mathbb{P}^{7}$ |  |  |  |
| $X$ | $a H, a>0$ | $b+1$ | $C B^{a}(\log B)^{b}$ |

Problem: may need a finite field extension to avoid obstructions

Conjecture 1 (Batyrev, Manin). Let $X$ be a smooth, geometrically integral, projective variety over a number field $k$, and let $H$ be a hyperplane section. Assume that the canonical sheaf $K_{X}$ satisfies $-K_{X}=a H$ for some $a>0$. Then there exists a finite field extension $l$, a constant $C$, and an open subset $U \subset X$, such that with $b=\operatorname{rkNS}\left(X_{l}\right)-1$ we have

$$
N_{U_{l}}(B) \approx C B^{a}(\log B)^{b} .
$$

Conjecture 1 (Batyrev, Manin). Let $X$ be a smooth, geometrically integral, projective variety over a number field $k$, and let $H$ be a hyperplane section. Assume that the canonical sheaf $K_{X}$ satisfies $-K_{X}=a H$ for some $a>0$. Then there exists a finite field extension $l$, a constant $C$, and an open subset $U \subset X$, such that with $b=\operatorname{rkNS}\left(X_{l}\right)-1$ we have

$$
N_{U_{l}}(B) \approx C B^{a}(\log B)^{b} .
$$

Conjecture 2 (generalization). The same, except that $K_{X}$ is only assumed not to be effective. If $C_{\text {eff }}$ denotes the closed cone inside $\mathrm{NS}\left(X_{l}\right)_{\mathbb{R}}$ generated by effective divisors, then $a$ and $b$ are given by

$$
a=\inf \left\{\gamma \in \mathbb{R}: \gamma H+K_{X} \in C_{\text {eff }}\right\}
$$

$b+1=$ the codimension of the minimal face of $\partial C_{\text {eff }}$ containing $a H+K_{X}$.

Limiting case, $K_{X}=0$

We get $a=0$ and $b=\operatorname{rkNS}(X)-1$.


We will only consider K3 surfaces.
Then the asymptotics are probably not true in general, as such a surface may contain an elliptic fibration with infinitely many fibers contributing too many points.

K3 surfaces $X$ with rkNS $(X)=1$ do not admit such a fibration.

$$
C B^{a}(\log B)^{b} \approx C ?
$$

K3 surfaces $X$ with rkNS $(X)=1$ do not admit such a fibration.

$$
C B^{a}(\log B)^{b} \approx C ?
$$

Let $X \subset \mathbb{P}^{3}$ be given by

$$
x^{4}+2 y^{4}=z^{4}+4 w^{4} .
$$

Then $\operatorname{rk} N S(X)=1($ over $\mathbb{Q})$.
Question (Swinnerton-Dyer, 2002):
Does $X$ have more than 2 rational points?

K3 surfaces $X$ with rkNS $(X)=1$ do not admit such a fibration.

$$
C B^{a}(\log B)^{b} \approx C ?
$$

Let $X \subset \mathbb{P}^{3}$ be given by

$$
x^{4}+2 y^{4}=z^{4}+4 w^{4} .
$$

Then $\operatorname{rk} N S(X)=1($ over $\mathbb{Q})$.
Question (Swinnerton-Dyer, 2002):
Does $X$ have more than 2 rational points?
Answer (Elsenhans, Jahnel, 2004):

$$
1484801^{4}+2 \cdot 1203120^{4}=1169407^{4}+4 \cdot 1157520^{4}
$$

Theorem (vL, 2004)
The K3 surface $X$ in $\mathbb{P}^{3}$ given by
$w\left(x^{3}+y^{3}+z^{3}+x^{2} z+x w^{2}\right)=3 x^{2} y^{2}-4 x^{2} y z+x^{2} z^{2}+x y^{2} z+x y z^{2}-y^{2} z^{2}$
is smooth and satisfies $\mathrm{rk} \operatorname{NS}\left(X_{\overline{\mathbb{Q}}}\right)=1$.

Theorem (vL, 2004)
The K3 surface $X$ in $\mathbb{P}^{3}$ given by
$w\left(x^{3}+y^{3}+z^{3}+x^{2} z+x w^{2}\right)=3 x^{2} y^{2}-4 x^{2} y z+x^{2} z^{2}+x y^{2} z+x y z^{2}-y^{2} z^{2}$ is smooth and satisfies $\operatorname{rk} \operatorname{NS}\left(X_{\overline{\mathbb{Q}}}\right)=1$.

Sketch of proof

- $\mathrm{NS}\left(X_{\overline{\mathbb{Q}}}\right) \hookrightarrow \mathrm{NS}\left(X_{\overline{\mathbb{F}_{p}}}\right)$ for primes $p$ of good reduction.
- $\operatorname{rkNS}\left(X_{\overline{\mathbb{F}_{p}}}\right)=2$ for $p=2,3$.
- $\operatorname{NS}\left(X_{\overline{\mathbb{F}_{2}}}\right)_{\mathbb{Q}} \neq \mathrm{NS}\left(X_{\overline{\mathbb{F}_{3}}}\right)_{\mathbb{Q}}$ as inner product spaces.




Picture taken by William Stein

$$
\int B^{a-1} d B= \begin{cases}C B^{a} & \text { if } a \neq 0 \\ \log (B) & \text { if } a=0\end{cases}
$$

$$
\int B^{a-1} d B= \begin{cases}C B^{a} & \text { if } a \neq 0 \\ \log (B) & \text { if } a=0\end{cases}
$$

Questure: Let $X$ be a K3 surface over a number field $k$ with rkNS $\left(X_{\bar{k}}\right)=1$. Is there a finite field extension $l$, a constant $C$, and an open subset $U \subset X$, such that $U$ contains no curve of genus 1 over $l$ and

$$
N_{U_{l}}(B) \approx C \log B ?
$$

