Density of rational points on a family of Del Pezzo surfaces of degree one

Ronald van Luijk, Wim Nijgh
Moscow

December 9, 2021

Surface: smooth, projective, geometrically integral scheme over a field, of dimension 2.

Surface X is Del Pezzo if anticanonical divisor $-K_{X}$ is ample.
Degree of Del Pezzo surface X is intersection number $d=K_{X} \cdot K_{X}$.

Examples:

- Intersection of two quadrics in $\mathbb{P}^{4}\left(-K_{S}\right.$ very ample; $\left.d=4\right)$.
- A smooth cubic surface in $\mathbb{P}^{3}\left(-K_{S}\right.$ very ample; $\left.d=3\right)$.
- Smooth double cover of \mathbb{P}^{2}, ramified over a quartic $(d=2)$. (Anticanonical map is the projection to \mathbb{P}^{2}).

Fact. A Del Pezzo surface over a separably closed field is birationally equivalent with \mathbb{P}^{2}.

Theorem (Segre, Manin, Kollár, Pieropan, Salgado-Testa-Várilly-Alvarado, Festi-vL).

Let S be a Del Pezzo surface of degree $d \geq 2$ over a field k. Suppose $P \in S(k)$ is a rational point. If $d=2$ and k is infinite, then suppose, furthermore, that P does not lie on four exceptional curves, nor on the ramification locus of the anticanonical map. Then S is unirational over k.

Theorem (Kollár, Mella)
Let S be a Del Pezzo surface of degree $d=1$ over a field k of characteristic not equal to 2 . If S admits a conic bundle structure, then S is unirational.

Remark. When these are minimal, Picard number $\rho(S)=2$.
Question 1. Is there a DP1 with $\rho=1$ that is unirational?
Question 2. Is there a DP1 with $\rho=1$ that is not unirational?

Philosophy. Geometry governs arithmetic.
Easier geometry (over algebraic closure) \Rightarrow more rational points.

Conjecture. (follows from a conjecture by Colliot-Thélène). If S is DP1 over a number field k, then $S(k)$ is Zariski dense in S.

Ultimate goal. Prove this.

Immediate goal. Prove this under some assumptions.

- Special families
- Existence of a special rational point

Every Del Pezzo surface S / k of degree $d=1$ is isomorphic to a smooth sextic in $\mathbb{P}(2,3,1,1)$, with coordinates x, y, z, w, given by

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

with $a_{i} \in k[z, w]$ homogeneous of degree i. (And vice versa.)
Linear system $\left|-K_{S}\right|$ induces rational map $S \rightarrow \mathbb{P}^{1}(z, w)$.
Unique base point $O=[1: 1: 0: 0]$.
Curves in $\left|-K_{S}\right|$ are fibers of $\mathrm{Bl}_{\mathcal{O}}(S) \rightarrow \mathbb{P}^{1}$ (anticanonical fiber). Almost all are elliptic fibers, all are geometrically integral.

Theorem (Várilly-Alvarado). Let A, B be nonzero integers, and let S be the Del Pezzo surface of degree 1 over \mathbb{Q} given by

$$
y^{2}=x^{3}+A z^{6}+B w^{6}
$$

Assume that Tate-Shafarevich groups of elliptic curves over \mathbb{Q} with j-invariant 0 are finite. If $3 A B$ is not a square, or if A and B are relatively prime and $9 \nmid A B$, then $S(\mathbb{Q})$ is Zariski dense in S.

Question. What about $y^{2}=x^{3}+243 z^{6}+16 w^{6}$?

Theorem (Salgado-vL). Let $S \subset \mathbb{P}(2,3,1,1)$ be a Del Pezzo surface of degree 1 over a number field k. Suppose F is a smooth anticanonical fiber with a point $P \in F(k)$ of order >2 that does not lie on six exceptional curves. Set $U=\mathbb{P}(2,3,1,1) \backslash Z(z, w)$ and let \mathcal{C} denote the curve of those sections of the projection $U \rightarrow \mathbb{P}^{1}(z, w)$ that meet S at the point P with multiplicity at least 5. If $\# \mathcal{C}(k)=\infty$, then $S(k)$ is Zariski dense.

Remark. If the order of P is 3 , then $\# \mathcal{C}(k)=\infty$ for free. For Várilly-Alvarado's example

$$
y^{2}=x^{3}+243 z^{6}+16 w^{6}
$$

there is a 3-torsion point $[0: 4: 0: 1]$, but it lies on nine exceptional curves...
The coefficients of the curve \mathcal{C} associated to the point [-63:14:1:5] are too large to find points...

Theorem (Bulthuis-vL). Let S be a DP1 over a number field k. Suppose F is a smooth anticanonical fiber with a point $P \in F(k)$ of finite order $n>1$. Then the linear system

$$
\left|-n K_{S}-n P\right|=\left\{D \in\left|-n K_{S}\right|: \mu_{P}(D) \geq n\right\}
$$

induces a fibration $\varphi: \mathrm{Bl}_{P}(S) \rightarrow \mathbb{P}^{1}$ of curves of genus 1 .
Moreover, the set $S(k)$ is Zariski dense if and only if there is a $Q \in S(k) \backslash\{P\}$ such that the fiber $G_{Q}=\varphi^{-1}(\varphi(Q))$ is smooth, and on the elliptic curve $\left(G_{Q}, Q\right)$, the sum of the points above P has infinite order.

Theorem (Desjardins-Winter).
Let k be a field of characteristic 0 with $a, b, c \in k$ and $a c \neq 0$. Let $S \subset \mathbb{P}(2,3,1,1) \supset \mathbb{A}^{3}(x, y, t)$ be given by

$$
y^{2}=x^{3}+a t^{6}+b t^{3}+c
$$

If S contains a k-rational point $\left(x_{0}, y_{0}, t_{0}\right)$ with $t_{0} \neq 0, \infty$ that is non-torsion on its fiber, then $S(k)$ is Zariski dense in S.

If rational points are dense on some fiber F, then also on S.
Theorem (Desjardins-Winter + Colliot-Thélène).
If k is of finite type over \mathbb{Q}, then the converse holds as well.

Note: $a t^{6}+b t^{3}+c=a_{6}(f(t))$ for $a_{6}=a u^{2}+b u+c$ and $f=t^{3}$.

Theorem (Nijgh, vL)
Let k be a field, and $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in k[u]$ and $f=\sum f_{i} t^{i} \in k[t]$ polynomials with $3 \operatorname{deg}\left(a_{i}\right) \leq i$ and $\operatorname{deg}(f)=3$. Let
$S \subset \mathbb{A}^{3}(x, y, t)$ be the surface given by
$y^{2}+a_{1}(f(t)) x y+a_{3}(f(t)) y=x^{3}+a_{2}(f(t)) x^{2}+a_{4}(f(t)) x+a_{6}(f(t))$.
Suppose that S is smooth, $\operatorname{deg}\left(4 a_{6}+a_{3}^{2}\right)=2$, and char $k=0$.
If there is a $t_{0} \in k$ such that

1. $3 t_{0} f_{3} \neq-f_{2}$,
2. $f-f\left(t_{0}\right)$ is separable,
3. the curve $F \subset S$ given by $t=t_{0}$ is smooth, and
4. the set $F(k)$ of k-rational points on F is infinite, then the set $S(k)$ of k-rational points is Zariski dense in S.

If k is of finite type over \mathbb{Q}, then the converse holds as well.
If rational points are dense on some fiber F, then also on S.

Standard attack:

Find multisection with
(1) infinitely many rational points (so genus ≤ 1)
(2) infinite order

$$
\begin{aligned}
& \text { Given } R \in F \text {, construct a curve } C_{R} \subset S \text {. } \\
& R, R_{0}=\left(x_{0}, y_{0}, t_{0}\right) \quad t_{0} \in k \\
& \varphi(R)=\left(x_{0}, y_{0}, f\left(t_{0}\right)\right) \\
& f(t)-f(t)=f_{3}\left(t-t_{0}\right)\left(t-t_{1}\right)\left(t-t_{2}\right) \\
& R_{1}=\left(x_{0}, y_{0}, t_{1}\right) \quad t_{1}, t_{2} \in k \\
& R_{2}=\left(x_{0}, y_{0}, t_{2}\right) \\
& \varphi \text { étale around } R_{0}, R_{1}, R_{2} \\
& \text { Tangent plane } \\
& T_{S^{\prime}, \varphi(R)}: \alpha x+\beta y+a^{3}(f(t)) x+a_{6}(f(t)) \\
& C_{R}=\underbrace{\varphi^{-1}\left(T_{s^{\prime}, \varphi(R)}\right)} \cap+\beta y+\gamma f(t)=0 \\
& L_{\text {nonzero }} \text { if } 2 R \neq \sigma \text { on } F
\end{aligned}
$$

singular fiber of type 牧* at $u=\infty$ $t \mapsto f(t)$ totally ramified above $u=\infty$

A family of curves C_{R}.

Set $F^{\circ}=F \backslash F[2] \quad$ and $\quad A=\mathbb{A}^{1}(x) \backslash x(F[2])$.
For $x \in A$ define $D_{x}=\tau\left(C_{R}\right) \subset \mathbb{P}(2,1,1)$ where $x(R)=x$.
Set $\mathcal{C}=\left\{(R, P): R \in F^{\circ}, P \in C_{R}\right\} \subset F^{\circ} \times S$.
Set $\mathcal{D}=\left\{(x, P): x \in A, P \in D_{x}\right\} \subset A \times \mathbb{P}(2,1,1)$.
The 4-1 map $\quad F^{\circ} \times S \longrightarrow A \times \mathbb{P}(2,1,1)$

$$
(R, P) \mapsto(x(R), \tau(P))
$$

induces a Cartesian diagram.

The projection map $\mathcal{C} \rightarrow S$ is dominant, and $\left|F^{\circ}(k)\right|=\infty$.
"Conclusion". Enough to show $\mathcal{D} \rightarrow A$ has section of infinite order.

Real conclusion.

Let η be the generic point of F, and take $R=R_{0}=\eta$.
May assume generic fiber of $\mathcal{D} \rightarrow A$ is geometrically integral and singular only at the three points $\tau\left(R_{i}\right)$.
Let $\tilde{\mathcal{D}} \rightarrow A$ correspond to the normalisation.
Enough to show that on the elliptic surface $\tilde{\mathcal{D}} \rightarrow A$ with zero section $\tau\left(Q_{0}\right)$, the section $\tau\left(Q_{1}\right)+\tau\left(Q_{2}\right)$ has infinite order.

Claim.
The surface $\tilde{\mathcal{D}}$ embeds into $A \times \mathbb{P}^{2}$ as family of cubic curves.

Take

$$
\begin{aligned}
a_{1}= & \epsilon, \quad a_{2}=\gamma, \quad a_{3}=\delta_{1} u+\delta_{0}, \quad a_{4}=\beta_{1} u+\beta_{0}, \quad a_{6}=\alpha_{2} u^{2}+\alpha_{1} u+\alpha_{0} \\
F_{0}: & y^{2}+a_{1}\left(f\left(t_{0}\right)\right) x y+a_{3}\left(f\left(t_{0}\right)\right) y=x^{3}+a_{2}\left(f\left(t_{0}\right)\right) x^{2}+a_{4}\left(f\left(t_{0}\right)\right) x+a_{6}\left(f\left(t_{0}\right)\right) \\
\Phi_{2}= & \Phi_{2}\left(F_{0}\right)=\left(\text { 2-division polynomial of } F_{0}\right)=4 x^{3}+\ldots \\
\Phi_{3}= & \Phi_{3}\left(F_{0}\right)=\left(3 \text {-division polynomial of } F_{0}\right)=3 x^{4}+\ldots \\
\Psi_{1}= & \left(-12 \alpha_{2}-3 \delta_{1}^{2}\right) x^{2}+\left(-8 \alpha_{2} \gamma-2 \alpha_{2} \epsilon^{2}+2 \beta_{1}^{2}+2 \beta_{1} \delta_{1} \epsilon-2 \gamma \delta_{1}^{2}\right) x \\
& +2 \alpha_{1} \beta_{1}+\alpha_{1} \delta_{1} \epsilon-4 \alpha_{2} \beta_{0}-2 \alpha_{2} \delta_{0} \epsilon-\beta_{0} \delta_{1}^{2}+\beta_{1} \delta_{0} \delta_{1} \\
\Psi_{2}= & \left(-2 \beta_{1}-\delta_{1} \epsilon\right) x^{3}+\left(-6 \alpha_{1}-3 \delta_{0} \delta_{1}\right) x^{2}+\left(-4 \alpha_{1} \gamma-\alpha_{1} \epsilon^{2}+2 \beta_{0} \beta_{1}+\beta_{0} \delta_{1} \epsilon+\beta_{1} \delta_{0} \epsilon-2 \gamma \delta_{0} \delta_{1}\right) x \\
& +4 \alpha_{0} \beta_{1}+2 \alpha_{0} \delta_{1} \epsilon-2 \alpha_{1} \beta_{0}-\alpha_{1} \delta_{0} \epsilon-\beta_{0} \delta_{0} \delta_{1}+\beta_{1} \delta_{0}^{2} \\
\Psi_{3}= & \left(4 \alpha_{2}+\delta_{1}^{2}\right) x^{3}+\left(4 \alpha_{2} \gamma+\alpha_{2} \epsilon^{2}-\beta_{1}^{2}-\beta_{1} \delta_{1} \epsilon+\gamma \delta_{1}^{2}\right) x^{2}+\left(-2 \alpha_{1} \beta_{1}-\alpha_{1} \delta_{1} \epsilon+4 \alpha_{2} \beta_{0}\right. \\
& \left.+2 \alpha_{2} \delta_{0} \epsilon+\beta_{0} \delta_{1}^{2}-\beta_{1} \delta_{0} \delta_{1}\right) x+4 \alpha_{0} \alpha_{2}+\alpha_{0} \delta_{1}^{2}-\alpha_{1}^{2}-\alpha_{1} \delta_{0} \delta_{1}+\alpha_{2} \delta_{0}^{2}
\end{aligned}
$$

Then $\tilde{\mathcal{D}} \subset A(x) \times \mathbb{A}^{2}(s, t) \subset \mathbb{P}^{1} \times \mathbb{P}^{2}$ is given by

$$
\Psi_{3} s^{3}+\left(\Psi_{1} f\left(t_{0}\right)+\Psi_{2}\right) s^{2}+\Phi_{3} \cdot s=\Phi_{2} \cdot\left(f\left(t_{0}\right)-f(t)\right) .
$$

The point (section) $\tau\left(Q_{i}\right)$ corresponds with $\left(x,\left(0, t_{i}\right)\right)$.

The section $\tau\left(Q_{1}\right)+\tau\left(Q_{2}\right)$ has infinite order!
$\bar{\sim} \subset \mathbb{P}^{\prime} \times \mathbb{P}^{2}$

\mathbb{P}^{\prime}

On minimal regular model, fiber at ∞ is of type I_{0}^{*}.
Addition on Néron model specialises on additive fiber to

$$
\left(0, t_{1}\right)+\left(0, t_{2}\right)=\left(0, t_{3}\right)
$$

with

$$
t_{3}-t_{0}=\left(t_{1}-t_{0}\right)+\left(t_{2}-t_{0}\right)
$$

Since $\operatorname{char}(k)=0$, the group (k, t) has no torsion, so ∞ order if nonzero, ie.,

$$
3 t_{0} \neq t_{0}+t_{1}+t_{2}=-f_{2} / f_{3} .
$$

So section $T_{1}+T_{2}$ has infinite order

The converse
If k is of finite type over \mathbb{Q} and $S(k)$ is dense, then there are infinitely many fibers F with infinitely many rational points.
proof
If k is a number field, then by Merel, the order of torsion points on elliptic curves over k is uniformly bounded, say by N. An extension by Colliot-Thélène states the same for k of finite type over \mathbb{Q}.
Hence there is a proper closed subset of S containing all k-points that have finite order on their fiber.

Thanks!

