

K3 surfaces with Picard number one and infinitely many rational points

February 16, 2010
Tokyo
Ronald van Luijk

Computing Picard groups of surfaces

February 16, 2010
Tokyo
Ronald van Luijk

Computing Picard groups of surfaces (char.-p methods)

February 16, 2010
Tokyo
Ronald van Luijk
0) Some definitions

Surface:

smooth, projective, geometrically integral, dimension 2 over a field.

K3 surface : a surface X with $\operatorname{dim} H^{1}\left(X, \mathcal{O}_{X}\right)=0$ and trivial canonical sheaf.

Examples:

- A smooth quartic surface in \mathbb{P}^{3}.
- Kummer surface: minimal nonsingular model of $A /[-1]$, with A an abelian surface.

1) Advertisement for arithmetic

Example [Noam Elkies].

$$
95800^{4}+217519^{4}+414560^{4}=422481^{4}
$$

1) Advertisement for arithmetic

Example [Noam Elkies].

$$
95800^{4}+217519^{4}+414560^{4}=422481^{4}
$$

Rational points are (Zariski) dense on surface

$$
\mathbb{P}^{3} \supset X: x^{4}+y^{4}+z^{4}=t^{4} .
$$

Example. Let $X \subset \mathbb{P}^{3}$ be given by

$$
x^{4}+2 y^{4}=z^{4}+4 w^{4} .
$$

Question 1 (Swinnerton-Dyer, 2002).
Does X have more than two rational points?

Example. Let $X \subset \mathbb{P}^{3}$ be given by

$$
x^{4}+2 y^{4}=z^{4}+4 w^{4} .
$$

Question 1 (Swinnerton-Dyer, 2002).
Does X have more than two rational points?

Answer (Elsenhans, Jahnel, 2004):

$$
1484801^{4}+2 \cdot 1203120^{4}=1169407^{4}+4 \cdot 1157520^{4}
$$

Question 2 (open). Does there exist a K3 surface X over a number field k such that the set $X(k)$ of k-rational points on X is neither empty nor dense?

Néron-Severi group $\mathrm{NS}(X)$ of a surface X over a field k : group of divisor classes modulo algebraic equivalence.

Linear equivalence implies algebraic equivalence, so quotient map

$$
\operatorname{Pic} X \rightarrow \mathrm{NS}(X)
$$

Néron-Severi group $\mathrm{NS}(X)$ of a surface X over a field k : group of divisor classes modulo algebraic equivalence.

Linear equivalence implies algebraic equivalence, so quotient map

$$
\operatorname{Pic} X \rightarrow \mathrm{NS}(X)
$$

Group $\operatorname{NS}(X)$ is finitely generated.
The Picard number of X is $\rho(X)=$ rank $\operatorname{NS}(X)$.
The geometric Picard number of X is $\rho(\bar{X})$ with $\bar{X}=X \times_{k} \bar{k}$.

Néron-Severi group $\mathrm{NS}(X)$ of a surface X over a field k : group of divisor classes modulo algebraic equivalence.

Linear equivalence implies algebraic equivalence, so quotient map

$$
\operatorname{Pic} X \rightarrow \mathrm{NS}(X)
$$

Group $\operatorname{NS}(X)$ is finitely generated.
The Picard number of X is $\rho(X)=$ rank $\operatorname{NS}(X)$.
The geometric Picard number of X is $\rho(\bar{X})$ with $\bar{X}=X \times_{k} \bar{k}$.

K3 surface: (linear $=$ algebraic $=$ numerical) equivalence, Pic $X \cong \mathrm{NS}(X)$ is torsion-free and $1 \leq \rho(X) \leq \rho(\bar{X}) \leq B_{2}=22$.

Elkies'

$$
x^{4}+y^{4}+z^{4}=t^{4} \quad \text { has } \quad \rho=4
$$

$$
\text { Swinnerton-Dyer's } x^{4}+2 y^{4}=z^{4}+4 w^{4} \quad \text { has } \quad \rho=1
$$

Elkies'

$$
x^{4}+y^{4}+z^{4}=t^{4} \quad \text { has } \quad \rho=4
$$

$$
\text { Swinnerton-Dyer's } x^{4}+2 y^{4}=z^{4}+4 w^{4} \quad \text { has } \quad \rho=1
$$

Vague idea:

The higher the Picard number of X, the "easier" it is for X to have lots of rational points.

Let X be a K3 surface over a number field k. If there exists a finite field extension k^{\prime} / k such that $X\left(k^{\prime}\right)$ is Zariski dense in X, then we say that rational points on X are potentially dense.

Let X be a K3 surface over a number field k. If there exists a finite field extension k^{\prime} / k such that $X\left(k^{\prime}\right)$ is Zariski dense in X, then we say that rational points on X are potentially dense.

Theorem[F. Bogomolov - Y. Tschinkel]
Let X be a K3 surface over a number field.
(a) If Aut \bar{X} is infinite or \bar{X} has an elliptic fibration, then rational points on X are potentially dense.
(b) If $\rho(\bar{X}) \geq 2$, then in most cases rational points on X are potentially dense.

Let X be a K3 surface over a number field k. If there exists a finite field extension k^{\prime} / k such that $X\left(k^{\prime}\right)$ is Zariski dense in X, then we say that rational points on X are potentially dense.

Theorem[F. Bogomolov - Y. Tschinkel]
Let X be a K3 surface over a number field.
(a) If Aut \bar{X} is infinite or \bar{X} has an elliptic fibration, then rational points on X are potentially dense.
(b) If $\rho(\bar{X}) \geq 2$, then in most cases
rational points on X are potentially dense.
Question 3. Is there a K3 surface X over a number field with $\rho(\bar{X})=1$ on which the rational points are potentially dense?

Let X be a K3 surface over a number field k. If there exists a finite field extension k^{\prime} / k such that $X\left(k^{\prime}\right)$ is Zariski dense in X, then we say that rational points on X are potentially dense.

Theorem[F. Bogomolov - Y. Tschinkel]
Let X be a K3 surface over a number field.
(a) If Aut \bar{X} is infinite or \bar{X} has an elliptic fibration, then rational points on X are potentially dense.
(b) If $\rho(\bar{X}) \geq 2$, then in most cases
rational points on X are potentially dense.
Question 3. Is there a K3 surface X over a number field with $\rho(\bar{X})=1$ on which the rational points are potentially dense?
Question 4. Is there a K3 surface X over a number field with $\rho(\bar{X})=1$ on which the rational points are not potentially dense?

2) The main problem

Question 5 (Swinnerton-Dyer). Is there a K3 surface over a number field with Picard number 1 on which there are infinitely many rational points?

We will see that they do exist, even with the geometric Picard number equal to 1 . We can also take the ground field to be \mathbb{Q}.

2) The main problem

Question 5. Is there a K3 surface over a number field with Picard number 1 on which there are infinitely many rational points?

1) infinitely many rational points
2) geometric Picard number 1

2) The main problem

Question 5. Is there a K3 surface over a number field with Picard number 1 on which there are infinitely many rational points?

1) infinitely many rational points
2) geometric Picard number 1 (hardest, despite:)

Theorem[P. Deligne, 1973]
A general quartic surface in \mathbb{P}^{3} has geometric Picard number 1 .

2) The main problem

Question 5. Is there a K3 surface over a number field with Picard number 1 on which there are infinitely many rational points?

1) infinitely many rational points
2) geometric Picard number 1 (hardest, despite:)

Theorem[P. Deligne, 1973]
A general quartic surface in \mathbb{P}^{3} has geometric Picard number 1 .

Quartic surfaces in \mathbb{P}^{3} are parametrized by \mathbb{P}^{34}. "General" means "up to a countable union of proper closed subsets of $\mathbb{P}^{34 "}$.

A priori this could exclude all quartic surfaces defined over $\overline{\mathbb{Q}}$!

What was known?

Theorem[T. Terasoma, 1985; J. Ellenberg, 2004]
K3 surfaces over \mathbb{Q} with geometric Picard number 1 exist.

Theorem[T. Shioda]
For every prime $m \geq 5$ the surface in \mathbb{P}^{3} given by

$$
w^{m}+x y^{m-1}+y z^{m-1}+z x^{m-1}=0
$$

has geometric Picard number 1.

Theorem[vL] The quartic surface in $\mathbb{P}^{3}(x, y, z, w)$ given by

$$
w f=3 p q-2 z g
$$

with $f \in \mathbb{Z}[x, y, z, w]$ and $g, p, q \in \mathbb{Z}[x, y, z]$ equal to

$$
\begin{aligned}
f= & x^{3}-x^{2} y-x^{2} z+x^{2} w-x y^{2}-x y z+2 x y w+x z^{2}+2 x z w+y^{3} \\
& +y^{2} z-y^{2} w+y z^{2}+y z w-y w^{2}+z^{2} w+z w^{2}+2 w^{3}, \\
g= & x y^{2}+x y z-x z^{2}-y z^{2}+z^{3}, \\
p= & z^{2}+x y+y z, \\
q= & z^{2}+x y,
\end{aligned}
$$

has geometric Picard number 1 and infinitely many rational points.

Theorem The quartic surface S in $\mathbb{P}^{3}(x, y, z, w)$ given by

$$
w f=3 p q-2 z g
$$

has geometric Picard number 1 and infinitely many rational points.

Infinitely many rational points:

The curve $C=S \cap\left(H_{w}: w=0\right)$, has infinitely many rational points.
The plane H_{w} is tangent to S at [1:0:0:0] and [0:1:0:0].
Therefore, $g(C) \leq 1$, so consistent with Faltings' Theorem.

3) Bounding the Picard number from above

Let X be a (smooth, projective, geometrically integral) surface over \mathbb{Q} and let \mathcal{X} be an integral model with good reduction at the prime p.

From étale cohomology we get injections

$$
\operatorname{NS}\left(X_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}_{l} \hookrightarrow \operatorname{NS}\left(\mathcal{X}_{\overline{\mathbb{F}}_{p}}\right) \otimes \mathbb{Q}_{l} \hookrightarrow H_{\mathrm{e} \mathrm{t}}^{2}\left(\mathcal{X}_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{l}(1)\right)
$$

The second injection respects Frobenius.

3) Bounding the Picard number from above

Let X be a (smooth, projective, geometrically integral) surface over \mathbb{Q} and let \mathcal{X} be an integral model with good reduction at the prime p.

From étale cohomology we get injections

$$
\operatorname{NS}\left(X_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}_{l} \hookrightarrow \operatorname{NS}\left(\mathcal{X}_{\overline{\mathbb{F}}_{p}}\right) \otimes \mathbb{Q}_{l} \hookrightarrow H_{\mathrm{e} \mathrm{t}}^{2}\left(\mathcal{X}_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{l}(1)\right)
$$

The second injection respects Frobenius.

Corollary The rank $\rho\left(X_{\overline{\mathbb{Q}}}\right)$ is bounded from above by the number of eigenvalues λ of Frobenius acting on $H_{\text {ett }}^{2}\left(\mathcal{X}_{\overline{\mathbb{F}_{p}}}, \mathbb{Q}_{l}(1)\right)$ for which λ is a root of unity.

$$
\operatorname{NS}\left(X_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}_{l} \hookrightarrow \operatorname{NS}\left(\mathcal{X}_{\overline{\mathbb{F}}_{p}}\right) \otimes \mathbb{Q}_{l} \hookrightarrow H_{\mathrm{et}}^{2}\left(\mathcal{X}_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{l}(1)\right) .
$$

We can compute the characteristic polynomial f of Frobenius by computing traces of its powers through the Lefschetz formula

$$
\# \mathcal{X}\left(\mathbb{F}_{p^{n}}\right)=\sum_{i=0}^{4}(-1)^{i} \operatorname{Tr}\left(\mathbf{F r o b}^{n} \text { on } H_{\mathrm{et}}^{i}\left(\mathcal{X}_{\overline{\mathbb{F}_{p}}}, \mathbb{Q}_{l}\right)\right)
$$

Note the difference between \mathbb{Q}_{l} and the twist $\mathbb{Q}_{l}(1)$.

Knowing the traces, the characteristic polynomial f follows from simple linear algebra and scaling of the roots by a factor p.

Problem!

The degree of f is B_{2}, so even (22) for $K 3$ surfaces.
Lemma Let f be a polynomial with real coefficients and even degree, such that all its roots have complex absolute value 1. Then the number of roots of f that are roots of unity is even.

Proof. All the real roots of f are roots of unity. The remaining roots come in conjugate pairs, either both being a root of unity or both not being a root of unity. Therefore, the number of roots that are not roots of unity is even (independent of the parity of the degree).

4) A trick!

The intersection pairing gives the Néron-Severi group the structure of a lattice. The injection

$$
\operatorname{NS}\left(X_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}_{l} \hookrightarrow \operatorname{NS}\left(\mathcal{X}_{\overline{\mathbb{F}}_{p}}\right) \otimes \mathbb{Q}_{l}
$$

of \mathbb{Q}_{l}-vector spaces respects the inner product.

Lemma If Λ^{\prime} is a sublattice of finite index of Λ, then we have

$$
\operatorname{disc} \Lambda^{\prime}=\left[\Lambda: \Lambda^{\prime}\right]^{2} \operatorname{disc} \Lambda
$$

This implies that $\operatorname{disc} \Lambda$ and $\operatorname{disc} \Lambda^{\prime}$ have the same image in $\mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}$.

Sketch of proof

We find finite-index sublattices M_{2} and M_{3} of the Néron-Severi groups over $\overline{\mathbb{F}}_{2}$ and $\overline{\mathbb{F}}_{3}$ respectively. Both will have rank 2 , which already shows that the rank of $\mathrm{NS}\left(S_{\overline{\mathbb{Q}}}\right)$ is at most 2 . We get the following diagram

$$
\begin{aligned}
& \operatorname{NS}\left(S_{\overline{\mathbb{Q}}}\right) \subset \operatorname{NS}\left(S_{\overline{\mathbb{F}}_{2}}\right) \supset M_{2}
\end{aligned}
$$

Example chosen so that the images of disc M_{2} and $\operatorname{disc} M_{3}$ in $\mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}$ are different, so $\mathrm{NS}\left(S_{\overline{\mathbb{Q}}}\right)$ has rank at most 1 .

The example was $w f=3 p q-2 z g$.

The reduction S_{3} of S at 3 is given by $w f=z g$, so it contains the line $L: w=z=0$. By the adjunction formula

$$
L \cdot\left(L+K_{S_{3}}\right)=2 g(L)-2=-2
$$

with canonical divisor $K_{S_{3}}=0$, we find $L^{2}=-2$.

Let M_{3} be the lattice generated by the hyperplane section H and L. With respect to $\{H, L\}$ the inner product on M_{3} is given by

$$
\left(\begin{array}{cc}
4 & 1 \\
1 & -2
\end{array}\right)
$$

With respect to $\{H, L\}$ the inner product on M_{3} is given by

$$
\left(\begin{array}{cc}
4 & 1 \\
1 & -2
\end{array}\right)
$$

We get disc $M_{3}=-9$. By counting points as described before we find that the characteristic polynomial of Frobenius acting on $H_{\text {et }}^{2}\left(S_{\overline{\mathbb{F}}_{3}}, \mathbb{Q}_{l}(1)\right)$ factors over \mathbb{Q} as

$$
\begin{aligned}
(x-1)^{2}\left(x^{20}\right. & +\frac{1}{3} x^{19}-x^{18}+\frac{1}{3} x^{17}+2 x^{16}-2 x^{14}+\frac{1}{3} x^{13} \\
& +2 x^{12}-\frac{1}{3} x^{11}-\frac{7}{3} x^{10}-\frac{1}{3} x^{9}+2 x^{8}+\frac{1}{3} x^{7}-2 x^{6} \\
& \left.+2 x^{4}+\frac{1}{3} x^{3}-x^{2}+\frac{1}{3} x+1\right)
\end{aligned}
$$

As the second factor is not integral, we find that exactly two of its roots are roots of unity. We conclude that M_{3} has finite index in $\operatorname{NS}\left(S_{\overline{\mathbb{F}}_{3}}\right)$.

The example is still $w f=3 p q-2 z g$.

The reduction S_{2} is given by $w f=p q$, for some quadratic forms p and q. It therefore contains a conic C given by $w=p=0$. By the adjunction formula

$$
C \cdot\left(C+K_{S_{2}}\right)=2 g(C)-2=-2
$$

we find $C^{2}=-2$. Let M_{2} be the lattice generated by the hyperplane section H and C. With respect to $\{H, C\}$ the inner product on M_{3} is given by

$$
\left(\begin{array}{cc}
4 & 2 \\
2 & -2
\end{array}\right)
$$

With respect to $\{H, C\}$ the inner product on M_{2} is given by

$$
\left(\begin{array}{cc}
4 & 2 \\
2 & -2
\end{array}\right)
$$

We get disc $M_{2}=-12$. By counting points as described before we find that the characteristic polynomial of Frobenius acting on $H_{\mathrm{et}}^{2}\left(S_{\overline{\mathbb{F}}_{2}}, \mathbb{Q}_{l}(1)\right)$ factors over \mathbb{Q} as

$$
\begin{aligned}
(x-1)^{2}\left(x^{20}\right. & +\frac{1}{2} x^{19}-\frac{1}{2} x^{18}+\frac{1}{2} x^{16}+\frac{1}{2} x^{14}+\frac{1}{2} x^{11}+x^{10} \\
& \left.+\frac{1}{2} x^{9}+\frac{1}{2} x^{6}+\frac{1}{2} x^{4}-\frac{1}{2} x^{2}+\frac{1}{2} x+1\right) .
\end{aligned}
$$

The last factor is not integral, so M_{2} has finite index in $\operatorname{NS}\left(S_{\overline{\mathbb{F}}_{2}}\right)$.

$$
\begin{aligned}
& \operatorname{NS}\left(S_{\overline{\mathbb{Q}}}\right) \subset \operatorname{NS}\left(S_{\overline{\mathbb{F}}_{2}}\right) \supset M_{2} \\
& \| \operatorname{NS}\left(S_{\overline{\mathbb{Q}}}\right) \subset \operatorname{NS}\left(S_{\overline{\mathbb{F}}_{3}}\right) \supset M_{3}
\end{aligned}
$$

As disc $M_{3}=-9$ and $\operatorname{disc} M_{2}=-12$ do not have the same image in $\mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}$, we have proven that $\mathrm{NS}\left(S_{\overline{\mathbb{Q}}}\right)$ has rank 1 . By the adjunction formula the lattice is even, so it is generated by H.

$$
\begin{aligned}
& \operatorname{NS}\left(S_{\overline{\mathbb{Q}}}\right) \subset \operatorname{NS}\left(S_{\overline{\mathbb{F}}_{2}}\right) \supset M_{2} \\
& \| \operatorname{NS}\left(S_{\overline{\mathbb{Q}}}\right) \subset \operatorname{NS}\left(S_{\overline{\mathbb{F}}_{3}}\right) \supset M_{3}
\end{aligned}
$$

As disc $M_{3}=-9$ and $\operatorname{disc} M_{2}=-12$ do not have the same image in $\mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}$, we have proven that $\mathrm{NS}\left(S_{\overline{\mathbb{Q}}}\right)$ has rank 1 . By the adjunction formula the lattice is even, so it is generated by H.

This trick works if $\rho=\rho(\bar{X})$ is odd and primes p_{1}, p_{2} are such that

$$
\rho\left(X_{\overline{\mathbb{F}}_{p_{i}}}\right)=\rho+1
$$

and the images of disc $N S X_{\overline{\mathbb{F}}_{p_{i}}}$ in $\mathbb{Q}^{*} / \mathbb{Q}^{* 2}$ are different.

5) Extension by R. Kloosterman

Conjecture[Artin-Tate for K3] Let $X / \overline{\mathbb{F}}_{q}$ be a K3 surface. Let f be the characteristic polynomial of Frobenius acting on $H_{\mathrm{et}}^{i}\left(\mathcal{X}_{\overline{\mathbb{F}_{q}}}, \mathbb{Q}_{l}\right)$. Let ρ and Δ denote the rank and the discriminant of $\mathrm{NS}(X)$. Let $\operatorname{Br} X$ denote the Brauer group of X. Then

$$
\lim _{T \rightarrow q} \frac{f(T)}{(T-q)^{\rho}}=-q^{21-\rho} \cdot \# \operatorname{Br} X \cdot \Delta
$$

5) Extension by R. Kloosterman

Conjecture[Artin-Tate for K 3] Let $X / \overline{\mathbb{F}}_{q}$ be a K 3 surface. Let f be the characteristic polynomial of Frobenius acting on $H_{e_{\mathrm{t}}}^{i}\left(\mathcal{X}_{\overline{\mathbb{F}}_{q}}, \mathbb{Q}_{l}\right)$. Let ρ and Δ denote the rank and the discriminant of $\operatorname{NS}(X)$. Let $\operatorname{Br} X$ denote the Brauer group of X. Then

$$
\lim _{T \rightarrow q} \frac{f(T)}{(T-q)^{\rho}}=-q^{21-\rho} \cdot \# \operatorname{Br} X \cdot \Delta
$$

Facts:

Tate conjecture \Rightarrow Artin-Tate
$\operatorname{Br} X$ finite $\Rightarrow \# \operatorname{Br} X$ is square (Liu-Lorenzini-Raynaud)

Conclusion: Artin conjecture gives $\Delta \in \mathbb{Q}^{*} / \mathbb{Q}^{* 2}$ without explicit generators of disc $\operatorname{NS}\left(S_{\overline{\mathbb{F}}_{q}}\right)$.

Application

Theorem[R. Kloosterman, 2005]
The elliptic K3 surface $\pi: X \rightarrow \mathbb{P}^{1}$ over $\overline{\mathbb{Q}}$ with Weierstrass equation

$$
y^{2}=x^{3}+2\left(t^{8}+14 t^{4}+1\right) x+4 t^{2}\left(t^{8}+6 t^{4}+1\right)
$$

has $\rho(X)=17$ and Mordell-Weil rank 15 .
5) Extension by A.-S. Elsenhans and J. Jahnel

You do not necessarily need

$$
\rho\left(X_{\overline{\mathbb{F}}_{p_{i}}}\right)=\rho+1
$$

Example[A.-S. Elsenhans and J. Jahnel]
Let $S: w^{2}=f_{6}(x, y, z)$ be a K3 surface of degree 2 over \mathbb{Q}. Assume the congruences

$$
f_{6}=y^{6}+x^{4} y^{2}-2 x^{2} y^{4}+2 x^{5} z+3 x z^{5}+z^{6} \quad(\bmod 5)
$$

and

$$
\begin{aligned}
f_{6}=2 x^{6} & +x^{4} y^{2}+2 x^{3} y^{2} z+x^{2} y^{2} z^{2}+x^{2} y z^{3}+2 x^{2} z^{4}+x y^{4} z \\
& +x y^{3} z^{2}+x y^{2} z^{3}+2 x z^{5}+2 y^{6}+y^{4} z^{2}+y^{3} z^{3} \quad(\bmod 3) .
\end{aligned}
$$

Then \mathbf{S} has geometric Picard rank 1.

5) Extension by A.-S. Elsenhans and J. Jahnel

Let L denote the pull-back of a line in \mathbb{P}^{2}.

The characteristic polynomial of Frobenius acting on the space

$$
\left(\mathrm{NS} S_{\overline{\mathbb{F}}_{3}} \otimes \mathbb{Q}_{l}\right) /\langle L\rangle
$$

equals

$$
(t-1)\left(t^{2}+t+1\right)
$$

There are only finitely many Galois-invariant subspaces of $\mathrm{NS} S_{\overline{\mathbb{F}}_{3}} \otimes \mathbb{Q}_{l}$ containing L. Their dimensions are $1,2,3,4$.
5) Extension by A.-S. Elsenhans and J. Jahnel

There are only finitely many Galois-invariant subspaces of $N S S_{\overline{\mathbb{F}}_{3}} \otimes \mathbb{Q}_{l}$ containing L. Their dimensions are $1,2,3,4$.
5) Extension by A.-S. Elsenhans and J. Jahnel

There are only finitely many Galois-invariant subspaces of $N S S_{\overline{\mathbb{F}}_{3}} \otimes \mathbb{Q}_{l}$ containing L. Their dimensions are $1,2,3,4$.

The characteristic polynomial of Frobenius acting on the space

$$
\left(\mathrm{NS} S_{\overline{\mathbb{F}}_{5}} \otimes \mathbb{Q}_{l}\right) /\langle L\rangle
$$

equals $(t-1) \Phi_{5}(t) \Phi_{15}(t)$, where Φ_{n} denotes the n-th cyclotomic polynomial. There are only finitely many Galois-invariant subspaces of $\mathrm{NS} S_{\overline{\mathbb{F}}_{5}} \otimes \mathbb{Q}_{l}$ containing L. Their dimensions are $1,2,5,6,9,10,13,14$.
5) Extension by A.-S. Elsenhans and J. Jahnel

There are only finitely many Galois-invariant subspaces of $\mathrm{NS} S_{\overline{\mathbb{F}}_{3}} \otimes \mathbb{Q}_{l}$ containing L. Their dimensions are $1,2,3,4$.

The characteristic polynomial of Frobenius acting on the space

$$
\left(\mathrm{NS} S_{\overline{\mathbb{F}}_{5}} \otimes \mathbb{Q}_{l}\right) /\langle L\rangle
$$

equals $(t-1) \Phi_{5}(t) \Phi_{15}(t)$, where Φ_{n} denotes the n-th cyclotomic polynomial. There are only finitely many Galois-invariant subspaces of $\mathrm{NS} S_{\overline{\mathbb{F}}_{5}} \otimes \mathbb{Q}_{l}$ containing L. Their dimensions are $1,2,5,6,9,10,13,14$.

Only common dimensions are 1 and 2. Compare discriminants up to squares of the subspaces of dimension 2 .
6) Generators for the Néron-Severi group (Schütt-Shioda)

Assume: $\quad G \subset \mathrm{NS}\left(X_{\overline{\mathbb{Q}}}\right) \hookrightarrow \mathrm{NS}\left(X_{\overline{\mathbb{F}}_{p}}\right)$ torsion free.
Goal: Show $G \subset N S\left(X_{\overline{\mathbb{Q}}}\right)$ is primitive.
6) Generators for the Néron-Severi group (Schütt-Shioda)

Assume: $\quad G \subset \mathrm{NS}\left(X_{\overline{\mathbb{Q}}}\right) \hookrightarrow \mathrm{NS}\left(X_{\overline{\mathbb{F}}_{p}}\right) \quad$ torsion free. Goal: Show $G \subset \operatorname{NS}\left(X_{\overline{\mathbb{Q}}}\right)$ is primitive.

If not primitive, then there is $g \in G$ and a prime

$$
r \mid \operatorname{disc} G=[\widehat{G}: G]^{2} \cdot \operatorname{disc} \widehat{G}
$$

with $\hat{G}=(G \otimes \mathbb{Q}) \cap \operatorname{NS}\left(X_{\overline{\mathbb{Q}}}\right)$ and

$$
0 \neq \bar{g} \in G \otimes \mathbb{F}_{r} \quad \text { and } \quad 0=\bar{g} \in \operatorname{NS}\left(X_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{F}_{r},
$$

so

$$
G \otimes \mathbb{F}_{r} \rightarrow \mathrm{NS}\left(X_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{F}_{r}
$$

is not injective.

Assume: $\quad G \subset \mathrm{NS}\left(X_{\overline{\mathbb{Q}}}\right) \hookrightarrow \mathrm{NS}\left(X_{\overline{\mathbb{F}}_{p}}\right) \quad$ torsion free. Goal: Show $G \subset \operatorname{NS}\left(X_{\overline{\mathbb{Q}}}\right)$ is primitive.

If not primitive, then $\exists r: G \otimes \mathbb{F}_{r} \rightarrow \mathrm{NS}\left(X_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{F}_{r}$ is not injective.

Assume: $\quad G \subset \mathrm{NS}\left(X_{\overline{\mathbb{Q}}}\right) \hookrightarrow \mathrm{NS}\left(X_{\overline{\mathbb{F}}_{p}}\right)$ torsion free. Goal: Show $G \subset \operatorname{NS}\left(X_{\overline{\mathbb{Q}}}\right)$ is primitive.

If not primitive, then $\exists r: G \otimes \mathbb{F}_{r} \rightarrow \mathrm{NS}\left(X_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{F}_{r}$ is not injective.
For such r and every $H \subset \operatorname{NS}\left(X_{\overline{\mathbb{F}}_{p}}\right)$ the composition

$$
G \otimes \mathbb{F}_{r} \rightarrow \operatorname{NS}\left(X_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{F}_{r} \rightarrow \operatorname{Hom}\left(H \otimes \mathbb{F}_{r}, \mathbb{F}_{r}\right)
$$

induced by

$$
\mathrm{NS}\left(X_{\overline{\mathbb{Q}}}\right) \rightarrow \operatorname{Hom}(H, \mathbb{Z}), \quad D \mapsto(x \mapsto D \cdot x)
$$

is not injective.

Assume: $\quad G \subset \mathrm{NS}\left(X_{\overline{\mathbb{Q}}}\right) \hookrightarrow \mathrm{NS}\left(X_{\overline{\mathbb{F}}_{p}}\right) \quad$ torsion free. Goal: Show $G \subset \operatorname{NS}\left(X_{\overline{\mathbb{Q}}}\right)$ is primitive.

If not primitive, then $\exists r$: for every $H \subset \mathrm{NS}\left(X_{\overline{\mathbb{F}}_{p}}\right)$ the composition

$$
G \otimes \mathbb{F}_{r} \rightarrow \operatorname{NS}\left(X_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{F}_{r} \rightarrow \operatorname{Hom}\left(H \otimes \mathbb{F}_{r}, \mathbb{F}_{r}\right)
$$

sending D to ($x \mapsto D \cdot x$) is not injective.

Assume: $\quad G \subset \mathrm{NS}\left(X_{\overline{\mathbb{Q}}}\right) \hookrightarrow \mathrm{NS}\left(X_{\overline{\mathbb{F}}_{p}}\right)$ torsion free. Goal: Show $G \subset \operatorname{NS}\left(X_{\overline{\mathbb{Q}}}\right)$ is primitive.

If not primitive, then $\exists r$: for every $H \subset \mathrm{NS}\left(X_{\overline{\mathbb{F}}_{p}}\right)$ the composition

$$
G \otimes \mathbb{F}_{r} \rightarrow \mathrm{NS}\left(X_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{F}_{r} \rightarrow \operatorname{Hom}\left(H \otimes \mathbb{F}_{r}, \mathbb{F}_{r}\right)
$$

sending D to ($x \mapsto D \cdot x$) is not injective.

Sufficient: Find for each prime r with $r^{2} \mid \operatorname{disc} G$ an $H \subset \operatorname{NS}\left(X_{\overline{\mathbb{F}}_{p}}\right)$ with

$$
G \otimes \mathbb{F}_{r} \rightarrow \mathrm{NS}\left(X_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{F}_{r} \rightarrow \operatorname{Hom}\left(H \otimes \mathbb{F}_{r}, \mathbb{F}_{r}\right)
$$

injective (just linear algebra).

Theorem[Mizukami ($m=4$), Schütt-Shioda-vL ($m \leq 100$)]
For any integer $1 \leq m \leq 100$ the Néron-Severi group of the Fermat surface $S_{m} \subset \mathbb{P}^{3}$ over \mathbb{C} given by

$$
x^{m}+y^{m}+z^{m}+w^{m}=0
$$

is generated by the lines on S_{m} if and only if $m \leq 4$ or $(m, 6)=1$.

