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0) Some definitions

Surface:
smooth, projective, geometrically integral, dimension 2 over a field.

K3 surface : a surface X with dimH1(X,OX) = 0
and trivial canonical sheaf.

Examples:

• A smooth quartic surface in P3.

• Kummer surface: minimal nonsingular model of A/[−1],
with A an abelian surface.



1) Advertisement for arithmetic

Example [Noam Elkies].

958004 + 2175194 + 4145604 = 4224814
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Example [Noam Elkies].

958004 + 2175194 + 4145604 = 4224814

Rational points are (Zariski) dense on surface

P3 ⊃ X : x4 + y4 + z4 = t4.



Example. Let X ⊂ P3 be given by

x4 + 2y4 = z4 + 4w4.

Question 1 (Swinnerton-Dyer, 2002).
Does X have more than two rational points?



Example. Let X ⊂ P3 be given by

x4 + 2y4 = z4 + 4w4.

Question 1 (Swinnerton-Dyer, 2002).
Does X have more than two rational points?

Answer (Elsenhans, Jahnel, 2004):

14848014 + 2 · 12031204 = 11694074 + 4 · 11575204



Question 2 (open). Does there exist a K3 surface X over a number
field k such that the set X(k) of k-rational points on X is neither empty
nor dense?
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group of divisor classes modulo algebraic equivalence.

Linear equivalence implies algebraic equivalence, so quotient map

PicX → NS(X).
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Néron-Severi group NS(X) of a surface X over a field k:
group of divisor classes modulo algebraic equivalence.

Linear equivalence implies algebraic equivalence, so quotient map

PicX → NS(X).

Group NS(X) is finitely generated.
The Picard number of X is ρ(X) = rankNS(X).
The geometric Picard number of X is ρ(X) with X = X ×k k.

K3 surface: (linear = algebraic = numerical) equivalence,
PicX ∼= NS(X) is torsion-free and 1 ≤ ρ(X) ≤ ρ(X) ≤ B2 = 22.



Elkies’ x4 + y4 + z4 = t4 has ρ = 4.
Swinnerton-Dyer’s x4 + 2y4 = z4 + 4w4 has ρ = 1.



Elkies’ x4 + y4 + z4 = t4 has ρ = 4.
Swinnerton-Dyer’s x4 + 2y4 = z4 + 4w4 has ρ = 1.

Vague idea:

The higher the Picard number of X, the “easier” it is for X to have
lots of rational points.
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field extension k′/k such that X(k′) is Zariski dense in X, then we say
that rational points on X are potentially dense.
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Theorem[F. Bogomolov – Y. Tschinkel]
Let X be a K3 surface over a number field.
(a) If AutX is infinite or X has an elliptic fibration,

then rational points on X are potentially dense.
(b) If ρ(X) ≥ 2, then in most cases

rational points on X are potentially dense.
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Question 3. Is there a K3 surface X over a number field with ρ(X) = 1
on which the rational points are potentially dense?



Let X be a K3 surface over a number field k. If there exists a finite
field extension k′/k such that X(k′) is Zariski dense in X, then we say
that rational points on X are potentially dense.

Theorem[F. Bogomolov – Y. Tschinkel]
Let X be a K3 surface over a number field.
(a) If AutX is infinite or X has an elliptic fibration,

then rational points on X are potentially dense.
(b) If ρ(X) ≥ 2, then in most cases

rational points on X are potentially dense.

Question 3. Is there a K3 surface X over a number field with ρ(X) = 1
on which the rational points are potentially dense?
Question 4. Is there a K3 surface X over a number field with ρ(X) = 1
on which the rational points are not potentially dense?



2) The main problem

Question 5 (Swinnerton-Dyer). Is there a K3 surface over a number
field with Picard number 1 on which there are infinitely many rational
points?

We will see that they do exist, even with the geometric Picard number
equal to 1. We can also take the ground field to be Q.
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2) The main problem

Question 5. Is there a K3 surface over a number field with Picard
number 1 on which there are infinitely many rational points?

1) infinitely many rational points
2) geometric Picard number 1 (hardest, despite:)

Theorem[P. Deligne, 1973]
A general quartic surface in P3 has geometric Picard number 1.

Quartic surfaces in P3 are parametrized by P34. “General” means
“up to a countable union of proper closed subsets of P34”.

A priori this could exclude all quartic surfaces defined over Q !



What was known?

Theorem[T. Terasoma, 1985; J. Ellenberg, 2004]
K3 surfaces over Q with geometric Picard number 1 exist.

Theorem[T. Shioda]
For every prime m ≥ 5 the surface in P3 given by

wm + xym−1 + yzm−1 + zxm−1 = 0

has geometric Picard number 1.



Theorem[vL] The quartic surface in P3(x, y, z, w) given by

wf = 3pq − 2zg

with f ∈ Z[x, y, z, w] and g, p, q ∈ Z[x, y, z] equal to

f =x3 − x2y − x2z + x2w − xy2 − xyz + 2xyw + xz2 + 2xzw + y3

+ y2z − y2w + yz2 + yzw − yw2 + z2w + zw2 + 2w3,

g =xy2 + xyz − xz2 − yz2 + z3,

p = z2 + xy + yz,

q = z2 + xy,

has geometric Picard number 1 and infinitely many rational points.



Theorem The quartic surface S in P3(x, y, z, w) given by

wf = 3pq − 2zg

has geometric Picard number 1 and infinitely many rational points.

Infinitely many rational points:
The curve C = S ∩ (Hw : w = 0), has infinitely many rational points.
The plane Hw is tangent to S at [1 : 0 : 0 : 0] and [0 : 1 : 0 : 0].
Therefore, g(C) ≤ 1, so consistent with Faltings’ Theorem.



3) Bounding the Picard number from above

Let X be a (smooth, projective, geometrically integral) surface over Q
and let X be an integral model with good reduction at the prime p.

From étale cohomology we get injections

NS(XQ) ⊗ Ql ↪→ NS(XFp
) ⊗ Ql ↪→ H2

ét(XFp
, Ql(1)).

The second injection respects Frobenius.



3) Bounding the Picard number from above

Let X be a (smooth, projective, geometrically integral) surface over Q
and let X be an integral model with good reduction at the prime p.

From étale cohomology we get injections

NS(XQ) ⊗ Ql ↪→ NS(XFp
) ⊗ Ql ↪→ H2

ét(XFp
, Ql(1)).

The second injection respects Frobenius.

Corollary The rank ρ(XQ) is bounded from above by the number of

eigenvalues λ of Frobenius acting on H2
ét(XFp

, Ql(1)) for which λ is a
root of unity.



NS(XQ) ⊗ Ql ↪→ NS(XFp
) ⊗ Ql ↪→ H2

ét(XFp
, Ql(1)).

We can compute the characteristic polynomial f of Frobenius by com-
puting traces of its powers through the Lefschetz formula

#X (Fpn) =
4∑

i=0
(−1)i Tr(Frobn on Hi

ét(XFp
, Ql)).

Note the difference between Ql and the twist Ql(1).

Knowing the traces, the characteristic polynomial f follows from simple
linear algebra and scaling of the roots by a factor p.



Problem!

The degree of f is B2, so even (22) for K3 surfaces.

Lemma Let f be a polynomial with real coefficients and even degree,
such that all its roots have complex absolute value 1. Then the number
of roots of f that are roots of unity is even.

Proof. All the real roots of f are roots of unity. The remaining roots
come in conjugate pairs, either both being a root of unity or both not
being a root of unity. Therefore, the number of roots that are not roots
of unity is even (independent of the parity of the degree).



4) A trick!

The intersection pairing gives the Néron-Severi group the structure of
a lattice. The injection

NS(XQ) ⊗ Ql ↪→ NS(XFp
) ⊗ Ql

of Ql-vector spaces respects the inner product.

Lemma If Λ′ is a sublattice of finite index of Λ, then we have

discΛ′ = [Λ : Λ′]2 discΛ.

This implies that discΛ and discΛ′ have the same image in Q∗/(Q∗)2.



Sketch of proof

We find finite-index sublattices M2 and M3 of the Néron-Severi groups
over F2 and F3 respectively. Both will have rank 2, which already shows
that the rank of NS(SQ) is at most 2. We get the following diagram

NS(SQ) ⊂ NS(SF2
) ⊃ M2

||
NS(SQ) ⊂ NS(SF3

) ⊃ M3

Example chosen so that the images of discM2 and discM3 in Q∗/(Q∗)2

are different, so NS(SQ) has rank at most 1.



The example was wf = 3pq − 2zg.

The reduction S3 of S at 3 is given by wf = zg, so it contains the line
L : w = z = 0. By the adjunction formula

L · (L + KS3
) = 2g(L) − 2 = −2,

with canonical divisor KS3
= 0, we find L2 = −2.

Let M3 be the lattice generated by the hyperplane section H and L.
With respect to {H, L} the inner product on M3 is given by

(
4 1
1 −2

)

.



With respect to {H, L} the inner product on M3 is given by
(

4 1
1 −2

)

.

We get discM3 = −9. By counting points as described before we find
that the characteristic polynomial of Frobenius acting on H2

ét(SF3
, Ql(1))

factors over Q as

(x − 1)2(x20 + 1
3x

19 − x18 + 1
3x

17 + 2x16 − 2x14 + 1
3x

13

+ 2x12 − 1
3x

11 − 7
3x

10 − 1
3x

9 + 2x8 + 1
3x

7 − 2x6

+ 2x4 + 1
3x

3 − x2 + 1
3x + 1).

As the second factor is not integral, we find that exactly two of its roots
are roots of unity. We conclude that M3 has finite index in NS(SF3

).



The example is still wf = 3pq − 2zg.

The reduction S2 is given by wf = pq, for some quadratic forms p and q.
It therefore contains a conic C given by w = p = 0. By the adjunction
formula

C · (C + KS2
) = 2g(C) − 2 = −2,

we find C2 = −2. Let M2 be the lattice generated by the hyperplane
section H and C. With respect to {H, C} the inner product on M3 is
given by

(
4 2
2 −2

)

.



With respect to {H, C} the inner product on M2 is given by
(

4 2
2 −2

)

.

We get discM2 = −12. By counting points as described before we find
that the characteristic polynomial of Frobenius acting on H2

ét(SF2
, Ql(1))

factors over Q as

(x − 1)2(x20 + 1
2x

19 − 1
2x

18 + 1
2x

16 + 1
2x

14 + 1
2x

11 + x10

+ 1
2x

9 + 1
2x

6 + 1
2x

4 − 1
2x

2 + 1
2x + 1).

The last factor is not integral, so M2 has finite index in NS(SF2
).



NS(SQ) ⊂ NS(SF2
) ⊃ M2

||
NS(SQ) ⊂ NS(SF3

) ⊃ M3

As discM3 = −9 and discM2 = −12 do not have the same image in
Q∗/(Q∗)2, we have proven that NS(SQ) has rank 1. By the adjunction
formula the lattice is even, so it is generated by H.



NS(SQ) ⊂ NS(SF2
) ⊃ M2

||
NS(SQ) ⊂ NS(SF3

) ⊃ M3

As discM3 = −9 and discM2 = −12 do not have the same image in
Q∗/(Q∗)2, we have proven that NS(SQ) has rank 1. By the adjunction
formula the lattice is even, so it is generated by H.

This trick works if ρ = ρ(X) is odd and primes p1, p2 are such that

ρ(XFpi
) = ρ+ 1

and the images of discNSXFpi
in Q∗/Q∗2 are different.



5) Extension by R. Kloosterman

Conjecture[Artin–Tate for K3] Let X/Fq be a K3 surface. Let f be the
characteristic polynomial of Frobenius acting on Hi

ét(XFq
, Ql). Let ρ and

∆ denote the rank and the discriminant of NS(X). Let Br X denote
the Brauer group of X. Then

lim
T→q

f(T )

(T − q)ρ
= −q21−ρ · #Br X · ∆.



5) Extension by R. Kloosterman

Conjecture[Artin–Tate for K3] Let X/Fq be a K3 surface. Let f be the
characteristic polynomial of Frobenius acting on Hi

ét(XFq
, Ql). Let ρ and

∆ denote the rank and the discriminant of NS(X). Let Br X denote
the Brauer group of X. Then

lim
T→q

f(T )

(T − q)ρ
= −q21−ρ · #Br X · ∆.

Facts:
Tate conjecture ⇒ Artin–Tate
Br X finite ⇒ #Br X is square (Liu–Lorenzini–Raynaud)

Conclusion: Artin conjecture gives ∆ ∈ Q∗/Q∗2 without explicit gener-
ators of discNS(SFq

).



Application

Theorem[R. Kloosterman, 2005]
The elliptic K3 surface π : X → P1 over Q with Weierstrass equation

y2 = x3 + 2(t8 + 14t4 + 1)x + 4t2(t8 + 6t4 + 1)

has ρ(X) = 17 and Mordell-Weil rank 15.



5) Extension by A.-S. Elsenhans and J. Jahnel

You do not necessarily need

ρ(XFpi
) = ρ+ 1.

Example[A.-S. Elsenhans and J. Jahnel]
Let S : w2 = f6(x, y, z) be a K3 surface of degree 2 over Q. Assume the
congruences

f6 = y6 + x4y2 − 2x2y4 + 2x5z + 3xz5 + z6 (mod 5)

and

f6 = 2x6 + x4y2 + 2x3y2z + x2y2z2 + x2yz3 + 2x2z4 + xy4z

+ xy3z2 + xy2z3 + 2xz5 + 2y6 + y4z2 + y3z3 (mod 3).

Then S has geometric Picard rank 1.



5) Extension by A.-S. Elsenhans and J. Jahnel

Let L denote the pull-back of a line in P2.

The characteristic polynomial of Frobenius acting on the space

(NSSF3
⊗ Ql)/〈L〉

equals

(t − 1)(t2 + t + 1).

There are only finitely many Galois-invariant subspaces of
NSSF3

⊗ Ql containing L. Their dimensions are 1,2,3,4.
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5) Extension by A.-S. Elsenhans and J. Jahnel

There are only finitely many Galois-invariant subspaces of
NSSF3

⊗ Ql containing L. Their dimensions are 1,2,3,4.

The characteristic polynomial of Frobenius acting on the space

(NSSF5
⊗ Ql)/〈L〉

equals (t−1)Φ5(t)Φ15(t), where Φn denotes the n-th cyclotomic poly-
nomial. There are only finitely many Galois-invariant subspaces of
NSSF5

⊗ Ql containing L. Their dimensions are 1,2,5,6,9,10,13,14.



5) Extension by A.-S. Elsenhans and J. Jahnel

There are only finitely many Galois-invariant subspaces of
NSSF3

⊗ Ql containing L. Their dimensions are 1,2,3,4.

The characteristic polynomial of Frobenius acting on the space

(NSSF5
⊗ Ql)/〈L〉

equals (t−1)Φ5(t)Φ15(t), where Φn denotes the n-th cyclotomic poly-
nomial. There are only finitely many Galois-invariant subspaces of
NSSF5

⊗ Ql containing L. Their dimensions are 1,2,5,6,9,10,13,14.

Only common dimensions are 1 and 2. Compare discriminants up to
squares of the subspaces of dimension 2.



6) Generators for the Néron-Severi group (Schütt–Shioda)

Assume: G ⊂ NS(XQ) ↪→ NS(XFp
) torsion free.

Goal: Show G ⊂ NS(XQ) is primitive.



6) Generators for the Néron-Severi group (Schütt–Shioda)

Assume: G ⊂ NS(XQ) ↪→ NS(XFp
) torsion free.

Goal: Show G ⊂ NS(XQ) is primitive.

If not primitive, then there is g ∈ G and a prime

r|discG = [Ĝ : G]2 · disc Ĝ

with Ĝ = (G ⊗ Q) ∩ NS(XQ) and

0 1= g ∈ G ⊗ Fr and 0 = g ∈ NS(XQ) ⊗ Fr,

so

G ⊗ Fr → NS(XQ) ⊗ Fr

is not injective.
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If not primitive, then ∃r : G ⊗ Fr → NS(XQ) ⊗ Fr is not injective.



Assume: G ⊂ NS(XQ) ↪→ NS(XFp
) torsion free.

Goal: Show G ⊂ NS(XQ) is primitive.

If not primitive, then ∃r : G ⊗ Fr → NS(XQ) ⊗ Fr is not injective.

For such r and every H ⊂ NS(XFp
) the composition

G ⊗ Fr → NS(XQ) ⊗ Fr → Hom(H ⊗ Fr, Fr)

induced by

NS(XQ) → Hom(H, Z), D 3→ (x 3→ D · x)

is not injective.



Assume: G ⊂ NS(XQ) ↪→ NS(XFp
) torsion free.

Goal: Show G ⊂ NS(XQ) is primitive.

If not primitive, then ∃r : for every H ⊂ NS(XFp
) the composition
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sending D to (x 3→ D · x) is not injective.



Assume: G ⊂ NS(XQ) ↪→ NS(XFp
) torsion free.

Goal: Show G ⊂ NS(XQ) is primitive.

If not primitive, then ∃r : for every H ⊂ NS(XFp
) the composition

G ⊗ Fr → NS(XQ) ⊗ Fr → Hom(H ⊗ Fr, Fr)

sending D to (x 3→ D · x) is not injective.

Sufficient: Find for each prime r with r2|discG an H ⊂ NS(XFp
) with

G ⊗ Fr → NS(XQ) ⊗ Fr → Hom(H ⊗ Fr, Fr)

injective (just linear algebra).



Theorem[Mizukami (m = 4), Schütt–Shioda–vL (m ≤ 100)]
For any integer 1 ≤ m ≤ 100 the Néron-Severi group of the Fermat
surface Sm ⊂ P3 over C given by

xm + ym + zm + wm = 0

is generated by the lines on Sm if and only if m ≤ 4 or (m,6) = 1.


