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Abstract. We introduce a Cellular Potts model (a cellular-automaton-
based Monte-Carlo model) of in vitro capillary development, or angiogen-
esis. Our model derives from a recent continuum model, which assumes
that vascular endothelial cells chemotactically attract each other. Our
discrete model is “cell based.” Modeling the cells individually allows us
to assign different physicochemical properties to each cell and to study
how these properties affect the vascular pattern. Using the model, we
assess the roles of intercellular adhesion, cell shape and chemoattrac-
tant saturation in in vitro capillary development. We discuss how our
computational model can serve as a tool for experimental biologists to
“pre-test” hypotheses and to suggest new experiments.

1 Introduction

A detailed understanding of capillary blood vessel formation, or angiogenesis,
is essential to understand and control physiological and pathological processes
from wound healing to tumor growth and angiogenesis-related pathologies such
as advanced diabetic nephropathy. Capillaries develop in two main ways: through
the aggregation of endothelial cells into capillary cords, and through sprouting
from existing capillaries.

In vitro culture of human umbilical vascular endothelial cells (HUVEC) in
Matrigel is a popular experimental model of capillary development (see e.g. [2]).
Matrigel is an extracellular matrix product obtained from murine tumors. The
extracellular proteins and growth factors in the gel stimulate HUVEC cells to
form networks (Fig. 1) resembling vascular networks in vivo. HUVEC-Matrigel
cultures and related HUVEC cultures in collagen [3] and fibrin [4] gels are stan-
dard models in biomedical research to identify the key molecular players in
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pathological and physiological angiogenesis, to unravel the role of cell growth
and apoptosis in vasculogenesis and to probe potential anti-angiogenic pharma-
ceuticals.

The biophysical mechanisms by which endothelial cells form such networks
are poorly understood. Several computational studies have suggested that en-
dothelial cells, behaving according to a small set of rules, could suffice to ex-
plain network-formation. Most hypotheses assume that either chemotaxis [5,6]
or tractional forces relayed through the extracellular matrix [4,7,8] drive cell
aggregation. Partial differential equation models of both mechanisms generate
patterns that resemble in vitro networks, so which of them most closely parallels
the biological mechanism remains unclear.

These continuum approaches implicitly assume that the endothelial cells that
construct the pattern are much smaller than the length-scale of interest, namely
that of the “cords” and “nodes.” In vitro, however, at most a dozen elongating
cells form the cords, which are one to a few cell-diameters thick (see Fig. 1).
Thus, we expect the scale of the endothelial cells to play an important role in
patterning. The properties of individual cells, such as their shape, their mu-
tual adhesion and their adhesion to the extracellular matrix may also affect the
pattern resulting from their interaction.

This paper develops a cell-oriented approach to modeling in vitro vasculogen-
esis, based on the Gamba-Serini chemotaxis model [5,6]. We construct computa-
tional models of individual HUVEC cells which mimic experimentally-observed
cell phenomenology, including response to external chemical signals, cell elon-
gation, cell adhesion, chemotaxis, haptotaxis, etc. We then release these sim-
ulated cells in a “virtual Petri-dish” and quantitatively compare their macro-
scopic, collective behavior to experiments. We attempt to recover minimal sets
of physicochemical properties and behavioral rules for the cells which reproduce
the experimentally-observed tissue-level pattern.

Our focus on cell phenomenology may seem crude compared to large-scale,
post-genomic, systems-biology initiatives whose aim is to model ab initio and in
detail the internal structure and genetic regulation of individual cells, and even-

Fig. 1. HUVEC culture on Matrigel, 4x magnification, 2h (left) and 9h (right). To
improve contrast, we have applied an Opening Top-Hat transform [1] with a small-disk
structuring element.
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tually collections of interacting cells (see e.g. [9,10]). However, the cell-oriented
approach allows us to distinguish a) how genomic information determines cell
phenomenology (using detailed, single cell models) from b) how collections of
cells exhibiting a particular phenomenology interact during biological morpho-
genesis (using a “cell-oriented” approach). The cell-oriented approach has been
successful in the study of biological morphogenesis. In particular, it can simu-
late the entire developmental life cycle of the cellular slime mold Dictyostelium
discoideum [11,12], convergent extension in early vertebrate embryos [13], tumor
invasion [14] and pattern formation in vertebrate limb cell cultures [15].

The Cellular Potts model (CPM) [16,17], a cellular-automaton-based Monte-
Carlo method, is a convenient cell-oriented simulation framework. Early CPM
studies of differential-adhesion-driven cell rearrangement in cell aggregates quan-
titatively reproduced cell sorting experiments [16]. An energy-minimization phi-
losophy, a set of energy constraints and auxiliary conditions determine how cells
move. Connections between cells determine a cell-cell contact (or bond) energy.
favoring stronger over weaker bonds and shortening of the boundary length. An
energy constraint regulates cell volume or area. Further constraints or auxiliary
conditions easily extend the CPM to include chemotaxis [11], cell growth, cell
death [18] and cell polarity [13].

The remainder of this paper introduces our hybrid CPM/PDE model and
extensions to the CPM motivated by HUVEC phenomenology. We then study
patterning in the CPM/PDE version of the Gamba-Serini chemotaxis model.
Finally, we discuss the biological and computational relevance of our results.

2 Methods

2.1 Hybrid Cellular Potts Model

We use a hybrid Cellular Potts (CPM) and partial differential equation (PDE)
model (see [11,12,17]). The CPM models endothelial cells, while the PDEs model
the chemoattractant. Experimentally-confirmed cell behaviors, which we include
in the model are, 1) secretion of chemoattractants, 2) chemotaxis of cells up
chemical gradients, and 3) progressive elongation of cells.

The CPM represents biological cells as patches of lattice sites, x, with iden-
tical indices σ(x), where each index identifies, or “labels” a single biological
cell. Connections between neighboring lattice sites of unlike index σ(x) ̸= σ(x′)
represent membrane bonds, with a characteristic bond energy Jσx,σx′ , where we
assume that the types and numbers of “cell adhesion molecules” (CAMs) of the
interacting cells determine J . An energy penalty increasing with the cell’s devi-
ation from a designated target volume Aσ imposes a volume constraint on the
biological cells. To mimic cytoskeletally driven membrane fluctuations, we ran-
domly choose a lattice site, x, and attempt to copy its index σx into a randomly
chosen neighboring lattice site x′. To ensure isotropy, we use the twenty, first- to
fourth-order neighbours on a square lattice. On average, we attempt an update
at each lattice site once per Monte-Carlo step (MCS). We calculate how much
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the Hamiltonian would change if we performed the copy, and accept the attempt
with probability:

P (∆H) = {exp(− (∆H + H0)/T ), ∆H ≥ − H0; 1, ∆H < − H0}, (1)

where H0 > 0 is an energy threshold which models viscous dissipation and energy
loss during bond breakage and formation[18]. We then define the Hamiltonian
as:

H =
∑

x,x′

Jσx,σx′ (1 − δσx,σx′ ) + λ
∑

σ

(aσ − Aσ)2, (2)

where λ represents resistance to compression, and the Kronecker delta is δx,y =
{1, x = y; 0, x ̸= y}. The cells reside in a “medium” which is a generalized
CPM cell without a volume constraint and with σ = 0. In most simulations,
we use a bond energy Jcc = 5 between the endothelial cells, and JcM = 20
between the endothelial cells and the medium. We further define a surface tension
γcM = JcM − Jcc/2, which enables us to determine whether the cells cohere
(γcM > 0) or dissociate (γcM < 0) [16] in the absence of chemotaxis. Our default
cellular adhesion setting is adhesive, i.e. γcM > 0. We define a special, high cell-
border energy JcB = 100 to prevent cells from adhering to the boundaries. The
viscous dissipation H0 and all terms in the Hamiltonian, i.e. the bond energies
J , and the prefactors to the additional energy terms, such as λ, scale with the
temperature T ; i.e. if we multiply T by a factor τ , we can multiply the H0 and
the Hamiltonian by the same factor and obtain the same simulation results.

In analogy to the Gamba and Serini PDE model [5,6], we set the diffusion
and secretion of the chemoattractant c to:

∂c

∂t
= α δσx,0 − (1 − δσx,0)ϵ c + D∇2c, (3)

where δσx,0 = 1 inside the cells, α is the rate at which the cells release chemoat-
tractant, and ϵ is the decay rate of the chemoattractant. Thus, every site within
the cells secretes the chemoattractant, which decays only in the medium. We
solve the PDEs numerically using a finite difference scheme on a lattice match-
ing the CPM lattice, using 20 steps per MCS with ∆t = 0.2. For these parameters
the chemoattractant diffuses much more rapidly than the cells, enabling us to
ignore the advection that occurs as the cells push the medium forward.

Chemotaxis. We implement preferential motion of the cells along gradients of
the chemoattractant c by defining [11]:

H ′ = H −
∑

i

χ
c(x, t)

s c(x, t) + 1
(1 − δσi,σj ), (4)
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where χ is the strength of the chemotactic response, and the saturation s sets
the Michaelis-Menten constant of the chemotactic response, for which we use
s = 0.01 by default. For s = 0 the cell’s response to gradients does not level off at
higher concentrations, as in the original method of Savill et al. [11], while for large
s the cells become unresponsive. Because the chemical field biases cells’ boundary
copying, each cell moves with an velocity v ∝

√
(µ)

∑
j

∑
i Pj(di), where the

sums run over the sites of the cell and the twenty lattice directions respectively,
and Pj(di) denotes the probability that site j copies in lattice direction di. The
prefactor √

µ has units of force, but we can also interpret it as the chemotactic
strain field [19].

Cell elongation. The HUVEC cells in our cultures elongate progressively as
the vessel-like pattern develops. To study how cell elongation affects the pattern,
we add a cell-length constraint to the Hamiltonian:

H ′′ = H ′ + λL(l − L)2, (5)

where l is the length of the cell along its longest axis, L is its target length, and
λL is the strength of the length constraint. Larger values of λL result in more
elongated cells. Following Zajac et al. [20], we calculate the short and long axes
of the moments of inertia as:

Ixx =
∑

i(yi − ȳ)2,
Ixy = −

∑
i(xi − x̄)(yi − ȳ),

Iyx = Ixy,

Iyy =
∑

i(xi − x̄)2, (6)

where the sum is over all the sites x = (xi, yi) in the cell. We determine the
length l from the largest eigenvalue of I as l = 2

√
λb, where:

λb =
1
2
(Ixx + Iyy) +

1
2

√
(Ixx − Iyy)2 + 4I2

xy. (7)

We can update the inertia tensor locally after each cell extension or retrac-
tion, by constructing it from the first and second order moments of the positions
of the sites the cells occupy:

Iyy =
∑

i x2
i − 1

a (
∑

i xi)2,
Ixy = −

∑
i xiyi − 1

a

∑
i xi

∑
i yi,

Ixx =
∑

i y2
i − 1

a (
∑

i yi)2, (8)

with a the cell area. Thus Eq. 7 determines l without lengthy calculation.
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The length constraint can cause cells to split into disconnected patches. We
prevent this artifact by introducing a connectivity constraint. To check whether
an index copy into site x will change local connectivity, we count how many of
its neighbors x′

i have equal index to x while the next in cyclic order has unequal
spin. If this quantity

∑
i δσ(x),σ(x′

i)(1 − δσ(x),σ(x′
i+1)) > 2, with the sum run-

ning in cyclic order, changing the site will destroy the local connectivity. We have
currenly only implemented this algorithm for second-order neigborhoods (i.e. 8
neighbours). This test for connectivity loss gives “false positives” for non-convex
patches, which occur in our simulations when cells suddenly shrink, for example
during “apoptosis” [18]. Instead of introducing a very expensive (O(N2)) global
connectivity test, we tolerate temporary violations of connectivity for large en-
ergy drops. The bond energies ensure that the lifetime of disconnected patches
is short. We assume that cell fragmentation is energetically costly, and set a
high energy threshold H0 (typically H0 = 500) iff the attempted update would
change the local connectivity.

2.2 Simulation Set-Up and Initialization

In our partial differential equations (PDE), we set boundary values to zero (i.e.
the boundaries absorb the chemoattractant), while for the CPM we implement
repellent boundary conditions by setting the cell-boundary binding energy to
JcB = 100. We use a 500×500 lattice, where each lattice site represents an area
of about 4µm2. Cells have actual areas of around 45 lattice sites, equivalent to a
typical endothelial cell area of around 150µm2 [21]. To diminish boundary effects
we initially disperse n cells randomly within a centered 333 × 333 square. For
n >= 3000 we disperse the cells all over the field to minimize cell overlap. After
each Monte Carlo Step (MCS) we update the PDE 20 times with ∆t = 0.2.

2.3 Morphometry

We characterize the patterns by measuring the average size L̄a of the open spaces
which the vessel-like structures enclose (lacunae). L̄a = 1/N

∑
i Lai, with N the

number of lacunae and Lai the size of each lacuna, which we identify using a
standard connected-component labeling algorithm [1].

3 Results

Figs. 2 and 3 review our results. Fig. 2a reproduces the results of the Gamba
and Serini PDE model [5,6] in our cell-oriented model. The cell-adhesion settings
are strongly adhesive (γcM = 17.5). The cells aggregate into cords and nodes,
typical of HUVEC Matrigel cultures (Fig. 1) and the Gamba-Serini model. As
the cell density increases, we find a percolation transition as in the Gamba-
Serini model [5]; for low densities, n < 1000, the cells do not form a connected
network, while for high densities, n > 1000, all cells interconnect (see Fig. 2a).



Cell-Oriented Modeling of In Vitro Capillary Development 431

Fig. 2. Overview of parameter sweeps. Typical cell patterns after 5000 MCS. Lattice
size 500 × 500, n = 1000 scattered within inner 333 × 333 subfield (e: n = 555).
Parameters were T = 50, λA = 50, A = 50, γcM = 17.5, s = 0.01, χ = 2000, α = 0.01,
ϵ = 0.05, D = 1, λL = 0 (e: λL = 1.0), unless indicated otherwise.

Also, as in the Gamba-Serini model, the size of the lacunae depends on the rate
of chemoattractant decay, as Fig. 2b shows.

In Figs. 2c-e, we systematically modify the Gamba-Serini model by chang-
ing the biophysical properties of the individual cells. First, we study the role
of intercellular adhesion. In our model, cell adhesion is essential. If we reduce
the adhesivity of the endothelial cells, a network no longer forms and the cells
aggregate into “islands” (Fig. 2c). Like the Gamba-Serini model, our model can
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Fig. 3. Dependence of lacuna size on model parameters, after 5000 Monte Carlo steps.
Parameters as in Fig. 2. Error bars indicate standard deviations (n = 5)

also form networks without cell adhesion, but these networks are unstable and
decay into an “island-like” pattern (results not shown).

Fig. 2d shows the effect of changes in s, the threshold for chemotaxis satu-
ration (sensitivity) (see eq. 4). Up to around s = 0.1 vessel-like patterns form,
while for larger values more amorphous patterns with larger clusters and few
lacunae form. The lacuna size becomes more variable for larger values of s (see
Fig. 3d).

In the in vitro culture experiments, the endothelial cells elongate during
vessel-like patterning. Although elongation is not necessary for vessel-like pat-
terning in our model, cell elongation is one of the first observable signs of vessel-
like patterning in HUVEC cultures. In Fig. 2e and Fig 3e we investigate the
effect of cell elongation on patterning at low cell densities (n = 555). Cell elon-
gation facilitates the interconnection of isolated parts of the pattern (see Fig. 3e).
For very large length constraints (L > 300) the cells fragment, after which the
vessel-like pattern no longer interconnects. At higher densities, when the pattern
already fully interconnects even for round cells, cell elongation has no effect on
lacuna size, but affects the shape of the lacunae (results not shown).

4 Discussion and Conclusions

Computational screening of the parameter dependence of patterning may help
to direct experiments to identify the key regulators of vascular development and
suggest new hypotheses. If chemotaxis drives vascular development, as in the
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Gamba-Serini model, our simulations suggest that endothelial cell adhesion is
essential to form stable vascular networks. Furthermore, our simulations suggest
that pattern formation changes qualitatively when the receptors saturate at lower
concentrations of chemoattractant. We could test this effect experimentally by
specifically inhibiting the production of receptors, in which case the remaining
receptors would saturate at lower concentrations, or by adding receptors with
higher affinity. Cell extension also strongly affects the multicellular pattern, re-
ducing the cell density network formation requires. Biological experiments might
attempt to specifically target the elongation of the endothelial cells. Preliminary
results also show that cell motility above a mininum required velocity does not
significantly affect patterning (not shown). Continuous models have great diffi-
culty assessing the role of these parameters, in particular of intercellular adhesion
and cell morphology.

In our ongoing work we are refining and validating our computational model
by obtaining experimentally derived values for the model parameters and by
comparing our simulation results quantitatively to time-lapse videomicroscopy
experiments. We are analyzing the dynamics of patterning in HUVEC cultures
under different physiological and pathological conditions and comparing these
to the computational model’s dynamics for similar simulated conditions. Grad-
ual cell elongation, rather than the instantaneous elongation that we employed
here, may change the model’s dynamics. We also plan to model the interaction of
the individual cells with the viscoelastic extracellular matrix, which experiments
and theory [4] suggest is crucial to in vitro vasculogenesis. These studies may
lead to better understanding of the biophysical mechanisms of vascular develop-
ment, which will suggest new experimental tests of the genetic and biophysical
regulation of vascular development.
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