KK-theory in geometry and physics

Bram Mesland

Max Planck Institut für Mathematik Bonn, Germany

December 20, 2018

- 1 The Atiyah–Singer index theorem
- 2 C*-algebras and KK-theory
- 3 The explicit form of the Kasparov Product
- 4 Application: Hecke operators on arithmetic manifolds
- 5 Application: topological phases of aperiodic lattices

The *index* of a linear map $L: V \rightarrow W$ between finite dimensional vector spaces:

 $IndL := \dim \ker L - \dim \operatorname{coker} L = \dim \ker L - \dim \ker L^*$.

Dimension theorem $\Rightarrow \operatorname{Ind} L = \dim V - \dim W$.

Infinite dimensional spaces:

$$S: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N}), \quad S(e_i) = e_{i+1} \quad \operatorname{Ind} S = -1.$$

Let H, K be Hilbert spaces.

A closed operator $D: {\sf Dom}\ D \subset H \to K$ with densely defined adjoint is $\mathit{Fredholm}$ if

- D has closed range,
- ker D and ker D^* are finite dimensional.

The index

$$IndD := dim ker D - dim ker D^*$$

of Fredholm operators is well defined.

Theorem

The index is invariant under homotopies of Fredholm operators.

The Gohberg–Krein index theorem

Hardy space on the circle:

$$H^2 = H^2(S^1) := \left\{ f \in L^2(S^1) : f = \sum_{n \ge 0} a_n e^{2\pi i n x} \right\} \simeq \ell^2(\mathbb{N}).$$

 $P: L^2(S^1) o H^2(S^1)$ orthogonal projection.

Toeplitz operator with symbol $f \in C(S^1)$:

$$T_f: H^2 \to H^2, \quad \phi \mapsto P(f)\phi.$$

Theorem (Gohberg-Krein)

For $f:S^1\to \mathbb{C}^\times$ the operator $T_f:H^2\to H^2$ is Fredholm and

 $\operatorname{Ind} T_f = -w(f),$

with w(f) the winding number of f. If f is C^1 then $w(f) = \int_{S^1} \frac{f'(z)}{f(z)} dz$.

M compact *n*-dimensional manifold, $S_{\pm} \rightarrow M$, smooth vector bundles.

 $D_+: C^{\infty}(M, S_+) \to C^{\infty}(M, S_-)$ first order elliptic differential operator.

$$D_+ = a_0(x) + \sum_{i=1}^n a_i(x) \partial_i$$
 locally.

D is of *Dirac type* if:

- D^2 is a generalized Laplacian,
- for $f \in C^{\infty}(M)$ we have [D, f] = c(df).

Here c(df) denotes *Clifford mutliplication* by df.

Index Theorems	C*-algebras and KK-theory	The constructive KK-product	Arithmetic manifolds	Topological phases	
The Hodge–DeRham operator					

M Riemannian manifold

$$S_+ := \bigwedge^{\mathsf{ev}} T^* M, \quad S_- := \bigwedge^{\mathsf{odd}} T^* M,$$

$$D_+ = d + d^* : C^{\infty}(M, \bigwedge^{\mathsf{ev}} T^*M) \to C^{\infty}(M, \bigwedge^{\mathsf{odd}} T^*M)$$

$$c(df) = \epsilon(df) - \iota(df^{\sharp})$$

 $E \rightarrow M$ another vector bundle.

 $\nabla: C^{\infty}(M, E) \to C^{\infty}(M, E) \otimes \Omega^{1}(M)$ connection.

 $abla(\psi f) = \nabla(\psi)f + \psi \otimes df \quad \text{for } f \in C^{\infty}(M), \psi \in C^{\infty}(M, E).$

$$egin{aligned} 1\otimes_{
abla} D_+: C^\infty(M, E\otimes S_+) &
ightarrow C^\infty(M, E\otimes S_-)\ e\otimes\psi&\mapsto e\otimes D_+\psi+
abla(e)\psi \end{aligned}$$

Proposition

The operator $1 \otimes_{\nabla} D_+ : C^{\infty}(M, E \otimes S_+) \to C^{\infty}(M, E \otimes S_-)$ is of Dirac type. It extends to a densely defined closed Fredholm operator $L^2(M, E \otimes S_+) \to L^2(M, E \otimes S_-).$

Index Theorems	C^* -algebras and <i>KK</i> -theory	The constructive KK-product	Arithmetic manifolds	Topological phases
The Ativah–Singer in	dex theorem			

Theorem (Atiyah–Singer)

Let M be a compact manifold, $D_+ : C^{\infty}(M, S_+) \to C^{\infty}(M, S_-)$ a Dirac type operator and $E \to M$ a vector bundle. For any connection $\nabla : C^{\infty}(M, E) \to C^{\infty}(M, E) \otimes \Omega^1(M)$ we have

$$\operatorname{Ind}(1\otimes_{\nabla} D_+) = \int_M \operatorname{ch}(E)\widehat{A}(S) = \langle E, D_+ \rangle \in \mathbb{Z},$$

where ch(E) and $\widehat{A}(S)$ are characteristic classes of E and $S = S_+ \oplus S_-$ respectively.

•
$$D = d + d^*$$
 acting in $L^2(M, \bigwedge^* T^*M)$;
 $\operatorname{Ind}(d + d^*) = \operatorname{Eul}(M) = (2\pi)^{-n/2} \int_M \operatorname{Pf}(-R),$

where R is the Riemannian curvature;

For M a surface and r_M the scalar curvature we recover

$$\mathsf{Eul}(M) = \frac{1}{2\pi} \int_M r_M dx$$

the classical Gauss-Bonnet theorem.

Index Theorems	C*-algebras and KK-theory	The constructive KK-product	Arithmetic manifolds	Topological phases
Atiyah's observation				

A vector bundle E pairs with an elliptic operator D to give an integer:

 $\langle E, D \rangle := \operatorname{Ind}(1 \otimes_{\nabla} D) \in \mathbb{Z}.$

This integer is a topological invariant computed by geometric methods.

Vector bundles generate the K-theory group $K^0(M)$.

Elliptic operators generate the K-homology group $K_0(M)$. Index pairing $K^0(M) \times K_0(M) \to \mathbb{Z}$, $(E, D) \mapsto \text{Ind}(1 \otimes_{\nabla} D)$

The Chern character

$$\mathsf{Ch}: \mathsf{K}^{\mathsf{0}}(\mathsf{M}) \to \mathsf{H}^{\mathsf{ev}}(\mathsf{M},\mathbb{R}) := \bigoplus_{i} \mathsf{H}^{2i}(\mathsf{M},\mathbb{R})$$

is a rational isomorphism onto cohomology.

The classical index theorems can be viewed as a calculation of the index pairing:

$$\begin{array}{cccc} K^{0}(M) \times K_{0}(M) & \longrightarrow & \mathbb{Z} \\ & & \downarrow_{Ch} & \downarrow_{Ch} & & \downarrow \\ & & H^{ev}(M, \mathbb{R}) \times H_{ev}(M, \mathbb{R}) & \longrightarrow & \mathbb{R} \end{array}$$

1 The Atiyah–Singer index theorem

- 2 C*-algebras and KK-theory
- 3 The explicit form of the Kasparov Product
- 4 Application: Hecke operators on arithmetic manifolds
- 5 Application: topological phases of aperiodic lattices

 C^* -algebra: closed *-subalgebra of B(H).

For a locally compact Hausdorff space X, $C_0(X)$ is a C^* -algebra.

Theorem (Gelfand–Naimark)

Any commutative C^* -algebra is *-isomorphic to $C_0(X)$ for some locally compact Hausdorff space X.

Theorem (Serre–Swan)

For a compact Hausdorff space X and a locally trivial complex vector bundle $E \rightarrow X$, the module of sections $\Gamma(X, E)$ is a finitely generated projective C(X)-module. Conversely every finitely generated projective C(X)-module arises in this way.

Index Theorems	C [*] -algebras and <i>KK</i> -theory	The constructive KK-product	Arithmetic manifolds	Topological phases
Other C^* -algebras				

- The Toeplitz algebra $\mathcal{T} \subset B(\ell^2(\mathbb{N}))$ is the C^* -algebra generated by the shift $S : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$;
- Group C*-algebras: for a discrete group Γ, C^{*}_r(Γ) ⊂ B(ℓ²(Γ)) is the closure of C[Γ] acting by convolution;
- Crossed products: if Γ acts on X by homeomorphisms we form $C_0(X) \rtimes \Gamma \subset B(L^2(X \times \Gamma));$

Theorem

Suppose that Γ acts freely and properly on the locally compact Hausdorff space X. Then the C^{*}-algebras $C_0(X/\Gamma)$ and $C_0(X) \rtimes \Gamma$ are Morita equivalent.

Index Theorems C*-algebras and KK-theory The constructive KK-product Arithmetic manifolds Topological phases K-theory and K-homology for C*-algebras

 $\mathcal{K}_0(A) := \{ [P] - [Q] : P, Q \text{ finitely generated projective modules} \}.$

Definition

A spectral triple (A, H, D) for A consists of

• a Hilbert space $H = H_+ \oplus H_-$ such that A is represented on H_{\pm} ,

•
$$D = \begin{pmatrix} 0 & D_- \\ D_+ & 0 \end{pmatrix}$$
 for a closed operator $D_+ : H_+ \to H_-$, $D_- := D_+^*$ and such that $a(1 + D^2)^{-1}$ is compact a operator,

 a dense subalgebra A ⊂ A such that for a ∈ A the commutators [D₊, a] are bounded.

 $K^{0}(A) := \{ [(A, H, D)] : \text{homotopy classes of spectral triples} \}.$

For a manifold *M*, $(L^2(\wedge^*T^*M), d + d^*) \in K^*(C(M))$ is a spectral triple.

 $[D] \in K^0(A)$ pairs with $[P] \in K_0(A)$ by choosing a connection

$$abla : P o P \otimes_{\mathcal{A}} \Omega^1_D, \quad \Omega^1_D := \left\{ \sum a_i[D, b_i] : a_i, b_i \in \mathcal{A} \right\}$$

forming a connection operator

$$1 \otimes_{\nabla} D : P \otimes_A H \to P \otimes_A H$$

and taking its index:

$${\mathcal K}^0({\mathcal A}) imes {\mathcal K}_0({\mathcal A}) o {\mathbb Z}, \qquad (D,P) \mapsto {\mathsf{Ind}}(1 \otimes_{
abla} D)$$

For a pair of C^* -algebras Kasparov constructed graded abelian group $KK_*(A, B)$ such that

- $KK_*(\mathbb{C}, A) \simeq K_*(A)$, the K-theory of A;
- $KK_*(A, \mathbb{C}) \simeq K^*(A)$, the K-homology of A;
- associative, bilinear product $KK_i(A, B) \times KK_j(B, C) \rightarrow KK_{i+j}(A, C);$
- recovers index pairing via
 KK₀(ℂ, A) × KK₀(A, ℂ) → KK₀(ℂ, ℂ) = ℤ;
- $x \in KK_0(A, B)$ defines a map $K_0(A) \rightarrow K_0(B)$;
- $KK_0(B, B)$ is a ring and $K^*(B), K_*(B)$ are modules over this ring.

- 1 The Atiyah–Singer index theorem
- 2 C*-algebras and KK-theory
- 3 The explicit form of the Kasparov Product
- 4 Application: Hecke operators on arithmetic manifolds
- 5 Application: topological phases of aperiodic lattices

The cycles for $KK_0(A, B)$ are given by pairs (X, S) consisting of

- A bimodule $_AX_B$;
- an operator S : Dom $S \rightarrow {}_{A}X_{B}$ satisfying some analytic constraints, in particular S is B-linear but not A-linear.

Theorem (Mesland-Rennie 2015)

Up to equivalence, the Kasparov product for (X, S) and (Y, T) is given by

$$(X,S)\otimes_B (Y,T):=(X\otimes_B Y,S\otimes 1+1\otimes_\nabla T),$$

where $\nabla : \mathcal{X} \to X \otimes \Omega^1_T$ is a densely defined connection.

 Index Theorems
 C*-algebras and KK-theory
 The constructive KK-product
 Arithmetic manifolds
 Topological phases

 Sums of self-adjoint operators

 A self-adjoint operator $D: \mathcal{D}(D) \to E$ in a Hilbert module E is regular if

 $D \pm i: \mathcal{D}(D) \to E$ are surjective

 $S: \mathcal{D}(S) \to E$ and $T: \mathcal{D}(T) \to E$ self-adjoint regular operators

 $\mathcal{F}(S, T) := \{x \in \mathcal{D}(S) \cap \mathcal{D}(T) : Sx \in \mathcal{D}(T), \quad Tx \in \mathcal{D}(S)\} \subset E$
 $[S, T] := ST + TS : \mathcal{F}(S, T) \to E$

Theorem (Lesch-Mesland 2018)

Suppose that

• $(S+i)^{-1}\mathcal{D}(T) \subset \mathcal{F}(S,T)$

 $\forall x \in \mathcal{F}(S,T) \quad \langle [S,T]x, [S,T]x \rangle \leq C(\langle x,x \rangle + \langle Sx, Sx \rangle + \langle Tx, Tx \rangle).$

Then $S + T : \mathcal{D}(S) \cap \mathcal{D}(T) \to E$ and $S^2 + T^2 : \mathcal{D}(S^2) \cap \mathcal{D}(T^2) \to E$ are self-adjoint and regular.

- Factorisation of Dirac operators on *G*-principal bundles, for example the Hopf fibration $S^1 \hookrightarrow S^3 \to S^2$;
- Hecke operators and K-theory of arithmetic groups and manifolds;
- KK-factorisation and bulk-boundary correspondence for topological insulators.

- 1 The Atiyah–Singer index theorem
- 2 C*-algebras and KK-theory
- 3 The explicit form of the Kasparov Product
- 4 Application: Hecke operators on arithmetic manifolds
- 5 Application: topological phases of aperiodic lattices

Fuchsian groups and surfaces:

- \mathbb{H} complex upper half plane and $G := PSL_2(\mathbb{R}) = Isom(\mathbb{H})$
- a torsion free discrete index subgroup $\Gamma \subset G$
- $M = \mathbb{H}/\Gamma$ noncompact hyperbolic surface

•
$$H^*(M,\mathbb{Z}) = H^*(\Gamma,\mathbb{Z})$$

A weight 2 modular form for Γ is a holomorphic function

$$f:\mathbb{H} o\mathbb{C}, \quad (f\circ\gamma)(z)=(cz+d)^2f(z), \quad \gamma=egin{pmatrix} a&b\c&d\end{pmatrix}\in \Gamma$$

 $\omega_f := f(z)dz$ defines a holomorphic differential form on $M := \mathbb{H}/\Gamma$

$$C_G(\Gamma) = \{g \in G : [\Gamma : \Gamma_g], [\Gamma : \Gamma_{g^{-1}}] < \infty\} \quad \Gamma_g := \Gamma \cap g \Gamma g^{-1}$$

The Hecke operators on modular forms are defined explicitly:

$$T_g(f)(z) := \sum_{i=1}^d (c_i z + d_i)^{-2} f(g_i z), \qquad \Gamma g \Gamma = \bigsqcup_{i=1}^d g_i \Gamma,$$

for any $g \in C_G(\Gamma)$ and encode deep arithmetic information.

 $\blacksquare M := \mathbb{H}/\Gamma$

• $M_g := \mathbb{H}/\Gamma_g$ with pair of covering maps

- Hecke operator $T_g := \pi_* \circ \varphi_! : H_*(M, \mathbb{Z}) \to H_*(M, \mathbb{Z})$
- Similarly $T_g: H^*(\Gamma, \mathbb{Z}) \to H^*(\Gamma, \mathbb{Z})$
- After Connes-Skandalis $[M \leftarrow M_g \rightarrow M] \in KK_0(C_0(M), C_0(M)).$

For a finite index torsion-free subgroup $\Gamma \subset PSL_2(\mathbb{Z}),$ there is a Hecke equivariant isomorphism

$$S_2(\Gamma) \oplus \overline{S_2(\Gamma)} \oplus \operatorname{Eis}(\Gamma) \to H^1(\Gamma, \mathbb{C}),$$

where $S_2(\Gamma)$ denotes the space of weight 2 cusp forms.

The free abelian group $\mathbb{Z}[\Gamma, G]$ on the double cosets $\Gamma g \Gamma$ with $g \in C_G(\Gamma)$ can be made into a ring under the *Shimura product*.

 $H^1(\Gamma, \mathbb{Z})$ is a module over this ring under the Hecke action.

Theorem (Mesland–Sengun 2017)

For any $C_G(\Gamma)$ - C^* -algebra B there is a ring homomorphism

$$\mathbb{Z}[\Gamma, G] \mapsto KK_0(B \rtimes \Gamma, B \rtimes \Gamma), \quad \Gamma g \Gamma \mapsto T_g.$$

If Γ acts freely and properly on X with quotient $M = X/\Gamma$ this map coincides with the map

 $\mathbb{Z}[\Gamma, G] \mapsto KK_0(C_0(M), C_0(M)), \quad \Gamma g \Gamma \mapsto [M \leftarrow M_g \to M].$

Theorem (Mesland–Sengun 2017)

The Chern character $Ch : K^{0}(M) \to H^{ev}(M)$ is a $\mathbb{Z}[\Gamma, G]$ module map.

- 1 The Atiyah–Singer index theorem
- 2 C*-algebras and KK-theory
- 3 The explicit form of the Kasparov Product
- 4 Application: Hecke operators on arithmetic manifolds
- 5 Application: topological phases of aperiodic lattices

To model a disordered solid material we conisder *Delone sets* $\mathcal{L} \subset \mathbb{R}^d$.

An (r, R)-Delone set is uniformly discrete: $\forall x \in \mathbb{R}^d : |B(x, r) \cap \mathcal{L}| \leq 1$,

and relatively dense: $\forall x \in \mathbb{R}^d | B(x, R) \cap \mathcal{L}) | \geq 1$.

Consider

- $\Omega := \{\mathcal{L} + x : x \in \mathbb{R}^d\}, \text{ the } hull \text{ of } \mathcal{L}$
- $\Omega_0 := \{ \omega \in \Omega : 0 \in \omega \}$ the *transversal* of \mathcal{L}
- $\mathcal{G} := \{(\omega, x) : x \in \omega\} \subset \Omega_0 \times \mathbb{R}^d$ can be made into an *étale groupoid*
- A 2-cocycle $\sigma : \mathcal{G} \times \mathcal{G} \rightarrow S^1$ (eg from magnetic field)

Observables: the twisted groupoid C^* -algebra $C^*(\mathcal{G}, \sigma)$.

Proposition (Freed–Moore, Thiang, Bourne–Carey–Rennie, Kellendonk, Kubota)

Suppose that $h = h^* \in C_r^*(\mathcal{G}, \sigma)$ has a spectral gap. Then h determines a class in $K_0(C_r^*(\mathcal{G}, \sigma))$. If h has a chiral symmetry, then h determines a class in $K_1(C_r^*(\mathcal{G}, \sigma))$.

Numerical invariants arise via

$$\mathcal{K}_*(\mathcal{C}^*_r(\mathcal{G},\sigma)) imes \mathcal{K}\mathcal{K}^*(\mathcal{C}^*_r(\mathcal{G},\sigma),\mathcal{C}(\Omega_0)) o \mathcal{K}_0(\mathcal{C}(\Omega_0)) \xrightarrow{\int} \mathbb{C}.$$

Here \int is the integral associated to a translation invariant measure on Ω_0 .

To obtain a class in $KK_d(C^*(\mathcal{G}, \sigma), C(\Omega_0))$ we consider

- The coordinate functions $X_k : \mathcal{G} \to \mathbb{R}, \quad (\omega, x) \mapsto x_k$
- The spinor bundle S_d of \mathbb{R}^d
- $D := \sum_{k=1}^{d} \gamma_k X_k : C_c(\mathcal{G}, S_d) \to C_c(\mathcal{G}, S_d)$ extends to a *KK*-cycle (E, D)

The class $[(E, D)] \in KK_d(C^*(\mathcal{G}, \sigma), C(\Omega_0))$ gives the map

$$K_d(C^*(\mathcal{G},\sigma)) \xrightarrow{\otimes [D]} K_0(C(\Omega_0))$$

Invariant measures on Ω_0 give maps $\mathcal{K}_0(\mathcal{C}(\Omega_0)) \to \mathbb{C}$ and invariants of $\mathcal{C}^*(\mathcal{G}, \sigma)$.

Resctriction to boundary of the material: dropping the coordinate x_d .

Consider

- The subgroupoid $\mathcal{H} := \{(\omega, x) \in \mathcal{G} : x_d = 0\} \subset \mathcal{G}$, and $C^*(\mathcal{H}, \sigma)$,
- The function $X_d : C_c(\mathcal{G}) \to C_c(\mathcal{G})$ extends to a *KK*-cycle (X, S).

The class $[(X,S)] \in KK_1(C^*(\mathcal{G},\sigma),C^*(\mathcal{H},\sigma))$ gives a map

$$\mathcal{K}_d(\mathcal{C}^*(\mathcal{G},\sigma)) \xrightarrow{\otimes [S]} \mathcal{K}_{d-1}(\mathcal{C}^*(\mathcal{H},\sigma)).$$

The boundary algebra $C^*(\mathcal{H}, \sigma)$ carries its own fundamental cycle (Y, T) built from X_1, \dots, X_{d-1} and the spinor bundle S_{d-1} on \mathbb{R}^{d-1} .

Theorem (Bourne–Mesland 2018)

There is a factorisation $D = S \otimes 1 + 1 \otimes_{\nabla} T$ on $X \otimes Y$ in unbounded KK-theory. Consequently there is a commutative diagram

Every K-theoretic invariant of the bulk algebra $C^*(\mathcal{G}, \sigma)$ has a corresponding invariant in the edge algebra $C^*(\mathcal{H}, \sigma)$. Their numerical invariants computed from the fundamental KK-class and an invariant measure on Ω_0 coincide.

- Vector bundles pair with Fredholm operartors to give integers,
- Index theorems relate *K*-theory to cohomology,
- *KK*-theory as an analytic tool in index theory,
- Explicit description of the Kasparov product after geometric examples,
- Hecke operators in KK-theory,
- Bulk-boundary correspondence and *KK*-factorisation.