
1 Global Analysis Lecture 12.12.2017 (Substitute Lecturer:
Thorben Kastenholz)

Have to do a slight detour, before we can continue doing geometry.

Definition 1.1. Let V denote a vector field on some manifold M . Let J denote an interval in R.
We call a smooth curve γ : J →M an integral curve of V if γ′(t) = V (γ(t)). Furthermore if 0 ∈ J
we call the point γ(0) the starting point of γ.

Examples:

• V = ∂x in R2. Integral curves: γ(t) = (a+ t, b)

• W = x∂y − y∂x = ”ix” Integral curves: γ(t) = (a cos(t)− b sin(t), a sin(t) + b cos(t))

Lemma 1.2 (Translation Lemma). Let V be a smooth vector field on a smooth manifold M , let
J ⊂ R be an open interval, and let γ : J →M be an integral curve of V . For any a ∈ R, let J + a
denote the interval J shifted by a.

Then the curve γ̃ : J + a→M defined by γ̃(t) = γ(t− a) is an integral curve of V .

Proof. Exercise

Assume that every point p ∈ M has a unique integral curve θp : R → M that starts at this
point. Define θt : M → M via θt(p) = θp(t). If we set q = θp(s), the translation lemma implies
that t 7→ θp(t + s) is an integral curve starting at q. Using the assumption about uniqueness of
integral curves we get θq(t) = θp(t+ s).

This translates to
θt ◦ θs(p) = θt+s(p)

Together with the property θ0(p) = p we get that θ defines an action of the additive group R on
M .

Conversely we define a global flow / one-parameter group action on M to be a left action of R
on M . We call this action smooth if the corresponding map θ : M × R→M is smooth.

In this case we define θt : M →M by θt(p) = θ(t, p). θ is a homeomorphism/diffeomorphism.
Furthermore define θp : R→M to be the parametrized orbit of p under this action i.e θp(t) =

θ(t, p).
We define the infinitesimal generator of such a smooth θ to be the vector field V (p) = ∂tθ

p(0).

Proposition 1.3. Let θ : R×M → M be a smooth global flow. The infinitesimal generator V of
θ is a smooth vector field on M , and each curve θp is an integral curve of V .

Proof. There is a smooth global vector field ∂t on R×M and by definition V = (θ∗)|{0}×M (∂t).
Furthermore note that θ∗(∂t) = d

dt

∣∣
t=0

θ(t+ t0, p) = d
dt

∣∣
t=0

θ(t, θt0(p)) = V (θp(t0)).

Examples:

• For V = ∂x the global flow is given by θt(x, y) = (x+ t, y)

• For W = x∂y − y∂x the global flow is given by

θt(x, y) = (x cos t− y sin t, x sin t+ y cos t)

2 The Fundamental Theorem on Flows
We have seen that every global flow gives us a vector field. Want to know wether the converse
holds.

It certainly doesn’t: Consider V as before defined on R2 \{0}.

Definition 2.1. We call an open subset D of R×M with the property, that every Dp = {t ∈
R |(t, p) ∈ D} is an open interval containing 0 a flow domain. A (smooth) flow on M is a (smooth)
map θ : D →M , that satisfies:
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• θ(0, p) = p

• s ∈ Dp and t ∈ Dθ(s,p) such that s+ t ∈ Dp, then θ(t, θ(s, p)) = θ(t+ s, p).

For a smooth flow we can define analogously the infinitesimal generator.

Proposition 2.2. If θ : D → M is a smooth flow, then the infinitesimal generator V of θ is a
smooth vector field, and each curve θp is an integral curve of V .

Proof. The proof of the global flow situation carries over almost verbatim, so it is left as an easy
exercise.

Theorem 2.3 (Fundamental Theorem on Flows). Let V be a smooth vector field on a smooth
manifold M . There is a unique maximal smooth flow θ : D → M whose infinitesimal generator is
V . This flow has the following properties:

(a) For each p ∈M , the curve θp : Dp →M is the unique maximal integral curve of V starting at
p.

(b) If s ∈ Dp, then Dθ(s,p) is the interval Dp−s.

(c) For each t ∈ R, the set Mt = {p ∈ M : (t, p) ∈ D} is open in M , and θt : Mt → M−t is a
diffeomorphism with inverse θ−t.

(d) For each (t, p) ∈ D, (θt)∗V (p) = V (θt(p)).

We will call the unique flow mentioned above the flow generated by V .
To prove the theorem, we need the following theorem about ODE’s, which we will prove later.

(This is also called the flowbox theorem)

Theorem 2.4 (ODE Existence, Uniqueness and Smooothness). Let U ⊂ Rn be open, and let
V : U → Rn be a smooth map. For t0 ∈ R and x ∈ U , consider the following initial value problem:

(γi)′(t) = V i(γ(t)), γi(t0) = xi

(a) EXISTENCE: For any t0 ∈ R and x0 ∈ U , there exists an open interval J0 containing t0
and an open set U0 ⊂ U containing x0 such that for each x ∈ U0, there is a smooth curve
γ : J0 → U that solves the initial value problem.

(b) UNIQUENESS: Any two differentiable solutions to the initial value problem agree on their
common domain.

(c) SMOOTHNESS: Let t0, x0, J0 and U0 be as in (a), and define a map θ : J0×U0 → U by letting
θ(t, x) = γ(t), where γ : J0 → U is the unique solution to the initial value problem with initial
condition x. Then θ is smooth.

Proof of the fundamental theorem on flows. Let γ and γ̃ denote two integral curves of V defined
on the same interval J such that γ(t0) = γ̃(t0). Then by our ODE Theorem we get that the set
on which γ and γ̃ agree is open, but on the other side it is closed by definition. Therefore the two
curves agree on the whole domain. Let Dp denote the union of all open intervals J ⊂ R containing
0 on which an integral curve starting at p is defined. We define θp(t) = γ(t), where γ is an integral
curve through p of V . Our previous considerations give, that this is well defined and furthermore
unique.

Define D as the union of Dp×{p} and θ(t, p) = θp(t). By definition θ fulfills condition (a) of the
theorem. To prove (b) fix any p ∈M and s ∈ Dp and write q = θ(s, p). The curve γ : Dp−s→M
defined by γ(t) = θp(t + s) satisfies γ(0) = q and the translation lemma shows that this is an
integral curve, which agress with θq. This gives us that θ is actually a flow.

By maximality of θq, the domain of γ cannot be larger than Dq, which means that Dp−s ⊂ Dq.
Since 0 ∈ Dp this implies, that −s ∈ Dq, and the group laws give, that θq(−s) = p. Analogously
Dq +s ⊂ Dp, which is the same as Dq ⊂ Dp−s. This proves (b).
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The open sets of (a) in the ODE Theorem give immediatly, that D is an open subset of R×M .
Furthermore part (c) of the ODE Theorem implies, that θ is smooth on these sets. But local
smoothness implies smoothness, and therefore θ is a smooth map.

Furthermore since D is open Mt is open as well. Part (b) gives us, that p ∈ Mt implies, that
θt(p) ∈M−t and the group laws immediately imply, that θt and θ−t are mutual inverses.

Lastly we have to proof, that V is invariant under θ i.e. if θ(t0, p) = q, then (θt0)∗(V (p)) = V (q).
For this we apply (θt0)∗(V (p)) to a function f .

((θt0)∗(V (p)))f = Vp(f ◦ θt0) =
d

dt

∣∣∣∣
t=0

f ◦ θt0 ◦ θp(t)

=
d

dt

∣∣∣∣
t=0

f(θt0+t(p))

=
d

dt

∣∣∣∣
t=0

f(θq(t))

=

(
d

dt

∣∣∣∣
t=0

θq(t)

)
f = V (q)f

The second equation uses, that θp is an integral curve for V , the third and fourth equation uses
the group law and the last equation uses again, that θq is an integral curve for V .

3 Proving the ODE Theorem
A little more abstract setting: We are given an open set U ⊂ Rn and a map V : U → Rn, which is
Lipschitz continuous and for any t0 ∈ R and any x ∈ U we will consider the following ODE initial
value problem:

d

dt
(γi)(t) = V i(γ(t)),

γi(t0) = xi

Note that this includes our previous considerations, because a smooth vector field V : M → TM
is locally Lipschitz continuous and the following theorems can be applied locally to get the ODE
Theorem as it was stated before.

Lemma 3.1 (Gronwall’s Lemma). Suppose J0 ⊂ R is an open interval containing t0, and u : J0 →
Rn is a differentiable map satisfying the following differential inequality for some non-negative
constants A and B and all t ∈ J0:

|u′(t)| ≤ A|u(t)|+B

Then the following inequality holds for all t ∈ J0:

|u(t)| ≤ eA|t−t0||u(t0)|+ B

A
(eA|t−t0| − 1)

Proof. We will show the inequality for the set J+
0 of all t ≥ t0, because one can easily deduce it

for t̃ ≤ t0 by substituting t0 − t̃ = t− t0.
If |u(t)| > 0 then |u(t)| is a differentiable function of t and we see that

d

dt
|u(t)| = d

dt
(u(t) · u(t))0.5 =

1

2
(u(t) · u(t))−0.5(2u(t) · u′(t))

≤ 1

2
|u(t)|−1

(2|u(t)||u′(t)|) = |u′(t)| ≤ A|u(t)|+B

Define g : J+
0 → R by

g(t) = eA(t−t0)|u(t0)|+ B

A
(eA(t−t0) − 1)
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By definition g(t0) = |u(t0)|, g(t) > 0 for t > t0 and g satisfies g′(t) = Ag(t) + B. Consider
f : J+

0 → R defined by
f(t) = e−A(t−t0)(|u(t)| − g(t))

We see that f(t) = 0 and for t ∈ J+
0 the claim of the lemma is equivalent to f(t) ≤ 0. Suppose

that f(t) > 0, this implies that |u(t)| > 0 and therefore that |u(t)| is differentiable. Then

f ′(t) = −Ae−A(t−t0)(|u(t)| − g(t)) + e−A(t−t0)

(
d

dt
|u(t)| − g′(t)

)
≤ −Ae−A(t−t0)(|u(t)| − g(t)) + e−A(t−t0)(A|u(t)|+B −Ag(t)−B)

= 0

Suppose there exists some t1 ∈ J+
0 such that f(t1) > 0. Define τ = sup{t ∈ [t0, t1] : f(t) ≤ 0}.

Then f(τ) = 0 by continuity and f(t) > 0 for t ∈ (τ, t1]. Because f is increasing in this interval, but
its derivative exists and is negative, the mean value theorem on this interval proves the claim.

Theorem 3.2 (Existence and Uniqueness of ODE Solutions). Let U ⊂ Rn be an open set, and
suppose V : U → Rn is Lipschitz continuous. Let (t0, x0) ∈ R×U be given. There exist an open
interval J0 containing t0, an open set U0 ⊂ U containing x0 and for for each x ∈ U0 a C1 curve
γ : J0 → U satisfying the initial value problem.

Furthermore if we have two solutions to the initial value problem, then they agree on their
common domains.

The proof of this theorem relies on the Banach Fixed-Point Theorem, whose proof is left as an
exercise.

Theorem 3.3 (Banach Fixed-Point Theorem). Let (X, d) be a non-empty complete metric space
with a contraction mapping T : X → X(i.e a Lipschitz continuous map with Lipschitz constant less
than 1). Then T admits a unique fixed point x∗ in X.

Proof of the Existence and Uniqueness of ODE Solutions. Suppose we have a solution γ to the
initial value problem. Then the ODE fulfilled by γ implies, that γ is in C1. Integrating the ODE
and use of the fundamental theorem of calculus gives

γi = xi +

∫ t

t0

V i(γ(s))ds

Conversely if a map γ fulfills the above equation, then the fundamental theorem of calculus implies
that γ is a C1 solution to the initial value problem.

Suppose J0 is an open interval containing t0. For any continuous curve γ : J0 → U we define a
new curve Iγ : J0 → Rn by

Iγ(t) = x+

∫ t

t0

V (γ(s))ds

We are looking for a fixed point of Iγ in a suitable metric space of curves. V being Lipschitz
continuous implies that there exists C such that |V (x)− V (x̃)| ≤ C|x− x̃|. Let M denote the
supremum of |V | on the compact set B̄r(x0), where r denotes some radius, such that the ball with
radius r around x0 is contained in U . Choose δ > 0 and ε > 0 small enough that

δ <
r

2
, ε < min

(
r

2M
,

1

C

)
and set J0 = (t0 − ε, t0 + ε) and U0 = Bδ(x0). For any x ∈ U0 let Mx denote the set of all
continuous curves γ : J0 → B̄r(x0) satisfying γ(t0) = x. We define a metric on this space by

d(γ, γ̃) = sup
t∈J0
|γ(t)− γ̃(t)|

Because every Cauchy sequence with respect to this metric is uniformly Cauchy we get thatMx

is a complete metric space. We want to define I : Mx →Mx as considered above.
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So we have to show that I is well-defined. That Iγ is continuous and Iγ(t0) = x is seen
immediately. To show that the image of Iγ is contained in B̄r(x0) we compute:

|Iγ(t)− x0| =
∣∣∣∣x+

∫ t

t0

V (γ(s))ds− x0

∣∣∣∣
≤ |x− x0|+

∫ t

t0

|V (γ(s))|ds

< δ +Mε < r

Next we show that I is a contraction. If γ, γ̃ ∈Mx, then

d(Iγ, Iγ̃) = sup
t∈J0

∣∣∣∣∫ t

t0

V (γ(s))ds−
∫ t

t0

V (γ̃(s))ds

∣∣∣∣
≤ sup
t∈J0

∫ t

t0

|V (γ(s))− V (γ̃(s))|ds

≤ sup
t∈J0

∫ t

t0

C
∣∣∣γ(s)− ˜γ(s)

∣∣∣ds ≤ Cεd(γ, γ̃)

Because we have chose ε so that Cε < 1 this shows that I is a contraction. The Banach Fixed-point
Theorem implies, that I has a unique fixed-point. Uniqueness can also be seen using the following
observation:

Suppose γ and γ̃ both solve the initial value problem for (t0, x0) then∣∣∣∣ d

dt
(γ̃(t)− γ(t))

∣∣∣∣ = |V (γ̃(t))− V (γ(t))| ≤ C|γ̃(t)− γ(t)|.

Applying the Gronwall inequality implies

|γ̃(t)− γ(t)| ≤ eC|t−t0||γ̃(t0)− γ(t0)|

Thus if both curves satisfy the same initial value condition, they agree.

Theorem 3.4 (Smoothness of ODE Solutions). Suppose U ⊂ Rn is an open set and V : U → Rn
is Lipschitz continuous. Suppose also that U0 ⊂ U is an open set, J0 ⊂ R is an open interval
containing t0, and θ : J0 ×U0 → U is any map such that for each x ∈ U0, γ(t) = θ(t, x) solves our
initial value problem. If V is of class Ck for some k ≥ 0, then so is θ.

Proof. We will proof the theorem using induction on k. The hardest parts are the two cases k = 0
and k = 1. For continuity it suffices to show that for an arbitrary point (t1, x1) ∈ J0 × U0 θ is
continuous on some neighborhood of that point.

Let J1 be a bounded open interval containing t0 and t1 and such that J̄1 ⊂ J0. Choose r > 0
such that B̄2r(x1) ⊂ U0 and let U1 = Br(x1). Let C be a Lipschitz constant for V and define
constants M and T by

M = sup
Ū1

|V |, T = sup
J̄1

|t− t0|

We will show that θ is continuous on J̄1× Ū1. Using our previous considerations for the uniqueness
of solutions we get:

|θ(t, x̃)− θ(t, x)| ≤ eCT |x̃− x|

Thus for each t, θ is Lipschitz continuous as a function of x. We have to show, that it is continuous
in both variables. Let (t, x), (t̃, x̃) ∈ J̄1 × Ū1 be arbitrary. Since the solutions to the initial value
problem all solve

θi(t, x) = xi +

∫ t

t0

V i(θ(s, x))ds

5



and therefore (assuming without loss of generality t̃ ≥ t)

∣∣θ(t̃, x̃)− θ(t, x)
∣∣ ≤ |x̃− x|+ ∣∣∣∣∣

∫ t̃

t0

V (θ(s, x̃))ds−
∫ t

t0

V (θ(s, x))ds

∣∣∣∣∣
≤ |x̃− x|+

∫ t

t0

|V (θ(s, x̃)− V (θ(s, x))|ds

+

∫ t̃

t

|V (θ(s, x̃)|ds

≤ |x̃− x|+ C

∫ t

t0

|θ(s, x̃)− θ(s, x)|ds+

∫ t̃

t

Mds

≤ |x̃− x|+ CTeCT |x̃− x|+M
∣∣t̃− t∣∣

This implies, that θ is continuous.
Next we address the k = 1 part, which is the hardest part of the proof. Suppose that V is of

class C1 and define J̄1, Ū1 as before. Expressed in terms of θ our initial value theorem becomes:

d

dt
θi(t, x) = V i(θ(t, x))

θi(t0, x) = xi

Since θ is continuous this implies, that the time derivative of θi exists and is continuous. So let us
prove that ∂jθi exists and is continuous.

We define the differential quotient (∆h)ij : J̄1 × Ū1 → R by

(∆h)ij(t, x) =
θi(t, x+ hej)− θi(t, x)

h

By definition ∂jθi(t, x) = limh→0(∆h)ij)(t, x) if the limit exists. We will show that (∆h)ij) converges
uniformly as h→ 0, which implies, that the limit exists and is continuous as the uniform limit of
continuous functions.

We write every index of the differential quotient in a matrix to get ∆h : J̄1×Ū1 → Mat(n×n,R).
Our previous considerations showed that

∣∣(∆h)ij(t, x)
∣∣ ≤ eCT for every index. This implies that

|∆h(t, x)| ≤ neCT .
We can Taylor approximate V for all t ∈ J̄1, y ∈ Ū1 and v ∈ Br(0) to get

V i(y + v)− V i(y) = vk
∂V i

∂yk
(y) + vk

∫ 1

0

(
∂V i

∂yk
(y + sv)− ∂V i

∂yk
(y)

)
ds

We will write Gik(y, v) for the integral part of this equation. Thus we get:

V i(y + v) = V i(y) + vk
∂V i

∂yk
(y) + vkGik(y, v)

where Gik is continuous and zero whenever v = 0. Since Gik(y, v) is defined on a compact set, it is
uniformly continuous i.e for every ε > 0 there exists δ > 0 such that the matrix valued function G
satisfies

|G(y, v)| < ε for all y ∈ Ū1 and all |v| < δ

Since θ(t0, x) = x we have that ∆h satisfies the following initial condition: (∆h)ij(t0, x) = δij . We
want to compute the time derivative of (∆h). Denote θ(t, x) by y and define v = (v1, . . . , vn) as

vk = θk(t, x+ hej)− θk(t, x) = h(∆h)kj (t, x)

6



This gives:

d

dt
(∆h)ij(t, x) =

1

h

(
d

dt
θi(t, x+ hej)−

d

dt
θi(t, x)

)
=

1

h
(V i(θ(t, x+ hej))− V i(θ(t, x)))

=
1

h

(
vk
∂V i

∂yk
(θ(t, x)) + vkGik(y, v)

)
=

(
∂V i

∂yk
(θ(t, x)) +Gik(y, v)

)
(∆h)kj (t, x)

Thus for any nonzero h, h̃ ∈ B̄r(0)

d

dt

(
(∆h)ij(t, x)− (∆h̃)ij(t, x)

)
=
∂V i

∂yk
(θ(t, x))

(
(∆h)kj (x)− (∆h̃)kj (t, x)

)
+Gik(y, v)(∆h)kj (t, x)−Gik(y, ṽ)(∆h̃)kj (t, x)

Here ṽ is defined analogously to v with h̃ instead of h. Now chose δ ≤ r such that G is uniformly
bounded by some ε > 0. Let E denote the supremum of |DV | on Ū1. By specifying |h| and |h̃| to
be smaller than δe−CT /n we get that v and ṽ are both bounded by δ. We compute∣∣∣∣ d

dt
(∆h(t, x)−∆h̃(t, x))

∣∣∣∣ ≤ E∣∣∆h(t, x)−∆h̃(t, x)
∣∣+ 2εneCT

Because ∆h(t0, x)−∆h̃(t0, x) = 0 the Gronwall inequality gives:

∣∣∆h(t, x)−∆h̃(t, x)
∣∣ ≤ 2εneCT

E
(eE|t−t0| − 1) ≤ 2εneCT

E
(eET − 1)

Since ε was arbitrary this implies that ∆h is uniformly Cauchy if h → 0 and therefore converges
uniformly to a continuous function ∂θi/∂yj . This finishes the k = 1 step.

Now assume that the assumption holds for some k ≥ 1 and suppose V is in Ck+1. By inductive
hypothesis θ is of class Ck and therefore d

dt θ
i is also in Ck. By differentiating the equation

θi(t, x) = xi +
∫ t
t0
V i(θ(s, x))ds we get

∂θi

∂xj
(t, x) = δij +

∫ t

t0

∂V i

∂yk
(θ(s, x))

∂θk

∂xj
(s, x)ds

Therefore the fundamental theorem of calculus implies that ∂θi/∂xj satisfies the differential equa-
tion

d

dt

∂θi

∂xj
(t, x) =

∂V i

∂yk
(θ(t, x))

∂θk

∂xj
(t, x)

Consider the following initial value problem for the n+ n2 unknown functions (αi, βij):

(αi)′(t) = V i(α(t))

(βij)
′(t) =

∂V i

∂yk
(α(t))βkj (t)

αi(t0) = ai

βij(t0) = bij

One easily checks that the functions on the right-hand side are in Ck. Furthermore it is easy to
see that αi(t) = θi(t, x) and βij(t) = ∂θi/∂xj(t, x) solve this system with initial conditions ai = xi,
bij = δij . This implies, that the derivatives of θ are in Ck, which completes the proof.
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