GLOBAL ANALYSIS I - WS 2017/2018

DR. B. MESLAND

1. Week 1
1.1. Lecture 1 - Tue 10-10-2017. Material covered:

[1, Chapter 1 '""'Smooth manifolds''] and
[1, Chapter 2 '"'Smooth maps'' up to page 40].

Review of defintions of topological manifold, smooth compatibility of charts,
smooth manifold, smooth atlas, smooth structure, smooth map, diffeomor-
phism. Example: the sphere S™ C R"*!,

1.2. Lecture 2 - Wed 11-10-2017. Material covered:

[1, Chapter 2 '""'Smooth maps'' section ''Bump functions and partitions
of unity'', pages 40-47]

Important definitions and results:

1.1. Definition. A collection {U, }.ca of a topological space M is locally
finite if every p € M has a neighborhood V' such that V' N U,, is nonempty
for only finitely many «.

1.2. Lemma. Let U = {U,}qca be an open cover for which each U, is a
precompact set. Then U is locally finite if and only if for each « there are
at most finitely many (3 for which U, N Ug is nonempty.

Proof. Is one of this weeks exercises. As noted during the lecture, precom-
pactness is necessary for the equivalence to hold. U

1.3. Lemma. Every topological manifold admits a locally finite cover by
precompact open sets.

1.4. Definition. Let M a manifold and W = {W;},c; an open cover. The
cover W is regular if

(1) the cover W is countable and locally finite;
(2) for each i there is a diffeomorphism ¢, : W; — B(0,3) C R"™;
(3) the collection U; := v, *(B(0, 1)) still covers M.

1
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1.5. Proposition. Let M be a smooth manifold. Then every open cover
admits a regular refinement. In particular M is paracompact.

1.6. Definition. Let X = {X,} be an open cover of the smooth manifold
M. A partition of unity subordinate to X is a collection of smooth functions
Oo : M — R, a € A such that

e 0<¢,<1

® suppd, C Uy;

e the set of supports {suppo, } is locally finite;

e foreach x € M wehave ) _, ¢q(x) = 1.

Note that the last sum is finite by the condition preceding it.

1.7. Theorem. Let M be a smooth manifold and X = {X,}aca an open
cover. Then there exists a partition of unity ¢, subordinate to X.

An important corollary this the above theorem is

1.8. Lemma. Let M be a smooth manifold, and suppose fis a smooth func-
tion defined on a closed subset A C M. For any open set U containing
A, there exists a smooth function f € C°°(M) such that f|x = f and
suppf C U.

2. Week 2
2.1. Lecture 3 - Tue 17-10-2017. Material covered:

[1, Chapter 3 '"The tangent bundle'', pages 50-60]

2.1. Definition. A map v : C*°(M) — R is called a derivation at p € M
if it satisfies the Leibniz rule

v(fg) = f(p)v(g) +v(f)g(p),
forall f,g € C*°(M). The tangent space at p is defined to be

Ty(M) :={v:C>*(M) — R: vaderivation at p}.

For ' : M — N a smooth map we define the differential of F' at p to the
map

(dF)y : Ty(M) — Tr)(N),
defined by the rule (dF),(v)(f) := v(f o F) where v € T,(M) and f €
C>®(N).

2.2. Proposition (Properties of the differential). Let M, N, P be smooth
manifolds and F' : M — N, G : N — P be smooth maps. For p € M we
have

(1) (dF), : T,(M) — T,(N) is linear;
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2) (dG)p) o (AF)p = (d(G o F))y : TyM = Taorp) Ps

(3) (didys), = g, p) : T,M — T,(M);

(4) if F is a diffeomorphism then (dF'), : T,(M) — T,(N) is an iso-
morphism with inverse (dF), " = (dF~"),.

2.3. Proposition (Locality of the differential). Let M be a smooth manifold
with or without boundary, p € M and v € T,(M). Suppose that f,g €
C>° (M) are such that there is a neighborhood U of p for which f|y = g|u.

Then v(f) = v(g).

2.4. Proposition (Open submanifold). Let M be a smooth manifold with
or without boundary, U C M an open subset and i : U — M the inclu-
sion map. For any p € U the differential (di), : T,(U) — T,(M) is an
isomorphism.

2.5. Proposition. Let M be a smooth n-dimensional manifold with or with-
out boundary. Then for every p € M the tangent space T,(M) is an n-
dimensional vector space.

An abstract vector space V' carries a canonical topology and smooth
structure making in an n-dimensional manifold. Thus the tangent space
T,V is isomorphic to V. The isomorphism is canonical and of the form

d
V =T, V, v Dy, Dy|af:£]t:0f(a+tv),

with f € C>°(V). If L : V' — W is a linear map, the above isomorphism
satisfies the compatibilty

(dL)a(Dv|a)f = DLU|Laf7
for f € C>(V).
2.6. Definition. The rangent bundle of the manifold M is the set

TM = | | T,(M).

The projection map w : TM — M is defined by 7(p, v) := p.

2.2. Lecture 4 - Wed 18-10-2017. Material covered:

[1, Chapter 3 "The tangent bundle' pages 60-75]

First we covered a discussion of explicit coordinate expressions for bases

of tangent spaces, differentials of smooth maps and change of coordinate
maps. This can be found on pages 60-65 of [1].
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2.7. Proposition. For an n-dimensional manifold M, the tangent bundle
T'M carries a natural topology and smooth structure making it into a 2n-
dimensional manifold and the projection map © : T'M — M is smooth.

2.8. Definition. The global differential of a smooth map F' : M — N is
the map

dF : TM — TN, dF(p,v):= (F(p),(dF),v).

2.9. Proposition. The global differential of a smooth map F' : M — N is
a smooth map dF' : TM — TN between the tangent bundles.

As the pointwise differentials, the global differential satisfies

and if F'is a diffeomorphism then so is dF'.

[1, Chapter 10 ""Vector bundles'' pages 249-252]

2.10. Definition (Vector bundles). Let M be a topological space. A real
vector bundle of rank k over M is a topological space E together with a
continuous map 7 : &/ — M satisfying

(1) for each p € M the fiber E, := 7 '(p) is a k dimensional real
vector space;
(2) for every p € M there exists a neighborhood U of p and a homeo-
morphism
d: 7 (U) = U xRk
with the property that 7y 0 ® = 7, where 7y : U x RF — U is the
coordinate projection, and for every p the restriction
® 7' (p) = {p} xR,
is a vector space isomorphism.
In case M, E/ are manifolds and 7, ® are smooth, then 7 : £ — M is a
smooth vector bundle.

We often refer to £ as the rotal space M as the base and 7 as the bun-
dle projection. The maps ¢ are called local trivializations. The pertinent
example is the tangent bundle 7'M — M.

2.11. Lemma. Let 7 : 2 — M be a smooth vector bundle and
O .7 U) = UxRF, V:77YU)—U xR,
two local trivializations. There exists a smooth map

7:UNV — GL(k,R),
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such that
® oW (p,v) = (p,7(p) - v).
Here 7(p) - v denotes the usual matrix multiplication.

3. Week 3

3.1. Lecture 5, Tue 24-10-2017.
[1, Chapter 10 ''Vector bundles'' pages 252-255]

3.1. Lemma (Vector bundle chart lemma). Let M be a smooth manifold
(with or without boundary). Suppose that we are given

(1) for each p € M a vector space E,;
(2) an open cover {Uy }aca of M;
(3) a fixed k-dimensional vector space V and for each o € A a bijec-
tion
o | | By = UaxV,
peUy

such that the restriction ®, : E, — V is a vector space isomor-
phism;
(4) for each pair (o, B) with U, N Ug # 0 a smooth map

TaB - U, N Ug — GL(V),
such that the map
o 0®; Uy NUs x V= Us NUs XV,
is given by (u,v) — (u, Tos(u) - v).

Then E = |—|pe v Ep admits a unique topology and smooth structure mak-
ing it into a manifold with or without boundary and such that

T:E— M, (pv)—p
is a rank k real vector bundle with local trivializations {(Us, ®o) }aca-
[1, Pages 276-277]

3.2. Example (The cotangent bundle). Let E, := T,y (M)(T,(M))* be the
dual of T),(M) and {(U;, ¢:) }icr a cover of M by coordinate charts. Define

®: | | B, = U xR"

peU;

n
Z/Uidxi’p — (pa V1, '/Un)7
=1
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where dx;|, is the basis dual to the basis a% |, of T,M. If (U;, ;) is another
chart with coordinates y; and U; N U; # () then

1 _ J J
¢i o ¢j <p7 Uy, avn) - (pv §j Uj(%cl (p)a ) % Uj@xn (p))7

which is smooth because U; and U; are smoothly compatible. The map

O
(1) 7 UinU; — GL(n,R), pr (8? ())ijs

thus satisfies the axioms of the chart lemma. We so obtain the cotangent
bundle T M of M.

3.3. Example (Alternating tensors). The bundle of alternating tensors of
degree k is defined to be

k k
ATM = | | NT;M,

peEM

where /\k T M is the k-th exterior power of 7y (M ). To a cover of coordi-
nate charts {(U;, ¢;) }icr of M we associate the maps

k k
o | | ANTpM — U x \R"

peU;

Zw;dle A Ndxg | = (p, ZWJ(p)eﬁ A-eeeg),
J J

where e, is the standard basis of R". The transition maps for this bundle are
given by the functions

k

defined through 7/ (p)(vy A - - Awg) := Tij(p)vr A - - - ATy5(p) vk, where 7
isasin (1).

[1, Chapter 10, pages 255-261]

3.4. Definition. Let 7 : £ — M be a vector bundle. A global section of £/
isamap s : M — E suchthatmos =idy,. Incase £ — M is a topological
vector bundle, we denote by I'(M, E) the space of continuous sections of
E.

In case £ — M is a smooth vector bundle we denote by I'>°(M, E) the
space of smooth sections of E.

A local section over an open set U C M isamap s : U — E such that
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m o s = idy and we adopt the same notational conventions for continuous
and smooth local sections.

3.5. Example. I'(M, T'M) is the space of continuous vector fields on M
A (M) :=T(M,TM) is the space of smooth vector fields on M.

For a trivial bundle E := M x R* we have I'(M, E) ~ C(M,R*) and
(M, E) ~ C®(M,R").

3.6. Definition. A smooth covector field or differential 1-form is a smooth
section of the contangent bundle 7™ M.

3.7. Definition. Let ¥ — M be a vector bundle. A k-tuple of local sections
(0;)F_, over an open U is a local frame over U if for all p € U the vectors
(0:(p))k_, form a basis for E,,.

3.8. Example (Frames and trivializations). Given a trivialization
7Y (U) = U x R,

over U and e; the standard basis of R* the maps o;(u) := ®~(u, ¢;) define
a local frame over U.

3.9. Proposition. Any smooth local frame over U is associated with a local
trivialization as in the previous example.

The trivialization associated with the local frame (o;) is defined by
(I):W_I(U>_>UXRICJ vp’_> (pavl(p)f" )Uk(p))7
where the functions v; are defined by v, = > v;(p)o;(p).

3.10. Corollary. If the bundle E — M admits a frame defined on all of
M then E ~ M x R* and this is identification is continuous or smooth
whenever the o; are continuous or smooth.

3.11. Corollary. Let (V,¢) be a smooth chart for M and (o;) a smooth
local frame over V. Then

¢: 1N (V) = (V) x RF
ZUZ‘O'i(p) = ($1(p), T 7$n(p)’ U1y vvk)a
is a smooth chart for 7= (V) C E.

3.12. Proposition. Let 7 : E — M be a smooth vector bundle, (0;) a
smooth local frame and T : M — E a section. Then T is smooth if and only
if the coordinate functions 7; : M — R defined by T(p) = Y. 7:(p)oi(p)
are smooth.



8 DR. B. MESLAND

3.2. Lecture 6, Wed 25-10-2017. A vector field X € 2" (M) associates to
a smooth function on M a new function X f on M via (X f)(p) := X, (f),
since X, € T,,(M) is a derivation at p.

[1, Chapter 8, pages 180-181 and 185-186]

3.13. Proposition (Smoothness criterion for vector fields). Let M be a
smooth manifold and X : M — TM a vector field. The following are
equivalent:
(1) X is smooth;
(2) for every f € C*°(M) the function X f is smooth,
(3) for every open set U C M and f € C*®(U) the function X f is
smooth on U.

We thus have that a smooth vector field X induces a map
X :C®(M) — C*(M)
(XF)(p) = Xpf,

and this map is a derivation, that is, it satisfies the Leibniz rule X (fg) =
(X f)g + f(Xg). The converse is true as well.

3.14. Proposition. Ler D : C*(M) — C*(M) be a derivation. Then
there is a vector field X : M — T M such that X f = Df.

The Lie bracket of vector fields is the map
(M) x Z'(M)— Z(M),(X,Y)— [X,Y],
where [X, Y] is defined by its action on functions
(X, Y]f =X (Y [)=Y(X]).

It is straightforward to check that [ X, Y] is a derivation and thus defines a
vector field.
[1, Chapter 11, pages 278-282]

3.15. Proposition (Smoothness of covector fields). Let M a smooth mani-
fold with or without boundary and w : M — T*M a I-form. The following
are equivalent:
(1) w is smooth;
(2) in every chart the component functions with respect to the local
frame dx; are smooth;
(3) every point of M is contained in some chart for which the compo-
nent functions with respect to the local frame dx; are smooth;
(4) for every vector field X : M — T M the function w(X) is smooth;
(5) for every open set U C M and vector field X : U — TM, the
function w(X) is smooth in U.
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3.16. Definition (The differential of a function). Let f € C*°(M) and v, €
T,(M). We define the differential of f at p to be the covector

(df )p(vp) = v, (f).

3.17. Proposition. The differential of a smooth function is a smooth covec-
tor field.

[1, Chapter 14, pages 259-372]

Pages 249-259 contain a review multilinear algebra on vector spaces. We
did not review this material in the lecture but it is recommended reading.

3.18. Definition. A differential k-form is a section of the bundle /\k T*M.
We introduce the notation
dimM

k
OF(M) ==T>(M, NT*M), Q" (M) = P Q"(M).
k=0

The wedge product of differential forms is defined as follows:
For w € QF(M) and n € QY M) and vector fields X1, -+, X, , we
define

W/\U(Xb o Xf-i-k) = Z Sgn(g)w(XJ(l)7 o aXU(k))n(XU(kJrl)a T >XU(Z+I€))'

O'ESg+k

The summation runs over all permutations ¢ in the symmetric group Sy
on ¢ + k elements. The wedge product satisfies

(Awy + pwa) A= dwy An+ pws A,

wAn=(—1)"nAw.

Given a smooth map F : M — N , the pull back of a form w € Q*(N) is
the k-form

(Frw)(Xy, -, X)) i= w(dF(Xy), -, (dF)(Xy)),
or more comapctly F*w := w o dF'. Also recall that for a k-form
w = wadxil A Ndxy,,
defined on an open set of R" is exterior derivative is defined by
dw = Zdw[/\dxil A Ndxy, .
3.19. Lemma. Suppose F': M — N is a smooth map. Then

(1) F*: QF(N) — QF(M) is linear;
(2) F*(wAn)=F*wA Frn;
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(3) in any chart on N with coordinates v;

F* () widysy, A+ Ady;,) =Y (wro F)d(yi, o F) A+ Ad(ys, o F)
I I

4) if M C R™ and N C R" are open sets then F'*(dw) = d(F*w);

(5) if G : P — M is another smooth map then (F o G)* = G* o F™.
3.20. Theorem. Let M be a smooth manifold with or without boundary.
There are operators d : Q¥ (M) — Q*Y(M), uniquely determined by

(1) dis R-linear

(2) forw € QF(M) and n € QY (M) we have

dwAn) =dwAn+ (—1)Fw A dny;
(3) d*> =0;
4) for f € C®(M)and X € Z (M) it holds that df (X ) = X f.

In any chart we have

d(z Wdeﬁ ARRRNA dxjk) = Zde A dx]i ARERRA dxjk;'
J J

3.21. Theorem. For a k-form w and vector fields X1,--- , Xp11 it holds

that
_ i—1 %
do(Xp o) = 3 (~) T Xw(Xa, e+, Xy e s Xa)
1<i<k+1
+ Z H_jw XzaX]Xla"'73(\2'7"'75(;7"'7Xk+1)-
1<i<j<k+1

In particular, for a 1-form w we have

dw(X,Y) = X(w(Y)) - Y(w(X)) —w([X,Y]).

4. Week 4

No lectures in week 4.

5. Week 5

5.1. Lecture 7, Tue 07-11-2017. This lecture coves the material in [1,
Chapter 15, pages 377-384] concerning orientations of manifolds.

5.1. Definition. Let ¢ := (ey,--- ,e,) and E := (Fy,--- , E,) be two or-
dered bases for the vector space V. We say that e and E are consistently
oriented if the transition matrix (B/) defined by e; = > B! E; has positive
determinant.
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The above definition gives an equivalence relation on the set of ordered
basis with exactly two equivalence classes. The orientation determined by
the basis e is denoted [e]. If [E] = [e] we say that E is positively oriented
with respect to e. Otherwise it is negatively oriented.

5.2. Proposition. Let V' be a vector space of dimension n > 1. Then any
w € N'"V* with w # 0 determines a unique orientation O, on V. An
ordered basis (ey, - - - ,e,) is positively oriented with respect to w if

w(ey, --en) >0,
and negatively oriented with respect w if
w(ep, -+ ,en) <O0.

Two elements w,n € \" V* define the same orientation on V' if and only if
w = An for some \ > 0.

5.3. Example. Let (e, - ,e,) be an ordered basis for V' with dual basis
(€1, ,€n). Then (e, -+ ,e,) and w := &1 A -+ A &, define the same
orientation.

For manifolds the situation is more complicated. A pointwise orientation
of a manifold M is a choice of orientation on each tangent space 1,M, p €
M. Alocal frame (X7, - -- , X,,) is psotively oriented if (X p,--- , X, ,) €
T,(M) is positively oriented.

5.4. Definition. A pointwise orientation for M is continuous if every p €
M has a neighborhood U such that there exists a positively oriented local
frame over U. A manifold M is oriented if it is equipped with a continuous
pointwise orientation.

5.5. Definition. Let M be an n-dimensional manifold. An n-form w €
"(M) is non-vanishing if for for every p € M there exists a local frame
(X1,---,X,) with dual coframe (dzy,--- ,dx,) such that w = fdx; A

-+-dx, and f(p) # 0.

5.6. Proposition. Let M be a smooth manifold of dimension n (with or
without boundary). Any non-vanishing n-form w € Q"(M) determines a
unique orientation on M. Conversely if M is oriented there exists a non-
vanishing n-form defining the orientation.

5.7. Definition. Let )M be an oriented manifold (with or without boundary).

A chart (U, ) is positively oriented if the frame % is positively oriented.

An atlas {(U;, ;) } is positively oriented if the transition maps
piop; ' (UiNU;) = ¢i(Ui N U),

have positive Jacobian determinant at each point of ¢, (U; N Uj;).
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5.8. Proposition. Let M be a smooth manifold of dimension n > 1. Sup-
pose M admits a consistently oriented smooth atlas {(U;, ;)}. Then M is
orientable and there is a unique orientation for which each (U;, ;) is posi-
tively oriented. Conversely if M is oriented and n > 1 or OM = () then the
collection of all positively oriented smooth charts is a consistently oriented
atlas.

Now suppose F' : M — N is a local diffeomorphism between smooth
manifolds M and N. If M and N are oriented we say that F' is orientation
preserving if (dF'), : T,M — T,N maps positively oriented bases to pos-
itively oriented bases. [' is orientation reversing if (dF), maps positively
oriented bases to negatively oriented bases.

5.9. Proposition. Let F' : M — N be a local diffeomorphism and sup-
pose that N is oriented. Then M is orientable and there exists a unique
orientation on M for which F'is orientation preserving.

In this case, if w is an orientation form for /N then F*w is an orientation
form for M.

5.2. Lecture 8. We return to some structural results about manifold with
boundary, see [1, Chapter 1, pages 27-29].

5.10. Theorem. Let M be a smooth manifold with boundary and p € M.
Suppose that there is a boundary chart (U, @) with p € U such that p(U) C
H" and p(p) € OH . Then for any other chart (V,v)) with p € V it holds
that o(V) C H' and p(p) € OH .

5.11. Corollary. A manifold with boundary decomposes as a disjoint union
M = IntM L OM.

To equip OM with a smooth structure we use the results from [1, Chapter
5, pages 101-104].

5.12. Definition. Let M be a manifold and S C M a subset. Then S is
an embedded submanifold if, equipped with the subspace topology, it has a
smooth structure such that the inclusion map i : S — M is a smooth embed-
ding. That s, 7 is a homeomorphism onto its image and (di),, : 1,5 — T,M
is injective for all p € M.

5.13. Theorem. Let M be a manifold of dimension n with boundary OM.
Then OM is a manifold of dimension n — 1 with charts (V1) given by

V:=UNoM, ¢ :=m, 10,
where (U, ) is a chart for M and m,_, : R" — R""1 is given by
7Tn71<x17 T 7$n) = (1'17 T 7xn71)-

With these charts the inclusion i : OM — M becomes a smooth embedding.
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To equip OM with an orientation, we return to [1, Chapter 15, pages
384-387].

For an oriented manfiold with boundary the tangent space at a boundary
point p € M decomposes as a disjoint union

T,M = T"M UT"M UT,0M,

where
"M = {zn: vki cvp >0}, TMM = {zn: vki s v, < 0}
P 1 8513k P 1 8a:k

We call T;“M the inward pointing tangent vectors and T;“‘M the outward
pointing tangent vectors.

5.14. Lemma. Let M be an oriented manifold with boundary. There exists
a vector field X € Z (M) such that for every p € OM, X, is an outward
pointing vector. Similarly there exists a vector field Y € Z (M) such that
for every p € OM, X, is an inward pointing vector.

5.15. Proposition. Let n > 1 and M an oriented smooth n-dimensional
manifold. Then OM is oriented and all outward pointing vector fields define
the same orientation on OM.

[1, Chapter 16, pages 400-404] Recall that a domain of integration in
R™ is a subset D C R™ whose topological boundary D \ D° has Lebesgue
measure zero. A continuous n-form w on D can be written

w= fdry N\--- Ndx,.
We define the integral of w over D by

/w::/fdxl---dxn.
D D

5.16. Lemma. Ler U C R" be an open set and K C U a compact set. Then
there exists a domain of integration D such that K C D C D C U.

If w is an n-form with compact support contained in an open set U we

define
/w::/w,
U D

where D is any domain with suppw C D C D C U.

5.17. Propeosition. Let D and E be domains of integration in R" or H" and
G : D — FE a smooth map which restricts to an orientation preserving
diffeomorphism G : D — E. Then for an n-form w on E

/G*w:/w.
D E
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In case G : D — FE is orientation reversing, we have

/G*w:—/w.
D E

5.18. Proposition. Let U,V be open subsets of R" or H and G : U — V
an orientation preserving diffeomorphism. If w is a compactly supported

n-form on 'V then
/ w = / G*w,
v U

and if G is orentation reversing then

/w:—/G*w.
1% U

6. Week 6

6.1. Lecture 9, Tue 14-11-2017. [1, Chapter 16, pages 404-408 and 411-
415]

We are now ready to define integration of n-froms on an oriented mani-
fold M. First suppose w is an n -form whose support is contained in a single
positively oriented chart ( . For such w we set

/w—/w K

If the chart (U, o) is negatively oriented we set

Jw=- / L

6.1. Proposition. Suppose w is a compactly support n-form on an oriented
manifold M, and (U, ), (V, 1) are charts such that supp w C UNV. Then

[ oeye= [ wiyw
e(U) (V)

and in particular | 1 W is independent of the choice of chart.

6.2. Definition. Let M be an oriented smooth manifold and w a compactly
supported n-form. Let {(U;, 90)} be an atlas of oriented charts and x; a
partition of unity subordinate to U;. The integral of w over M 1is defined to

[ e

6.3. Proposition. The definition of | o W is independent of the choice of
cover and the choice of partition of unity.
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The integral so defined has the following properties:
(1) for a,b € R and w, n compactly supported n-forms,

/aw+bn:a/w+b/n
M M M

(2) if —M denotes M with the opposite orientation then

L=l

(3) if w 1s a positively oriented orientation form then f yw>0
4)if F : M — N is an orientation preserving diffeomorphism be-
tween oriented manifolds M and N then [,, w = [ F*w.

For an oriented manifold M with boundary OM we always equip M with
the induced (or Stokes) orientation. Given an n — 1-form w we set

/w::/ 7w,
oM oM

with i : OM — M the embedding. Note that dw is a n-form on M

6.4. Theorem (Stokes’ theorem). Let M be an oriented manifold with bound-
ary OM ad w a compactly supported n — 1-form on M. Then

/dw:/ w,
M oM

where OM carries the Stokes orientation.

We now turn to the discussion of Riemannian metrics [1, Chapter 13,
pages 327-337].

6.5. Definition. Let M be a smooth manifold with or without boundary. A
Riemannian metric on M is a paring

g: Z(M)x Z(M)— C°(M)
(X,Y) = gX)Y),
with the following properties.
e (symmetry) forall X, Y € 2 (M) we have g(X,Y) = g(Y, X)
e (bilinearity) for all fy, fo € C*°(M) and X, Y, Y2 we have
9(X, iV + foYo) = f19(X, Y1) + f29(X, Y2),

e (nondegeneracy) for p € M and all X € 2 (M) it holds that
9(X; X)(p) > 0.

The pair (M, g) is called a Riemannian manifold.
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For each p € M the metric g defines an inner product on the tangent
space 1,,(M) denoted (-, -),. It is defined by

(Xp, Yp)g = g(X,Y)(p).
6.6. Lemma. For any manifold there exists a Riemannian metric.

For 1-forms w,n € Q'(M) we define their symmetric product to be the
two form w - 77 given on vector fields X, Y by

w (X, Y) = S @(X(Y) + (Y n(X)).

6.7. Example (Euclidean metric on R™). The expression

g = idl‘i ~dr; = i(dmi)2v
i=1

=1

defines a Riemannian metric on R” called the Euclidean metric.

6.8. Example (Round metric on S™). The restriction of the Euclidean metric
on R""! to 27 (M) gives the round metric on S".

6.9. Example (Hyperbolic metric on H"). Recall that H" is the upper half
space
H" :={(xy, - ,2,) € R" : 2, > 0}.

The hyperbolic metric on H" is given by

_ Z?:l(dxi)2
g= 2 .
xn

6.2. Lecture 10. A Riemannian metric defines an inner product on each
tangent space. This allows us to talk about the length of tangent vectors and
angles between them:

Two vector fields X, Y are orthogonal over a set U if g(X,Y)(p) = 0
for all p € U. For a vector field X we denote by |X| the function p

g9(X, X)(p) on M.

6.10. Definition. A smooth local frame (X1, --- , X,,) over U is orthonor-
mal if
9(Xi, X;)(p) = 0;5, forallp e U.
In particular X;(p) is an orthonormal basis for 7,M for all p € U. It is
in general not true that the coordinate frame -2- associated to a chart (U, ¢)

is orthonormal.

6.11. Proposition. For every p € M there is a neighborhood U of p and a
smooth orthonormal frame over U.
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The following discussion of the Riemannian volume form can found in
[1, Chapter 15, pages 388-390]

6.12. Proposition. On an oriented Riemannian manifold (M, g) there is a
unique positive orientation form w, such that

wg(Ela e 7En) - 17
for every orthonormal frame E;.

6.13. Proposition (Volume form in a coordinate frame). Let (M, g) be an
oriented Riemannian manifold of dimension n > 1 and (U, @) a positively
oriented chart with coordinates x;. The volume form w, in these cooridnates
is given by

wy = y/det(gi;)dzy A -+ A dxy,

with g;; == g <8x , 8§]>

The normal bundle and its orthonormal frames are introduced in [1, Chap-
ter 13, page 337].

For an embedded submanifold S C M of a Riemannian manifold (), g).
For p € S the tangent space 7,5 is a subspace 7,,M. We define the normal
space to be

N,S :={v e T,M :Yw € T,S{v,w)g = 0}.
The normal bundle is the collection
NS :=| | N, cTM,
peES

and the bundle projection 7= : T'M — M restricts to a bundle projection
NS — S. The normal bundle is a vector bundle over S of rank dim M —dim
S. For every p € S we have T,M =T,5S © N,,S.

6.14. Proposition. Let (M, g) be a Riemannian manifold of dimension n
and S C M an embedded submanifold of dimension k. For each p €
S there exists a neighborhood U of p a smooth local orthonormal frame

(Ey, -+ Ey) over U such that (Ey,--- , Ey) is a local orthonormal frame
for T'S over SNU and (Eyy4,- -+, E,) is a local orthonromal frame for
NS over SNU.

The integration of functions and the divergence theorem are discussed in
[1, Chapter 16, pages 421-424].

The volume integral of a compactly supported continuous function f €
C(M) on a Riemannian manifold (), g) is defined to be

[ savi= [ o,
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The volume integral has the property that if f > 0 then [, fdV; > 0. For
a codimension 1 submanifold S C M, we define a normal vector field to
be a vector field N € 27 (M) such that for all p € S we have N(p) € N,S
and g(N, N)(p) = 1. If N is outward pointing at each point of .S, then it
defines an orientation on S. In fact

w5<X17"' 7Xn—1) = wé\/[(NaXla"' 7Xn—1)a

defines the volume form on S with the induced metric g for the orientation
determined by N.

Consider the map
a:C®(M)—= Q" (M), [ fw,,
as well as the map
B+ 2 (M) = Q" (M),
defined by (X ) (X1, -+, Xn-1) = wy(X, X1, -+, Xpoq).

6.15. Lemma. Let (M, g) be a Riemannian manifold and S C M an em-
bedded submanifold of codimension 1 with i : S — M the inclusion and
normal vector field N. Then for all X € 2 (S) it holds that

isB(X) = (X, N)yws,

S —
g

We define the divergence of a vector field to be div(X) := a~'dg3(X).
Equivalently df(X) = div(X)w,.

where w B(N) as above is the volume form on S determined by N.

6.16. Theorem (Divergence theorem). Let (M, g) be an oriented Riemann-
ian manifold with boundary OM and outward pointing normal vector field
N. For any compactly supported smooth vector field X € Z (M) it holds
that

[ aveoav, = [,
M oM

where G denotes the induced metric on S.

It should be noted here we equip 0M with the Stokes orientation, which
creates the need to work with an outward pointing normal. However, the
divergence theorem holds in this form whenever S is equipped with the
orientation inherited from N.



GLOBAL ANALYSIS I - WS 2017/2018 19

7. Week 7

7.1. Lecture 11, Tue 21-11-2017. The tangent cotangent isomorphism [1,
Pages 340-343].
Given a Riemannian manifold (M, g) we can define an isomorphism
g:TM —T"M
defined on vector fields X via the formula
9(X)Y) = g(X,Y),

so indeed g(X) € Q'(M). The map g is injective by nondegeneracy of g
and because the fibers of 7'M and T M are finite dimensional, g is fibrewise
surjective. In coordinates g has the expression

9(X) = ZQz‘indxj,
i,J

where X; are the component functions of X and g;; = g(3>, 52) in the
i J

coordinates x;. Because the matrix g;; is invertible, the inverse
~—1. 0l
g (M) = 2 (M),

takes the coordinate form

0
g (w) - Z(g )ij axzﬁ
27]
with (¢~1);; the components of the inverse matrix of (g;;). The existence of
the inverse proves that ¢ is an isomorphism.

7.1. Definition. Let (1/, g) be a Riemannian manifold and f € C*>(M).
The gradient of f is the vector field gradf := ¢~'(df). Equivalently grad f
is determined by the equality

(gradf, X), = X,
for all smooth vector fields X € 27 (M).

The coordinate form of the gradient is

_,, Of 0
gradf = Z(g 1)ij£ax.
irj I

Let (M, g) be an oriented manifold with boundary. We wish to show there
always exists an outward pointing normal vector field along M. See [1,
Pages 118-119].

7.2. Definition. Let M be a smooth manifold with boundar. A boundary
defining function is a smooth function f : M — R with properties

° fﬁl(O) = 0M,;
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e for all p € OM the differential df,, # 0

7.3. Proposition. Every manifold with boundary admits a boundary defin-
ing function.

The following result is found on [1, Page 391]:

7.4. Corollary. Every manifold with boundary admits an outward pointing
unit normal vector field.

Given a boundary defining function f one sets N := —gradf/|gradf|,.
This is well defined in a neighborhood

OM C {pe M :|[dfyl, > e},
and can thus be extended to all of M.

Line integrals [1, Pages 287-292]

7.5. Definition. By a piecewise smooth curve in a manifold M/ we mean a
smooth map 7 : [a,b] — M such that there exists a partition

a=ay< a1 <- <@y <a,=>,
such that the restrictions y

7.2. Lecture 12, Wed 22-11-2017. For a one form w on M we define the

integral of w over -y as
/ W= Z / Y w.
v i Jaiai]

1

lai.assa] © [@is Giy1] — M are smooth.

By a reparametrization of the curve v we mean a curve of the form
Fi=vo0¢:|c,d — M,

with ¢ : [¢,d] — [a,b] a diffeomorphism. The integral is invariant for
reparametrizations in the following sense:

[o= ]

when ¢ is increasing. When ¢ is decreasing the integrals differ by a minus
sign. The line integral has the usual linearity properties and if ' : M — N
is a smooth map and w € Q! then

(V)
/Vp*w:/mw.

The tangent vector field to ~y is defined to be the map

d
v i la,b] = TM, tw— d’y(%]t),
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with x the coordinate on [a, b]. The line integral admits the epxression

/ = / o
The Riemannian distance function [1, Pages 337-341].

7.6. Proposition. If M is a connected manifold then for any two points p, q
there exists a piecewise smooth curve v : [a,b] — M with v(a) = p and

v(0) = q.

On a Riemannian manifold (M, g) we define the length of a piecewise

smooth curve v as
b b
— [ WOl = [ o)

7.7. Proposition. Let (M, g) be a Riemannian manifold and vy : [a,b] — M
a piecewise smooth curve in M. If ¥ : [¢,d] — M is a reparametrization of

7 then Ly(v) = Ly(9).

The Riemannian distance function of (), g) is defined for points p, g €
M as

dg(p,q) = inf{Ly(y) : 7 : [a,0] = M,y(a) = p,7(b) = ¢.},

the infimum of lengths of piecewise smooth curves joinging p and q. To
prove that the distance function is a metric we use the following local result.

7.8. Lemma. Let g be a Riemannian metric on an open subset U C R™ and
let g denote the Euclidean metric. Then for any compact subset K C U
there exist ¢, C' € Ry such that for all x € K withv € T,R" it holds that

cloly < lol, < Clly

7.9. Theorem. The Riemannian distance function defines a metric on M
whose metric topology coincides with the manifold topology.

8. Week 8
8.1. Lecture 13, Tue 28-11-2017. Review of tensor bundles.

8.1. Definition. Let V' be a vector space. A covariant k-tensor on V is
an element of (V*)® := V* @ ... ® V* (k-fold tensor product). A con-
travariant k-tensor is an element of V¥* .= V ® --- ® V (k-fold tensor
product).
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A covariant tensor & can be viewed as a multilinear functional V¥ — R
via

&) (v, v) = H&(vn.

Similarly a contravariant k-tensor gives a multilinear functional (V*)* —
R, by essentially the same formula.
A k-tensor « is symmetric if for any permutation o € Sj, we have
a(va(l)a T 7U0'(k)) = Oé(Ul, o 7Uk>'

It is alternating if

(V) -+ 5 Vo)) = sgn(o)a(vy, -+, vg).

The symmetrization of a k-tensor « is the k-tensor

1
Sym(Oé)(Ul, T 7Uk) = E Z a(vo(l)a T 7U0'(k))-

oc€Sk

The anti-symmetrization of « is the k-tensor

1
Ala)(vy, - ,vp) = 7l Z Sgn(U)@(%a), T ;Uo(k))-

oESk

Clearly A(«) is alternating, that is
A(@)(vrays - vrry) = sen(m)A(Ve, -+ o),

for any 7 € Si. In general, if «, 3 are (anti)-symmetric tensors, then o ®
[ is in general neither symmetric nor anti-symmetric. We have seen that
the wedge product of alternating tensors is again alternating. Similarly the
symmetric product of a symmetric k-tensor a and a symmetric ¢-tensor /3,
defined by

1
a-B(vr, - Upge) = m Z 04(“0(1), e 7Ua(k))ﬁ(va(k+1)a e ,Ua(k+z)),

oESk e
is a symmetric k + /-tensor. The symmetric product is commutative,
a-p=p-a
and satisfies the distributive law
(ax+0p)-vy=aa-y+b5-7v, abeR.

8.2. Definition. Let M be a manifold. The bundle of covariant k-tensors
on M is

THM = (T*M)®* = | | (T; M)®*,

peEM
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and the bundle of contravariant k-tensors is
T M = (TM)®* = | | (T; M)®*.
peEM
The bundle of mixed tensors of type (k, () is
TEM := (T*M)®* @ (T M)**,
Using the vector bundle chart lemma, we define maps
Tij * Uz N Uj — GL(Rnk ® R*@né)’
by
Tij(p)(vl®---®vk®w1®~--®w£) =
T (P @ - @ M (p) @ 7 M (p)wr @ - @ 7 M (P
In this way T M becomes a vector bundle over M. A tensor field of type
(k,¢) is a section of T M.
By applying he duality map g : TM — T M to any index we get maps
TFM — T;%'M and by applying g~ we obtain maps T/ M — T, M.
Lastly,for a contravariant 2-tensor on a Riemannian manifold we define its

trace to be the map
ToM — M x R,

determined on vector fields X, Y by
XY - g(X,Y).

Connections. To address the problem of differentiating vector fields we
introduce the notion of connection.

8.3. Definition. Let 7 : £ — M be a smooth vector bundle over a manifold
M. A connection is a linear map V : I'°(E) — I'°(E) ®c¢eoar) Q' (M)
satisfying the Leibniz rule:

VY- [)=VY)f +Y edf
for all sections Y € I'*°(FE) and functions f € C*°(M).
Using the pairing
2 (M) x QY (M), (X,w)r w(X),
we obtain a pairing
Z (M) xT=(E)@QY(M), (X,Y®w)—Y wX).
Writing this pairing as (Y ® w)(X) we can view a connection as a map
XZM)x (M) - ZX (M), (X,)Y)— V(Y)X).

The common notation for V(Y)(X) is Vx(Y). Connections are local in
the following sense.
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8.4. Lemma. The value of vector field V xY at p € M depends only on the
value of X at p and the values of Y in a neighborhood of p.

Due to this lemma we write Vx Y for Vx(Y)(p) and think of it as the
directional derivative of Y in the direction X,.

8.5. Definition. An affine or linear connection is a connection in the vector
bundle T'M.

If E; is a local frame for 7'M in a neighborhood U we can write any
sectionY € Z(T'M)asY = > . Y,E;, withY; € C°°(M). In particular
for X € Z°(M) the section Vg, E; € I'°(E) can be written

Ve Ej =) THE,
k

for certain functions Ffj : U — R. These functions are referred to as
the Christoffel symbols of the connection V relative to the frame £;. The
Christoffel symbols determine the linear connection V locally:

8.6. Lemma. Let V be a linear connection on a manifold M and FE; a local
frame over the open set U. For vector fields X,Y € 2 (M) we have

ViV =) <X(Yk) + inxfjri.“J.) B,

k ij
over U.
8.2. Lecture 14, Wed 29-11-2017.

8.7. Lemma (Existence of connections on charts). Let U C R"™ be an open
set. There is a bijective correpondence between connections on T'U and the
choice of n3 functions Ffj via

0
VxY = Z <X(Yk) + ZXZY}FZ) Ere

k 12
for vector fields XZ-% andY =Y. Y;%.
8.8. Proposition. Every manifold admits a linear connection.

A connection is constructed using the connections V; on charts U; and
gluing through a partition of unity x; to set V := ). x;V,. Here it is
important to note that the space of connections is not a vector space: a
linear combination \; V; + A9V of connections V; is not a connection in
general. It satisfies the Leibniz rule only if A\; + A\ = 1.

8.9. Lemma. Let V be a linear connection on M. There is a unique con-
nection V in each tensor bundle T} M with the properties
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(1) V agrees with the given connection on T'M
(2) onT°M = M x RV is given by V(f) = df, Vxf = X(f)
(3) V obeys the follwoing Leibniz rule for tensor products:

Vx(F®G) :Vx(F>®G+F®Vx(G)

(4) if (M, g) is Riemannian, N commutes with all contractions: if Tr,
denotes the trace on any pair of indices then

VX (TI'Y) = TI'VX (Y) .

The connection V satisifes the following additional properties:

e forallw e QY (M) and X,Y € 2 (M)

Vx(w(Y)) = Vx(@)(Y) + w(Vx(Y))
e forany F € TF M, vector fields Y; and 1-forms w; we have
VX(F>(W1’... Jwe, Yq, e ,Yk) :X(F(wh... Jwe, Y7, ,Yk)

_ZF(Wla"'  Vxwj, - we, Y1, , Y)
J

k
—ZF(WL"' we, Y1, VYY)
=1

We now construct the total derivative of a (k, () tensor field.

8.10. Lemma. Let V be a linear connection on a manifold M and F' €
TF(M). The map
VE: QY M) x Z(M)* — 0=(M)
VF(“% s W, X, 7Xk+1> = VXHlF(Wl, s wp, X, ,Xk),
defines a (k + 1,() tensor field.
For f € C*(M), Vf = df and the 2-tensor field V(V(f)) is called the

covariant Hessian of the function f.
Tangent vector fields along curves.

8.11. Definition. Let v : [a,b] — M be a smooth curve. A vector field
along vis amap V : [a,b] — TM such that V(t) € T, M. We write
T () for the space of all vector fields along ~.

The tangent vector field ~/(¢) is the most important example of a vector
field along a curve.

8.12. Example. Let v : [a,b] — R? be a smooth curve and let J : R? — R?
be the counterclockwise rotation over 7. Set N(t) := J'(t). Then N (t) is
normal to +/(¢). In coordinates N (t) = (—~5(t),v1(t)).
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8.13. Example. Let X € 2" (M) and define X (t) := )N(W(t).

A vector field X along + is extendible if there exists Xex (M) such
that X = X|,. Not all vector fields are extendible, e.g. if v(¢y) = (¢1) and
v (to) # ' (t1), then +'(t) is not extendible.

8.14. Lemma. Let V be a linear connection on a manifold M. For each
smooth curve vy : [a,b] — M, V determines a unique operator D : T(y) —
T(v) satisfying

(1) Dy(aV + W) = aD,V + bD,W

(2) forall f € C*([a,b]) Di(fV) = f'V+ fD;V

(3) if V is extendible then for any extension V we have D,V = VV/(t)‘N/.

The operator D, is called the covariant derivative along . The accel-
eration of a smooth curve v : [a,b] — M is the vector field D,y along

.

8.15. Definition. A smooth curve v is a geodesic with respect to V if
Dt/yl =0.

8.16. Theorem (Existence and uniqueness of geodesics). Let M be a man-
ifold with a linear connection N. Foranyp € M,V € T,(M) and t, € R
there exists an open interval I C R containing ty and a geodesic v : [ — M
satisfying v(to) = p and v'(ty) = V. Any two such geodesics agree on their
common domain.

8.17. Corollary. For any p € M and V' € T,M there exists a unique
maximal geodesic v : I — M, that is, a geodesic that cannot be extended
to any larger interval, such that 7' (0) = p and v'(0) = V. This geodesic is
denoted yy .

9. Week 9

9.1. Lecture 15, Tue 5-12-2017. A vector field V' along + is said to be
parallel if D,V = 0. A vector field X € 2 (M) is parallel if it is paral-

lel along every curve. It is easy to check that X is parallel if and only if
V(X)=0.

9.1. Theorem (Parallel translation). Given vy : [a,b] — M, ty € [a,b] and

Vo € T(1o) M there exists a unique parallel vector field V' along ~ such that
V(to) = V.

This theorem relies on the following existence and uniqueness result of
linear ODE’s.
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9.2. Theorem. Let I C R be an interval and Aé? . I — R be smooth
functions, 1 < j, k < n. The linear initial value problem

Vit = 3D AVi0), Vilto) = B,

has a unique solution on all of I foranyty € I andany B = (By,--- , B,) €
R".

The Riemannian connection [2, Chapter 5, pages 65-76].
Let M C R" be an embedded submanifold. Denote by 7t the orthogonal
projection 7,R™ — T, M and V the Euclidean connection on R".

9.3. Lemma. Let M C R"™ be an embedded submanifold. The operator V' :
X (M) x Z (M) — Z (M) given by VY := 7'V x(Y') is a connection
on M. This connection is called the tangential connection and satisfies

(VY. Z) + Y.V Z) = Vi (Y, Z),
with respect to the induced Riemannian metric.

Using the deep Nash embedding theorem, which states that any Riemann-
ian manifold can be relaized as an embedded submanifold of some R™ with
the induced metric, one could study any manifold as an embedded subman-
ifold. This sheds no light on intrinsic properties. It turns out that the above
connection can be characterized by two properties that relate it to the Rie-
mannian metric.

9.4. Definition. Let (1, g) be a Riemannian manifold and V a linear con-
nection on M. The connection V is compatible with the Riemannian metric
if we have

(VxY, Z)+(Y,VxZ)=Vx(Y,Z),
forall X,Y,Z € A .

9.5. Proposition. For a linear connection on (M, g) the following are equiv-
alent:

e V is compatible with g;
o Vg=0;
e for any curve vy and vector fields V, W along v we have

d
£<V, W) = <V, DtW> + <Dtv, W>
e if V. W are parallel along -y then D,(V, W) is constant

e parallel translation Py, : T,y — Ty, is an isometry.



28 DR. B. MESLAND

The second intrinsic property of connections involves the torsion tensor
T(X,Y):=VxY - VyX — [X,Y].
We say that V is torsion free if 7(X,Y) =0 forall X,Y € 27 (M).

9.6. Theorem. Let (M, g) be a Riemannian manifold. There exists a unique
linear connection V on M that is compatible with g and torsion free.

The above connection is called the Riemannian connection. Its Christof-
fel symbols are given by the explicit formula

1 0 0 0
k- _ E (g} iy ) — —— s

9.7. Lemma. Any Riemannian geodesic is a constant speed curve.

9.8. Proposition. Suppose that ¢ : (M, g) — (M, §) is an isometry and
V, V the respective Riemannian connections. Then

e  intertwines the Riemannian connections:

Pe(VxY)) = Vo x@.Y
o [fV is a vector field along a curve v in M then

0. D,V = Dy, V

e o takes geodescis to geodesics, that is, if yy is the geodesic through
p with initial velocity V' then ¢ o vy is the geodesic through p(p)
with initial velocity ¢, V.

10. Week 10, lectures 16 and 17, see the notes by Kastenholz
11. Week 11

11.1. Lectures 18-19, Tue 19-12-2017, Wed 20-12-2017. The exponential
map, [2, Chapter 5, pages 72-76].

The exponential map is a map defined on an open subset & of the tangent
bundle into M. Its restriction to to specific tangent spaces gives a diffeo-
morphism exp : &, — M onto its image. To be precise, set

& :={V € TM : vy is defined on an interval containing [0, 1]},

and define exp : & — M by V' — 7y (1). Furthermore, for p € M define
&y :=T,M N & and exp, : &, — M the restriction of exp to &,. Recall that
a subset X of a vector space is star-shaped with respect to x € X if for all
y € X the line segment connecting x to y lies entirely within X.

11.1. Proposition (Properties of the exponential map). For a Riemannian
manifold (M, g) we have that
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e & C TM is open, contains the zero section, and each &, is star-
shaped with respect to 0;

e for each V. € T'M the geodesic yy is given by vy (t) = exp(tV)
whenever either side is defined;

o the exponential map is smooth.

The proof of the above statement relies on

11.2. Lemma (Rescaling lemma). For any V € T'M and c,t € R it holds
that

Yev (t) = v (ct),
whenever either side is defined.

The exponential map is natural with respect to Riemannian isometries.
Normal neighborhood and normal coordinates [2, Section S, pages 76-
81].

11.3. Lemma. For any p € M there is a neighborhood V' of 0 € T,,M and
a neighborhood U of p such that exp : U — V is a diffeomorphism.

11.4. Definition. A neighborhood U of p € M is called a normal neigh-
borhood if U is the image of a star-shaped (with respect to 0) open set
V' C T,M under exp,. If exp, is a diffeomorphism on the ball B,(0, ),
then exp,(B,(0,¢)) is a geodesic ball in M. If the closed ball B,(0,¢)
is contained in an open set V' on which exp, is a diffeomorphism, then

exp,(By(0,¢)) is called a closed geodesic ball and exp,(0B,(0,¢)) is a
geodesic sphere.

Any orthonormal basis E; of T,,M gives a diffeomorphism £ : R" —
T,M by (x;) — Y. x;E; and so gives rise to a coordinate chart by consid-
ering E~' oexp, ' : U — R™. Such charts are called normal coordinates at
p and they are in 1-1 correspondence with with orthonormal bases of 7, M.

In a normal coordinate chart at p we define the radial distance function

by
r(x) = <Z xf) °
and the unit radial vector field by

or ; r(x) 0x;

We emphasize that these objects depend on the normal coordinate chart at
hand.

11.5. Proposition. Let (U, (x;) be a normal coordinate chart at p.
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o forany V.= ). Via%i the geodesic vy starting at p is given in
coordinates by

/}/V(t) = (t‘/la e 7tVn)a

as long as ~yy stays within U.

e the coordinates of p are (0,--- ,0);

e the components of the metric at p are g;;(p) = d;j;

e any Euclidean ball {x : r(x) < €} contained in U is a geodesic
ball;

e forany q € U \ p the radial vector field % gives the velocity vector
of the unit speed geodesic from p to q and thus has unit length with
respect to g;

e the first partial derivatives of g;; and the Christoffel symbols vanish
atp.

An open set W C M is called a uniformly normal neighborhood of
p € W if there exists 0 > 0 such that for every ¢ € W the geodesic ball of
radius 0 around ¢ contains W

11.6. Lemma. For any p € M and any open neighborhood U of p there
exists a uniformly normal neighborhood W of p contained in U.

12. Week 12

12.1. Lecture 20, Tue 9-1-2018. Material discussed can be found in [2,
Chapter 6, pages 96-98 and 102-106].

12.1. Definition. A piecwise smooth curve 7y : [a, b] — M is minimizing if
for any curve 7 between p = v(a) and ¢ = (b) we have L(vy) < L(7).

If v is minimizing it must hold that L(y) = dy(p, q).

12.2. Definition. An admissible family of curves is a map I' : (—¢,¢) X
la,b] — M for which there is a finite subdivision a = a9 < a; < -+ <
ar = bsuch that I' : (—¢,¢) X [a;_1,a;] — M is smooth and for all s €
(—e,e) T's(t) :=T'(s, ) is an admissible curve.

The curves I', are called the main curves. The transverse curves are
I'(s) :=I'(s,t) for t fixed and are smooth.

A vector field along an admissible curve I'isamap V' : (—¢,¢) X [a, b] —
T'M such that Vi) € Tr M. Moreover there should a (possibly finer)
subdivision a = by < by < - -+ < by = b for which V{_. .)xp,_, »,] s smooth.

The most important examples of such vector fields are

d d
0 (s,t) := ars(t), OsI(s,t) == Eft(s).
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The vector field O,I" is continuous, but ;I is in general not continuous at
the points a;. For a vector field V' along I' we denote by D,V the derivative
of V along I, and by D,V the derivative of V" along I".

12.3. Lemma (Symmetry Lemma). Let I : (—¢,¢) x [a,b] — M be an

admissible family of curves. On each rectangle (—¢,€) X [a;_1, a;] where T’
is smooth it holds that D,0,I' = D,0,I.

12.4. Theorem (Gauss Lemma). Let (M, g) be a Riemannian manifold and
U be a geodesic ball centered at p € M. The unit radial vector field % isg
-orthogonal to the geodesic spheres in U.

12.5. Corollary. Let (z;) be normal coordinates on a geodesic ball centered
at p and r(x) the radial distance function. Then gradr = % on U\ p.

12.6. Proposition. Suppose that q is contained in a geodesic ball around p.
Then (up to reparametrization) the radial geodesic from p to q is the unique
minimizing curve from p to q.

12.7. Corollary. Within a geodesic ball around p we have r(z) = dg(p, x).

12.2. Lecture 21, Wed 10-1-2018. Material discussed can be found in [2,
Chapter 6, pages 107-111].

12.8. Definition. A piecewise smooth curve v : I — M is locally minimiz-
ing if every ¢y € I has an open neighborhood U such that iy is minimizing
between each pair of points in (U).

12.9. Theorem. Every Riemannian geodesic is locally mimimizing.
12.10. Theorem. Every minimizing curve is a geodesic.

12.11. Definition. A Riemannian manifold (M, g) is geodesically complete
if every maximal geodesic is defined for all ¢t € R.

12.12. Example. An open ball in R" is not geodesically complete.

Note that geodesic completeness implies that the exponential map is de-
fined on all of T),M for all p € M.

12.13. Theorem (Hopf-Rinow). A connected Riemannian manifold without
boundary is geodesically complete if and only if it is complete as a metric
space.

In fact our proof showed that if exp,, is defined on all of 7}, M for some
p € M, then M is complete.
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13. Week 13
13.1. Lecture 22, Tue 16-1-2018. [2, Chapter 7].

13.1. Definition. The curvature endomorphism of the Riemannian manifold
(M, g) is the map

R:Z(M)x Z(M)x Z(M)— Z(M),
defined by
R(X,Y)Z =VxVyZ —=VyVxZ =V xyZ.
Ris a(3,1) tensor field and admits the local expression
R= ) Rdr;®dr; ® dx, ® 0.
i,k

13.2. Definition. The Riemann curvature tensor Rm is the covariant 4-
tensor field

Rm(X,Y,Z, W)= (R(X,Y)Z,W),.
Locally this is written as

Rm = Z Rijpedr; ® dv; ® dxy, @ dxy,

i’j’k’e
with
m
Rijre = E Gem R

13.3. Lemma. The curvature endomorphism and Riemann tensor are local
isometry invariants of (M, g). That is if ¢ - M — M) is a local isometry
then

¢*(Rm) = Rm, R(6.X,0.Y)6.Z = ¢.(R(X,Y)Z).

13.4. Definition. A Riemannian manifold is flat if it is locally isometric to
R™ with its Euclidean metric.

It is clear that for flat manifolds, Rm = 0. The converse is true as well. In
order to prove this we need some facts about vector fields. A point p € M
is a regular point of the vector field V' if V,, # 0. The following canonical
form result is [1, Theorem 9.22].

13.5. Theorem. Let V' be a smooth vector field on M and p a regular point

of V.. There there exists a neighborhood of p and coordinates (x;) such that

— 0
V=2
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13.6. Definition. Let D C M x Rand § : D — M be a smooth flow. We
say that the vector field W is invariant under 0 if

(d0)p(Wp) = Wo, ),
for all (¢,p) € D.

We define the Lie derivative of W with respect to V' as

d
(XVW)I, = E|t:0d(eyt>92/(p)(w9¥(?)>
. d(0¥)) gy () Way () — W

t—0 t

Here 6V denotes the flow of V.

13.7. Lemma. 2, (W), exists for all p € M and defines a smooth vector
field.

13.8. Theorem. ., (W) = [V, W].
13.2. Lecture 23, Wed 17-1-2018.

13.9. Theorem. For vector fields V,W € 2 (M) the following are equiv-
alent:

L [V,W]=0;
(2) V is invariant under the flow of W
(3) W is invariant under the flow of V.

Two flows € and v are said to commute if whenever one of the expressions

et o %(P), 1/}5 o et(p),

is defined then both are defined and they are equal.

13.10. Theorem. Two vector fields V, W commute if and only if their flows
commute.

We now provide a criterion for when a given frame can be regarded as a
coordinate frame.

13.11. Theorem. Let M be an n-dimensional manifold and (E,--- |, E,) a
local frame over an open set W such that [E;, E;] = 0 on W. Then for each
p € W there exists a smooth chart (U, (x;)) around p such that E; = 2.

The above results are needed to proof the following characterization of
flat manifolds.

13.12. Theorem. A Riemannian manifold is flat if and only if Rm = Q.
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14. Week 14

14.1. Lecture 24, Tue 23-1-2018. We collect some symmetries of the Rie-
mann tensor Rm which can be found [2, Chapter 7].
14.1. Proposition. The identities
(1) Rm(W,X,Y,Z) = —Rm(X,W,Y, Z)
2) Rm(W, XY, Z) = —Rm(W, X, Z)Y)
3) Rm(W, XY, Z) = Rm(Y, Z, W, X)
@) Rm(W.X,Y,Z) + Rm(X.Y,W, Z) + Rm(Y, W, X, Z) = 0
The last identity is known as the first Bianchi identity.
14.2. Proposition (Second Bianchi identity).
Vi Rm(X,Y, Z,V) + VzRm(X,Y,V,W) + VyRm(X,Y, W, Z) = 0.
We now consider some simpler tensors derived from the Riemann tensor.
14.3. Definition. The Ricci tensor is the covariant 2-tensor field
Re: (X,)Y)—Tr(Z — R(Z,Y)X).
In coordinates
Re=Y Rydr;@dv;= Y g""Rujmdr; ® du;.
@] i,5,k,4,m
The scalar curvature is the function S := Tr,Rc = Y ¢ R;;, where the
last expression is a local one. The following result is [2, Lemma 8.7]

14.4. Proposition. Let (M, g) be a 2-dimensional manifold. Then

Rm(X, Y, 2,W) = SS((X, W){Y, 2) = (X, 2)(Y, W)

Re(X,¥) = 5S(X.Y)

o Rm(E17E27E2aE1)
| B[P | Eo|? — (B, ER)?
where in the last expression, F, Ey is any basis of T,,M.

14.2. Lecture 25, Wed 24-1-2018. The discussion of the Gauss-Bonnet
theorem is to be found in [2, Chapter 9].

Suppose that v : [a,b] — R? is a smooth unit speed closed curve. The
tangent angle function is the map 0 : [a,b] — R satisfying 6(a) € (—m, 7|
and 7/(t) = (cosé(t),sind(t)). This map is smooth as it is the lift of - to
the universal cover R of the unit circle.

S

14.5. Definition. If v : [a,b] — R? is a unit speed smooth closed curve
satisfying +/(a) = +/(b) we define its rotation angle to be Rot(~y) := 0(b) —
0(a).
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It is clear that Rot(y) = 2k7 for some integer k. We now extend the
definition of rotation angle to piecewise smooth closed curves. Let
a=ayg<a <---<ap=D>b,

be the subdivision for which 7|, , 4, is smooth. We call the points v(a;)
vertices and the segments 7|(4,_, q;] edges. Note that the limits

1o T / -\ __71: /
Y(af) =lmy'(@t),  y(a;) = lm~y'(2),

both exist. We define the exterior angle €; between /' (a;") and 7/(a; ) to
be chosen in [—7, 7] with a positive sign if (v/(a; ),/ (a;")) is an oriented
basis of R? and a negative sign otherwise. If y(a;) = —~(a; ) there is no
way to choose between 7 and —7 and we leave this case undefined.

14.6. Definition. A curved polygon in R? is a simple closed piecewise
smooth unit speed curve v : [a,b] — R? such that

e None of the exterior angles equals +£;
e 7 is the boundary of a bounded open set 2 C R2.

A curved polygon v is positively oriented if 7' is compatible with the Stokes
orientation of 0f2.

The tangent angle function can now be defined as follows: choose 0(a) €
(—m, 7] and 6(t) as before for t € (a, a;). Then set

9(@1) = %g}@(i) + 1,

and proceed as before for ¢ € (ay, as). Inductively we then set

We so0 obtain the tangent angle function 6 : [a,b] — R? and define the
rotation angle of the curved polygon v as Rot(y) = 0(b) — 0(a).

14.7. Theorem (Hopf). If 7y is a positively oriented curved polygon in R?
then Rot(vy) = 2.

14.8. Definition. Let ()], g) be a Riemannian 2-manifold. A curved poly-
gon in M is a piecewise smooth unit speed curve 7y : [a,b] — M that is the
boundary of an open set {2 with compact closure. Moreover we require that
7 is contained in a single chart (U, ¢) such that ¢ oy is a curved polygon in
R2.

Becuase of the above definition, to define the tangent and exterior angles
of a curved polygon in a 2-manifold, it is enough to do so for curved poly-
gons contained in an open set of R? with an arbitrary metric g. Using the
Stokes orientation we define the exterior angle ¢; € [—m, 7] at a; by

cose; = (7(aj)77(ai_)>g'
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The tangent angle 6 at smooth smooth points can be defined relative to %,

so this definition may depend on the chart chosen. As before we obtain
6 : [a,b] — R and set Rot,(y) := 0(b) — 6(a).

14.9. Lemma. If vy is a positively oriented polygon in M then Rot,(y) =
2m.

We denote by N(¢) the normal vector field to v at smooth points that
makes (7/(t), N(t)) into an oriented basis. The signed curvature at smooth
points is defined as

kn(t) = (D' (£), N(t))y.
Since D7/ (t) is orthogonal to +/(t) we obtain that D, (t) = ky (t)N(t).

14.10. Theorem. Let (M, g) be an oriented Riemannian 2-manifold and ~y
a positively oriented curved polygon in M. Then

k
1
—/ SdVng//des+E €; = 2.
2 Ju .

i=1
14.11. Definition. Let (1, g) be a Riemannian 2-manifold. A triangulation
of M is a finite collection .7 = {T;} of curved triangles 7; such that

o T, = 0%, for precompact open sets (2;;

° UZ Q, = M;
e the intersections 7; N T} consist of at most a single vertex or a single
edge.

Every smooth compact surface admits a triangulation and if N, is the num-
ber of vertices, N, the number of edges and N, the number of faces ( all
counted once, that is without multiplicities) in the triangulation the the Eu-
ler characteristic

X(M,7)=N,— N.+ N¢
is independent of the triangulation and is in fact a topological invariant of
M.

14.12. Theorem (Gauss-Bonnet). Let (M, g) be a compact oriented Rie-
mannian 2-manifold. Then

/ SdV, = 4dnx(M).
M
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