GLOBAL ANALYSIS I - WS 2017/2018

DR. B. MESLAND

1. Week 1

1.1. Lecture 1 - Tue 10-10-2017. Material covered:

[1, Chapter 1 'Smooth manifolds'] and [1, Chapter 2 'Smooth maps" up to page 40].

Review of defintions of topological manifold, smooth compatibility of charts, smooth manifold, smooth atlas, smooth structure, smooth map, diffeomorphism. Example: the sphere $S^{n} \subset \mathbb{R}^{n+1}$.

1.2. Lecture 2 - Wed 11-10-2017. Material covered:

[1, Chapter 2 'Smooth maps" section "Bump functions and partitions of unity', pages 40-47]

Important definitions and results:
1.1. Definition. A collection $\left\{U_{\alpha}\right\}_{\alpha \in A}$ of a topological space M is locally finite if every $p \in M$ has a neighborhood V such that $V \cap U_{\alpha}$ is nonempty for only finitely many α.
1.2. Lemma. Let $U=\left\{U_{\alpha}\right\}_{\alpha \in A}$ be an open cover for which each U_{α} is a precompact set. Then U is locally finite if and only if for each α there are at most finitely many β for which $U_{\alpha} \cap U_{\beta}$ is nonempty.

Proof. Is one of this weeks exercises. As noted during the lecture, precompactness is necessary for the equivalence to hold.
1.3. Lemma. Every topological manifold admits a locally finite cover by precompact open sets.
1.4. Definition. Let M a manifold and $W=\left\{W_{i}\right\}_{i \in I}$ an open cover. The cover W is regular if
(1) the cover W is countable and locally finite;
(2) for each i there is a diffeomorphism $\psi_{i}: W_{i} \rightarrow B(0,3) \subset \mathbb{R}^{n}$;
(3) the collection $U_{i}:=\psi_{i}^{-1}(B(0,1))$ still covers M.
1.5. Proposition. Let M be a smooth manifold. Then every open cover admits a regular refinement. In particular M is paracompact.
1.6. Definition. Let $X=\left\{X_{\alpha}\right\}$ be an open cover of the smooth manifold M. A partition of unity subordinate to X is a collection of smooth functions $\phi_{\alpha}: M \rightarrow \mathbb{R}, \alpha \in A$ such that

- $0 \leq \phi_{\alpha} \leq 1$;
- $\operatorname{supp} \phi_{\alpha} \subset U_{\alpha}$;
- the set of supports $\left\{\operatorname{supp} \phi_{\alpha}\right\}$ is locally finite;
- for each $x \in M$ we have $\sum_{\alpha \in A} \phi_{\alpha}(x)=1$.

Note that the last sum is finite by the condition preceding it.
1.7. Theorem. Let M be a smooth manifold and $X:=\left\{X_{\alpha}\right\}_{\alpha \in A}$ an open cover. Then there exists a partition of unity ϕ_{α} subordinate to X.

An important corollary this the above theorem is
1.8. Lemma. Let M be a smooth manifold, and suppose f is a smooth function defined on a closed subset $A \subset M$. For any open set U containing A, there exists a smooth function $\tilde{f} \in C^{\infty}(M)$ such that $\left.\tilde{f}\right|_{A}=f$ and $\operatorname{supp} f \subset U$.

2. Week 2

2.1. Lecture 3 - Tue 17-10-2017. Material covered:

[1, Chapter 3 ''The tangent bundle', pages 50-60]

2.1. Definition. A map $v: C^{\infty}(M) \rightarrow \mathbb{R}$ is called a derivation at $p \in M$ if it satisfies the Leibniz rule

$$
v(f g)=f(p) v(g)+v(f) g(p)
$$

for all $f, g \in C^{\infty}(M)$. The tangent space at p is defined to be

$$
T_{p}(M):=\left\{v: C^{\infty}(M) \rightarrow \mathbb{R}: v \text { a derivation at } p\right\} .
$$

For $F: M \rightarrow N$ a smooth map we define the differential of F at p to the map

$$
(d F)_{p}: T_{p}(M) \rightarrow T_{F(p)}(N),
$$

defined by the rule $(d F)_{p}(v)(f):=v(f \circ F)$ where $v \in T_{p}(M)$ and $f \in$ $C^{\infty}(N)$.
2.2. Proposition (Properties of the differential). Let M, N, P be smooth manifolds and $F: M \rightarrow N, G: N \rightarrow P$ be smooth maps. For $p \in M$ we have
(1) $(d F)_{p}: T_{p}(M) \rightarrow T_{p}(N)$ is linear;
(2) $(d G)_{F(p)} \circ(d F)_{p}=(d(G \circ F))_{p}: T_{p} M \rightarrow T_{G \circ F(p)} P$;
(3) $\left(d \mathbf{I d}_{M}\right)_{p}=\mathrm{Id}_{T_{p}(M)}: T_{p} M \rightarrow T_{p}(M)$;
(4) if F is a diffeomorphism then $(d F)_{p}: T_{p}(M) \rightarrow T_{p}(N)$ is an isomorphism with inverse $(d F)_{p}^{-1}=\left(d F^{-1}\right)_{p}$.
2.3. Proposition (Locality of the differential). Let M be a smooth manifold with or without boundary, $p \in M$ and $v \in T_{p}(M)$. Suppose that $f, g \in$ $C^{\infty}(M)$ are such that there is a neighborhood U of p for which $\left.f\right|_{U}=\left.g\right|_{U}$. Then $v(f)=v(g)$.
2.4. Proposition (Open submanifold). Let M be a smooth manifold with or without boundary, $U \subset M$ an open subset and $i: U \rightarrow M$ the inclusion map. For any $p \in U$ the differential $(d i)_{p}: T_{p}(U) \rightarrow T_{p}(M)$ is an isomorphism.
2.5. Proposition. Let M be a smooth n-dimensional manifold with or without boundary. Then for every $p \in M$ the tangent space $T_{p}(M)$ is an n dimensional vector space.

An abstract vector space V carries a canonical topology and smooth structure making in an n-dimensional manifold. Thus the tangent space $T_{a} V$ is isomorphic to V. The isomorphism is canonical and of the form

$$
V \rightarrow T_{a} V,\left.\quad v \mapsto D_{v}\right|_{a},\left.\quad D_{v}\right|_{a} f=\left.\frac{d}{d t}\right|_{t=0} f(a+t v)
$$

with $f \in C^{\infty}(V)$. If $L: V \rightarrow W$ is a linear map, the above isomorphism satisfies the compatibilty

$$
(d L)_{a}\left(\left.D_{v}\right|_{a}\right) f=\left.D_{L v}\right|_{L a} f
$$

for $f \in C^{\infty}(V)$.
2.6. Definition. The tangent bundle of the manifold M is the set

$$
T M:=\bigsqcup_{p \in M} T_{p}(M) .
$$

The projection map $\pi: T M \rightarrow M$ is defined by $\pi(p, v):=p$.
2.2. Lecture 4 - Wed 18-10-2017. Material covered:

[1, Chapter 3 'The tangent bundle" pages 60-75]

First we covered a discussion of explicit coordinate expressions for bases of tangent spaces, differentials of smooth maps and change of coordinate maps. This can be found on pages 60-65 of [1].
2.7. Proposition. For an n-dimensional manifold M, the tangent bundle TM carries a natural topology and smooth structure making it into a $2 n$ dimensional manifold and the projection map $\pi: T M \rightarrow M$ is smooth.
2.8. Definition. The global differential of a smooth map $F: M \rightarrow N$ is the map

$$
d F: T M \rightarrow T N, \quad d F(p, v):=\left(F(p),(d F)_{p} v\right)
$$

2.9. Proposition. The global differential of a smooth map $F: M \rightarrow N$ is a smooth map $d F: T M \rightarrow T N$ between the tangent bundles.

As the pointwise differentials, the global differential satisfies

$$
d(F \circ G)=d F \circ d G, d \mathbf{I d}_{M}=\mathbf{I d}_{T M}
$$

and if F is a diffeomorphism then so is $d F$.

[1, Chapter 10 "Vector bundles" pages 249-252]

2.10. Definition (Vector bundles). Let M be a topological space. A real vector bundle of rank k over M is a topological space E together with a continuous map $\pi: E \rightarrow M$ satisfying
(1) for each $p \in M$ the fiber $E_{p}:=\pi^{-1}(p)$ is a k dimensional real vector space;
(2) for every $p \in M$ there exists a neighborhood U of p and a homeomorphism

$$
\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}
$$

with the property that $\pi_{U} \circ \Phi=\pi$, where $\pi_{U}: U \times \mathbb{R}^{k} \rightarrow U$ is the coordinate projection, and for every p the restriction

$$
\Phi: \pi^{-1}(p) \rightarrow\{p\} \times \mathbb{R}^{k}
$$

is a vector space isomorphism.
In case M, E are manifolds and π, Φ are smooth, then $\pi: E \rightarrow M$ is a smooth vector bundle.

We often refer to E as the total space M as the base and π as the bundle projection. The maps ϕ are called local trivializations. The pertinent example is the tangent bundle $T M \rightarrow M$.
2.11. Lemma. Let $\pi: E \rightarrow M$ be a smooth vector bundle and

$$
\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}, \quad \Psi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}
$$

two local trivializations. There exists a smooth map

$$
\tau: U \cap V \rightarrow G L(k, \mathbb{R})
$$

such that

$$
\Phi \circ \Psi^{-1}(p, v)=(p, \tau(p) \cdot v) .
$$

Here $\tau(p) \cdot v$ denotes the usual matrix multiplication.

3. Week 3

3.1. Lecture 5, Tue 24-10-2017.
 [1, Chapter 10 'Vector bundles' pages 252-255]

3.1. Lemma (Vector bundle chart lemma). Let M be a smooth manifold (with or without boundary). Suppose that we are given
(1) for each $p \in M$ a vector space E_{p};
(2) an open cover $\left\{U_{\alpha}\right\}_{\alpha \in A}$ of M;
(3) a fixed k-dimensional vector space V and for each $\alpha \in A$ a bijection

$$
\Phi_{\alpha}: \bigsqcup_{p \in U_{\alpha}} E_{p} \rightarrow U_{\alpha} \times V,
$$

such that the restriction $\Phi_{\alpha}: E_{p} \rightarrow V$ is a vector space isomorphism;
(4) for each pair (α, β) with $U_{\alpha} \cap U_{\beta} \neq \emptyset$ a smooth map

$$
\tau_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G L(V),
$$

such that the map

$$
\Phi_{\alpha} \circ \Phi_{\beta}^{-1}: U_{\alpha} \cap U_{\beta} \times V \rightarrow U_{\alpha} \cap U_{\beta} \times V
$$

is given by $(u, v) \mapsto\left(u, \tau_{\alpha \beta}(u) \cdot v\right)$.
Then $E:=\bigsqcup_{p \in M} E_{p}$ admits a unique topology and smooth structure making it into a manifold with or without boundary and such that

$$
\pi: E \rightarrow M, \quad(p, v) \mapsto p
$$

is a rank k real vector bundle with local trivializations $\left\{\left(U_{\alpha}, \Phi_{\alpha}\right)\right\}_{\alpha \in A}$.

[1, Pages 276-277]

3.2. Example (The cotangent bundle). Let $E_{p}:=T_{p}^{*}(M)\left(T_{p}(M)\right)^{*}$ be the dual of $T_{p}(M)$ and $\left\{\left(U_{i}, \phi_{i}\right)\right\}_{i \in I}$ a cover of M by coordinate charts. Define

$$
\begin{aligned}
& \Phi_{i}: \bigsqcup_{p \in U_{i}} E_{p} \rightarrow U_{i} \times \mathbb{R}^{n} \\
& \left.\sum_{i=1}^{n} v_{i} d x_{i}\right|_{p} \mapsto\left(p, v_{1}, \cdots v_{n}\right),
\end{aligned}
$$

where $\left.d x_{i}\right|_{p}$ is the basis dual to the basis $\left.\frac{\partial}{\partial x_{i}}\right|_{p}$ of $T_{p} M$. If $\left(U_{j}, \psi_{j}\right)$ is another chart with coordinates y_{j} and $U_{i} \cap U_{j} \neq \emptyset$ then

$$
\phi_{i} \circ \phi_{j}^{-1}\left(p, v_{1}, \cdots, v_{n}\right)=\left(p, \sum_{j} v_{j} \frac{\partial y_{j}}{\partial x_{1}}(p), \cdots, \sum_{j} v_{j} \frac{\partial y_{j}}{\partial x_{n}}(p)\right),
$$

which is smooth because U_{i} and U_{j} are smoothly compatible. The map

$$
\begin{equation*}
\tau_{i j}: U_{i} \cap U_{j} \rightarrow G L(n, \mathbb{R}), \quad p \mapsto\left(\frac{\partial y_{j}}{\partial x_{i}}(p)\right)_{i j} \tag{1}
\end{equation*}
$$

thus satisfies the axioms of the chart lemma. We so obtain the cotangent bundle $T^{*} M$ of M.
3.3. Example (Alternating tensors). The bundle of alternating tensors of degree k is defined to be

$$
\bigwedge^{k} T^{*} M:=\bigsqcup_{p \in M} \bigwedge^{k} T_{p}^{*} M
$$

where $\bigwedge^{k} T_{p}^{*} M$ is the k-th exterior power of $T_{p}^{*}(M)$. To a cover of coordinate charts $\left\{\left(U_{i}, \phi_{i}\right)\right\}_{i \in I}$ of M we associate the maps

$$
\begin{gathered}
\Phi_{i}: \bigsqcup_{p \in U_{i}} \bigwedge^{k} T_{p}^{*} M \rightarrow U_{i} \times \bigwedge^{k} \mathbb{R}^{n} \\
\left.\sum_{J} \omega_{I} d x_{j_{1}} \wedge \cdots \wedge d x_{j_{k}}\right|_{p} \mapsto\left(p, \sum_{J} \omega_{J}(p) e_{j_{1}} \wedge \cdots e_{j_{k}}\right),
\end{gathered}
$$

where e_{j} is the standard basis of \mathbb{R}^{n}. The transition maps for this bundle are given by the functions

$$
\tau_{i j}^{k}: U_{i} \cap U_{j} \rightarrow G L\left(\bigwedge^{k} \mathbb{R}^{n}\right)
$$

defined through $\tau_{i j}^{k}(p)\left(v_{1} \wedge \cdots \wedge v_{k}\right):=\tau_{i j}(p) v_{1} \wedge \cdots \wedge \tau_{i j}(p) v_{k}$, where $\tau_{i j}$ is as in (1).

[1, Chapter 10, pages 255-261]

3.4. Definition. Let $\pi: E \rightarrow M$ be a vector bundle. A global section of E is a map $s: M \rightarrow E$ such that $\pi \circ s=\mathrm{id}_{M}$. In case $E \rightarrow M$ is a topological vector bundle, we denote by $\Gamma(M, E)$ the space of continuous sections of E.
In case $E \rightarrow M$ is a smooth vector bundle we denote by $\Gamma^{\infty}(M, E)$ the space of smooth sections of E.
A local section over an open set $U \subset M$ is a map $s: U \rightarrow E$ such that
$\pi \circ s=\mathrm{id}_{U}$ and we adopt the same notational conventions for continuous and smooth local sections.
3.5. Example. $\Gamma(M, T M)$ is the space of continuous vector fields on M;
$\mathscr{X}(M):=\Gamma^{\infty}(M, T M)$ is the space of smooth vector fields on M.
For a trivial bundle $E:=M \times \mathbb{R}^{k}$ we have $\Gamma(M, E) \simeq C\left(M, \mathbb{R}^{k}\right)$ and $\Gamma^{\infty}(M, E) \simeq C^{\infty}\left(M, \mathbb{R}^{k}\right)$.
3.6. Definition. A smooth covector field or differential 1 -form is a smooth section of the contangent bundle $T^{*} M$.
3.7. Definition. Let $E \rightarrow M$ be a vector bundle. A k-tuple of local sections $\left(\sigma_{i}\right)_{i=1}^{k}$ over an open U is a local frame over U if for all $p \in U$ the vectors $\left(\sigma_{i}(p)\right)_{i=1}^{k}$ form a basis for E_{p}.
3.8. Example (Frames and trivializations). Given a trivialization

$$
\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}
$$

over U and e_{i} the standard basis of \mathbb{R}^{k} the maps $\sigma_{i}(u):=\Phi^{-1}\left(u, e_{i}\right)$ define a local frame over U.
3.9. Proposition. Any smooth local frame over U is associated with a local trivialization as in the previous example.

The trivialization associated with the local frame $\left(\sigma_{i}\right)$ is defined by

$$
\Phi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}, \quad v_{p} \mapsto\left(p, v_{1}(p), \cdots, v_{k}(p)\right),
$$

where the functions v_{i} are defined by $v_{p}=\sum v_{i}(p) \sigma_{i}(p)$.
3.10. Corollary. If the bundle $E \rightarrow M$ admits a frame defined on all of M then $E \simeq M \times \mathbb{R}^{k}$ and this is identification is continuous or smooth whenever the σ_{i} are continuous or smooth.
3.11. Corollary. Let (V, ϕ) be a smooth chart for M and $\left(\sigma_{i}\right)$ a smooth local frame over V. Then

$$
\begin{aligned}
\tilde{\phi}: \pi^{-1}(V) & \rightarrow \phi(V) \times \mathbb{R}^{k} \\
\sum v_{i} \sigma_{i}(p) & \mapsto\left(x_{1}(p), \cdots, x_{n}(p), v_{1}, \cdots, v_{k}\right)
\end{aligned}
$$

is a smooth chart for $\pi^{-1}(V) \subset E$.
3.12. Proposition. Let $\pi: E \rightarrow M$ be a smooth vector bundle, $\left(\sigma_{i}\right)$ a smooth local frame and $\tau: M \rightarrow E$ a section. Then τ is smooth if and only if the coordinate functions $\tau_{i}: M \rightarrow \mathbb{R}$ defined by $\tau(p)=\sum_{i} \tau_{i}(p) \sigma_{i}(p)$ are smooth.
3.2. Lecture 6, Wed 25-10-2017. A vector field $X \in \mathscr{X}(M)$ associates to a smooth function on M a new function $X f$ on M via $(X f)(p):=X_{p}(f)$, since $X_{p} \in T_{p}(M)$ is a derivation at p.

[1, Chapter 8, pages 180-181 and 185-186]

3.13. Proposition (Smoothness criterion for vector fields). Let M be a smooth manifold and $X: M \rightarrow T M$ a vector field. The following are equivalent:
(1) X is smooth;
(2) for every $f \in C^{\infty}(M)$ the function $X f$ is smooth;
(3) for every open set $U \subset M$ and $f \in C^{\infty}(U)$ the function $X f$ is smooth on U.

We thus have that a smooth vector field X induces a map

$$
\begin{aligned}
X & : C^{\infty}(M) \rightarrow C^{\infty}(M) \\
(X f)(p) & :=X_{p} f,
\end{aligned}
$$

and this map is a derivation, that is, it satisfies the Leibniz rule $X(f g)=$ $(X f) g+f(X g)$. The converse is true as well.
3.14. Proposition. Let $D: C^{\infty}(M) \rightarrow C^{\infty}(M)$ be a derivation. Then there is a vector field $X: M \rightarrow T M$ such that $X f=D f$.

The Lie bracket of vector fields is the map

$$
\mathscr{X}(M) \times \mathscr{X}(M) \rightarrow \mathscr{X}(M),(X, Y) \mapsto[X, Y],
$$

where $[X, Y]$ is defined by its action on functions

$$
[X, Y] f=X(Y f)-Y(X f)
$$

It is straightforward to check that $[X, Y]$ is a derivation and thus defines a vector field.
[1, Chapter 11, pages 278-282]
3.15. Proposition (Smoothness of covector fields). Let M a smooth manifold with or without boundary and $\omega: M \rightarrow T^{*} M$ a 1-form. The following are equivalent:
(1) ω is smooth;
(2) in every chart the component functions with respect to the local frame $d x_{i}$ are smooth;
(3) every point of M is contained in some chart for which the component functions with respect to the local frame $d x_{i}$ are smooth;
(4) for every vector field $X: M \rightarrow T M$ the function $\omega(X)$ is smooth;
(5) for every open set $U \subset M$ and vector field $X: U \rightarrow T M$, the function $\omega(X)$ is smooth in U.
3.16. Definition (The differential of a function). Let $f \in C^{\infty}(M)$ and $v_{p} \in$ $T_{p}(M)$. We define the differential of f at p to be the covector

$$
(d f)_{p}\left(v_{p}\right):=v_{p}(f)
$$

3.17. Proposition. The differential of a smooth function is a smooth covector field.

[1, Chapter 14, pages 259-372]

Pages 249-259 contain a review multilinear algebra on vector spaces. We did not review this material in the lecture but it is recommended reading.
3.18. Definition. A differential k-form is a section of the bundle $\bigwedge^{k} T^{*} M$. We introduce the notation

$$
\Omega^{k}(M):=\Gamma^{\infty}\left(M, \bigwedge^{k} T^{*} M\right), \quad \Omega^{*}(M):=\bigoplus_{k=0}^{\operatorname{dim} M} \Omega^{k}(M)
$$

The wedge product of differential forms is defined as follows:
For $\omega \in \Omega^{k}(M)$ and $\eta \in \Omega^{\ell}(M)$ and vector fields X_{1}, \cdots, X_{n+k} we define
$\omega \wedge \eta\left(X_{1}, \cdots X_{\ell+k}\right):=\sum_{\sigma \in S_{\ell+k}} \operatorname{sgn}(\sigma) \omega\left(X_{\sigma(1)}, \cdots, X_{\sigma(k)}\right) \eta\left(X_{\sigma(k+1)}, \cdots, X_{\sigma(\ell+k)}\right)$.
The summation runs over all permutations σ in the symmetric group $S_{\ell+k}$ on $\ell+k$ elements. The wedge product satisfies

$$
\left.\begin{array}{rl}
\left(\lambda \omega_{1}+\mu \omega_{2}\right) & \wedge \eta=\lambda \omega_{1} \wedge \eta+\mu \omega_{2} \wedge \eta \\
\omega & \wedge \eta=(-1)^{k \ell} \eta
\end{array}\right) \omega .
$$

Given a smooth map $F: M \rightarrow N$, the pull back of a form $\omega \in \Omega^{k}(N)$ is the k-form

$$
\left(F^{*} \omega\right)\left(X_{1}, \cdots, X_{k}\right):=\omega\left(d F\left(X_{1}\right), \cdots,(d F)\left(X_{k}\right)\right)
$$

or more comapctly $F^{*} \omega:=\omega \circ d F$. Also recall that for a k-form

$$
\omega=\sum \omega_{I} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}
$$

defined on an open set of \mathbb{R}^{n} is exterior derivative is defined by

$$
d \omega=\sum d \omega_{I} \wedge d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}
$$

3.19. Lemma. Suppose $F: M \rightarrow N$ is a smooth map. Then
(1) $F^{*}: \Omega^{k}(N) \rightarrow \Omega^{k}(M)$ is linear;
(2) $F^{*}(\omega \wedge \eta)=F^{*} \omega \wedge F^{*} \eta$;
(3) in any chart on N with coordinates y_{i}

$$
F^{*}\left(\sum_{I} \omega_{I} d y_{i_{1}} \wedge \cdots \wedge d y_{i_{k}}\right)=\sum_{I}\left(\omega_{I} \circ F\right) d\left(y_{i_{1}} \circ F\right) \wedge \cdots \wedge d\left(y_{i_{k}} \circ F\right)
$$

(4) if $M \subset \mathbb{R}^{m}$ and $N \subset \mathbb{R}^{n}$ are open sets then $F^{*}(d \omega)=d\left(F^{*} \omega\right)$;
(5) if $G: P \rightarrow M$ is another smooth map then $(F \circ G)^{*}=G^{*} \circ F^{*}$.
3.20. Theorem. Let M be a smooth manifold with or without boundary. There are operators $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$, uniquely determined by
(1) d is \mathbb{R}-linear
(2) for $\omega \in \Omega^{k}(M)$ and $\eta \in \Omega^{\ell}(M)$ we have

$$
d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta
$$

(3) $d^{2}=0$;
(4) for $f \in C^{\infty}(M)$ and $X \in \mathscr{X}(M)$ it holds that $d f(X)=X f$.

In any chart we have

$$
d\left(\sum_{J} \omega_{J} d x_{j_{1}} \wedge \cdots \wedge d x_{j_{k}}\right)=\sum_{J} d \omega_{J} \wedge d x_{j_{1}} \wedge \cdots \wedge d x_{j_{k}}
$$

3.21. Theorem. For a k-form ω and vector fields X_{1}, \cdots, X_{k+1} it holds that

$$
\begin{aligned}
d \omega\left(X_{1}, \cdots x_{k+1}\right) & =\sum_{1 \leq i \leq k+1}(-1)^{i-1} X_{i} \omega\left(X_{1}, \cdots, \widehat{X_{i}}, \cdots, X_{k+1}\right) \\
& +\sum_{1 \leq i<j \leq k+1}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{1}, \cdots, \widehat{X_{i}}, \cdots, \widehat{X_{j}}, \cdots, X_{k+1}\right) .
\end{aligned}
$$

In particular, for a 1-form ω we have

$$
d \omega(X, Y)=X(\omega(Y))-Y(\omega(X))-\omega([X, Y])
$$

4. Week 4

No lectures in week 4.

5. Week 5

5.1. Lecture 7, Tue $\mathbf{0 7 - 1 1 - 2 0 1 7}$. This lecture coves the material in [1, Chapter 15, pages 377-384] concerning orientations of manifolds.
5.1. Definition. Let $e:=\left(e_{1}, \cdots, e_{n}\right)$ and $E:=\left(E_{1}, \cdots, E_{n}\right)$ be two ordered bases for the vector space V. We say that e and E are consistently oriented if the transition matrix (B_{i}^{j}) defined by $e_{i}=\sum_{j} B_{i}^{j} E_{j}$ has positive determinant.

The above definition gives an equivalence relation on the set of ordered basis with exactly two equivalence classes. The orientation determined by the basis e is denoted $[e]$. If $[E]=[e]$ we say that E is positively oriented with respect to e. Otherwise it is negatively oriented.
5.2. Proposition. Let V be a vector space of dimension $n \geq 1$. Then any $\omega \in \bigwedge^{n} V^{*}$ with $\omega \neq 0$ determines a unique orientation \mathscr{O}_{ω} on V. An ordered basis $\left(e_{1}, \cdots, e_{n}\right)$ is positively oriented with respect to ω if

$$
\omega\left(e_{1}, \cdots e_{n}\right)>0
$$

and negatively oriented with respect ω if

$$
\omega\left(e_{1}, \cdots, e_{n}\right)<0
$$

Two elements $\omega, \eta \in \Lambda^{n} V^{*}$ define the same orientation on V if and only if $\omega=\lambda \eta$ for some $\lambda>0$.
5.3. Example. Let $\left(e_{1}, \cdots, e_{n}\right)$ be an ordered basis for V with dual basis $\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)$. Then $\left(e_{1}, \cdots, e_{n}\right)$ and $\omega:=\varepsilon_{1} \wedge \cdots \wedge \varepsilon_{n}$ define the same orientation.

For manifolds the situation is more complicated. A pointwise orientation of a manifold M is a choice of orientation on each tangent space $T_{p} M, p \in$ M. A local frame $\left(X_{1}, \cdots, X_{n}\right)$ is psotively oriented if $\left(X_{1, p}, \cdots, X_{n, p}\right) \in$ $T_{p}(M)$ is positively oriented.
5.4. Definition. A pointwise orientation for M is continuous if every $p \in$ M has a neighborhood U such that there exists a positively oriented local frame over U. A manifold M is oriented if it is equipped with a continuous pointwise orientation.
5.5. Definition. Let M be an n-dimensional manifold. An n-form $\omega \in$ $\Omega^{n}(M)$ is non-vanishing if for for every $p \in M$ there exists a local frame $\left(X_{1}, \cdots, X_{n}\right)$ with dual coframe $\left(d x_{1}, \cdots, d x_{n}\right)$ such that $\omega=f d x_{1} \wedge$ $\cdots d x_{n}$ and $f(p) \neq 0$.
5.6. Proposition. Let M be a smooth manifold of dimension n (with or without boundary). Any non-vanishing n-form $\omega \in \Omega^{n}(M)$ determines a unique orientation on M. Conversely if M is oriented there exists a nonvanishing n-form defining the orientation.
5.7. Definition. Let M be an oriented manifold (with or without boundary). A chart (U, φ) is positively oriented if the frame $\frac{\partial}{\partial x_{i}}$ is positively oriented. An atlas $\left\{\left(U_{i}, \varphi_{i}\right)\right\}$ is positively oriented if the transition maps

$$
\varphi_{i} \circ \varphi_{j}^{-1}: \varphi_{j}\left(U_{i} \cap U_{j}\right) \rightarrow \varphi_{i}\left(U_{i} \cap U_{j}\right)
$$

have positive Jacobian determinant at each point of $\varphi_{j}\left(U_{i} \cap U_{j}\right)$.
5.8. Proposition. Let M be a smooth manifold of dimension $n \geq 1$. Suppose M admits a consistently oriented smooth atlas $\left\{\left(U_{i}, \varphi_{i}\right)\right\}$. Then M is orientable and there is a unique orientation for which each $\left(U_{i}, \varphi_{i}\right)$ is positively oriented. Conversely if M is oriented and $n>1$ or $\partial M=\emptyset$ then the collection of all positively oriented smooth charts is a consistently oriented atlas.

Now suppose $F: M \rightarrow N$ is a local diffeomorphism between smooth manifolds M and N. If M and N are oriented we say that F is orientation preserving if $(d F)_{p}: T_{p} M \rightarrow T_{p} N$ maps positively oriented bases to positively oriented bases. F is orientation reversing if $(d F)_{p}$ maps positively oriented bases to negatively oriented bases.
5.9. Proposition. Let $F: M \rightarrow N$ be a local diffeomorphism and suppose that N is oriented. Then M is orientable and there exists a unique orientation on M for which F is orientation preserving.

In this case, if ω is an orientation form for N then $F^{*} \omega$ is an orientation form for M.
5.2. Lecture 8. We return to some structural results about manifold with boundary, see [1, Chapter 1, pages 27-29].
5.10. Theorem. Let M be a smooth manifold with boundary and $p \in M$. Suppose that there is a boundary chart (U, φ) with $p \in U$ such that $\varphi(U) \subset$ $\overline{\mathbb{H}}^{n}$ and $\varphi(p) \in \partial \overline{\mathbb{H}}^{n}$. Then for any other chart (V, ψ) with $p \in V$ it holds that $\varphi(V) \subset \overline{\mathbb{H}}^{n}$ and $\varphi(p) \in \partial \overline{\mathbb{H}}^{n}$.
5.11. Corollary. A manifold with boundary decomposes as a disjoint union $M=\operatorname{Int} M \sqcup \partial M$.

To equip ∂M with a smooth structure we use the results from [1, Chapter 5, pages 101-104].
5.12. Definition. Let M be a manifold and $S \subset M$ a subset. Then S is an embedded submanifold if, equipped with the subspace topology, it has a smooth structure such that the inclusion map $i: S \rightarrow M$ is a smooth embedding. That is, i is a homeomorphism onto its image and $(d i)_{p}: T_{p} S \rightarrow T_{p} M$ is injective for all $p \in M$.
5.13. Theorem. Let M be a manifold of dimension n with boundary ∂M. Then ∂M is a manifold of dimension $n-1$ with charts (V, ψ) given by

$$
V:=U \cap \partial M, \quad \psi:=\pi_{n-1} \circ \varphi,
$$

where (U, φ) is a chart for M and $\pi_{n-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ is given by

$$
\pi_{n-1}\left(x_{1}, \cdots, x_{n}\right):=\left(x_{1}, \cdots, x_{n-1}\right)
$$

With these charts the inclusion $i: \partial M \rightarrow M$ becomes a smooth embedding.

To equip ∂M with an orientation, we return to [1, Chapter 15, pages 384-387].

For an oriented manfiold with boundary the tangent space at a boundary point $p \in \partial M$ decomposes as a disjoint union

$$
T_{p} M=T_{p}^{\text {in }} M \sqcup T_{p}^{\text {out }} M \sqcup T_{p} \partial M,
$$

where

$$
T_{p}^{\text {in }} M:=\left\{\sum_{k=1}^{n} v_{k} \frac{\partial}{\partial x_{k}}: v_{n}>0\right\}, \quad T_{p}^{\text {out }} M:=\left\{\sum_{k=1}^{n} v_{k} \frac{\partial}{\partial x_{k}}: v_{n}<0\right\} .
$$

We call $T_{p}^{\text {in }} M$ the inward pointing tangent vectors and $T_{p}^{\text {out }} M$ the outward pointing tangent vectors.
5.14. Lemma. Let M be an oriented manifold with boundary. There exists a vector field $X \in \mathscr{X}(M)$ such that for every $p \in \partial M, X_{p}$ is an outward pointing vector. Similarly there exists a vector field $Y \in \mathscr{X}(M)$ such that for every $p \in \partial M, X_{p}$ is an inward pointing vector.
5.15. Proposition. Let $n \geq 1$ and M an oriented smooth n-dimensional manifold. Then ∂M is oriented and all outward pointing vector fields define the same orientation on ∂M.
[1, Chapter 16, pages 400-404] Recall that a domain of integration in \mathbb{R}^{n} is a subset $D \subset \mathbb{R}^{n}$ whose topological boundary $\bar{D} \backslash D^{\circ}$ has Lebesgue measure zero. A continuous n-form ω on \bar{D} can be written

$$
\omega=f d x_{1} \wedge \cdots \wedge d x_{n}
$$

We define the integral of ω over D by

$$
\int_{D} \omega:=\int_{D} f d x_{1} \cdots d x_{n} .
$$

5.16. Lemma. Let $U \subset \mathbb{R}^{n}$ be an open set and $K \subset U$ a compact set. Then there exists a domain of integration D such that $K \subset D \subset \bar{D} \subset U$.

If ω is an n-form with compact support contained in an open set U we define

$$
\int_{U} \omega:=\int_{D} \omega
$$

where D is any domain with supp $\omega \subset D \subset \bar{D} \subset U$.
5.17. Proposition. Let D and E be domains of integration in \mathbb{R}^{n} or $\overline{\mathbb{H}}^{n}$ and $G: \bar{D} \rightarrow \bar{E}$ a smooth map which restricts to an orientation preserving diffeomorphism $G: D \rightarrow E$. Then for an n-form ω on \bar{E}

$$
\int_{D} G^{*} \omega=\int_{E} \omega
$$

In case $G: D \rightarrow E$ is orientation reversing, we have

$$
\int_{D} G^{*} \omega=-\int_{E} \omega .
$$

5.18. Proposition. Let U, V be open subsets of \mathbb{R}^{n} or $\overline{\mathbb{H}}^{n}$ and $G: U \rightarrow V$ an orientation preserving diffeomorphism. If ω is a compactly supported n-form on V then

$$
\int_{V} \omega=\int_{U} G^{*} \omega
$$

and if G is orentation reversing then

$$
\int_{V} \omega=-\int_{U} G^{*} \omega .
$$

6. Week 6

6.1. Lecture 9, Tue 14-11-2017. [1, Chapter 16, pages 404-408 and 411415]

We are now ready to define integration of n-froms on an oriented manifold M. First suppose ω is an n-form whose support is contained in a single positively oriented chart (U, φ). For such ω we set

$$
\int_{M} \omega:=\int_{\varphi(U)}\left(\varphi^{-1}\right)^{*} \omega
$$

If the chart (U, φ) is negatively oriented we set

$$
\int_{M} \omega:=-\int_{\varphi(U)}\left(\varphi^{-1}\right)^{*} \omega
$$

6.1. Proposition. Suppose ω is a compactly support n-form on an oriented manifold M, and $(U, \varphi),(V, \psi)$ are charts such that $\operatorname{supp} \omega \subset U \cap V$. Then

$$
\int_{\varphi(U)}\left(\varphi^{-1}\right)^{*} \omega=\int_{\psi(V)}\left(\psi^{-1}\right)^{*} \omega
$$

and in particular $\int_{M} \omega$ is independent of the choice of chart.
6.2. Definition. Let M be an oriented smooth manifold and ω a compactly supported n-form. Let $\left\{\left(U_{i}, \varphi\right)\right\}$ be an atlas of oriented charts and χ_{i} a partition of unity subordinate to U_{i}. The integral of ω over M is defined to

$$
\int_{M} \omega:=\sum_{i} \int_{M} \chi_{i} \omega .
$$

6.3. Proposition. The definition of $\int_{M} \omega$ is independent of the choice of cover and the choice of partition of unity.

The integral so defined has the following properties:
(1) for $a, b \in \mathbb{R}$ and ω, η compactly supported n-forms,

$$
\int_{M} a \omega+b \eta=a \int_{M} \omega+b \int_{M} \eta
$$

(2) if $-M$ denotes M with the opposite orientation then

$$
\int_{-M} \omega=-\int_{M} \omega
$$

(3) if ω is a positively oriented orientation form then $\int_{M} \omega>0$
(4) if $F: M \rightarrow N$ is an orientation preserving diffeomorphism between oriented manifolds M and N then $\int_{M} \omega=\int_{N} F^{*} \omega$.
For an oriented manifold M with boundary ∂M we always equip ∂M with the induced (or Stokes) orientation. Given an $n-1$-form ω we set

$$
\int_{\partial M} \omega:=\int_{\partial M} i^{*} \omega,
$$

with $i: \partial M \rightarrow M$ the embedding. Note that $d \omega$ is a n-form on M
6.4. Theorem (Stokes' theorem). Let M be an oriented manifold with boundary ∂M ad ω a compactly supported $n-1$-form on M. Then

$$
\int_{M} d \omega=\int_{\partial M} \omega,
$$

where ∂M carries the Stokes orientation.
We now turn to the discussion of Riemannian metrics [1, Chapter 13, pages 327-337].
6.5. Definition. Let M be a smooth manifold with or without boundary. A Riemannian metric on M is a paring

$$
\begin{aligned}
& g: \mathscr{X}(M) \times \mathscr{X}(M) \rightarrow \\
& C^{\infty}(M) \\
&(X, Y) \mapsto
\end{aligned} g(X, Y), ~ \$
$$

with the following properties.

- (symmetry) for all $X, Y \in \mathscr{X}(M)$ we have $g(X, Y)=g(Y, X)$
- (bilinearity) for all $f_{1}, f_{2} \in C^{\infty}(M)$ and $X, Y_{!}, Y_{2}$ we have

$$
g\left(X, f_{1} Y_{1}+f_{2} Y_{2}\right)=f_{1} g\left(X, Y_{1}\right)+f_{2} g\left(X, Y_{2}\right)
$$

- (nondegeneracy) for $p \in M$ and all $X \in \mathscr{X}(M)$ it holds that $g(X, X)(p)>0$.
The pair (M, g) is called a Riemannian manifold.

For each $p \in M$ the metric g defines an inner product on the tangent space $T_{p}(M)$ denoted $\langle\cdot, \cdot\rangle_{g}$. It is defined by

$$
\left\langle X_{p}, Y_{p}\right\rangle_{g}:=g(X, Y)(p)
$$

6.6. Lemma. For any manifold there exists a Riemannian metric.

For 1-forms $\omega, \eta \in \Omega^{1}(M)$ we define their symmetric product to be the two form $\omega \cdot \eta$ given on vector fields X, Y by

$$
\omega \cdot \eta(X, Y):=\frac{1}{2}(\omega(X) \eta(Y)+\omega(Y) \eta(X)) .
$$

6.7. Example (Euclidean metric on \mathbb{R}^{n}). The expression

$$
g=\sum_{i=1}^{n} d x_{i} \cdot d x_{i}=\sum_{i=1}^{n}\left(d x_{i}\right)^{2},
$$

defines a Riemannian metric on \mathbb{R}^{n} called the Euclidean metric.
6.8. Example (Round metric on \mathbb{S}^{n}). The restriction of the Euclidean metric on \mathbb{R}^{n+1} to $\mathscr{X}(M)$ gives the round metric on \mathbb{S}^{n}.
6.9. Example (Hyperbolic metric on \mathbb{H}^{n}). Recall that \mathbb{H}^{n} is the upper half space

$$
\mathbb{H}^{n}:=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}: x_{n}>0\right\} .
$$

The hyperbolic metric on \mathbb{H}^{n} is given by

$$
g=\frac{\sum_{i=1}^{n}\left(d x_{i}\right)^{2}}{x_{n}^{2}}
$$

6.2. Lecture 10. A Riemannian metric defines an inner product on each tangent space. This allows us to talk about the length of tangent vectors and angles between them:

Two vector fields X, Y are orthogonal over a set U if $g(X, Y)(p)=0$ for all $p \in U$. For a vector field X we denote by $|X|$ the function $p \mapsto$ $\sqrt{g(X, X)(p)}$ on M.
6.10. Definition. A smooth local frame $\left(X_{1}, \cdots, X_{n}\right)$ over U is orthonormal if

$$
g\left(X_{i}, X_{j}\right)(p)=\delta_{i j}, \quad \text { for all } p \in U
$$

In particular $X_{i}(p)$ is an orthonormal basis for $T_{p} M$ for all $p \in U$. It is in general not true that the coordinate frame $\frac{\partial}{\partial x_{i}}$ associated to a chart (U, φ) is orthonormal.
6.11. Proposition. For every $p \in M$ there is a neighborhood U of p and a smooth orthonormal frame over U.

The following discussion of the Riemannian volume form can found in [1, Chapter 15, pages 388-390]
6.12. Proposition. On an oriented Riemannian manifold (M, g) there is a unique positive orientation form ω_{g} such that

$$
\omega_{g}\left(E_{1}, \cdots, E_{n}\right)=1
$$

for every orthonormal frame E_{i}.
6.13. Proposition (Volume form in a coordinate frame). Let (M, g) be an oriented Riemannian manifold of dimension $n \geq 1$ and (U, φ) a positively oriented chart with coordinates x_{i}. The volume form ω_{g} in these cooridnates is given by

$$
\omega_{g}=\sqrt{\operatorname{det}\left(g_{i j}\right)} d x_{1} \wedge \cdots \wedge d x_{n}
$$

with $g_{i j}:=g\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)$.
The normal bundle and its orthonormal frames are introduced in [1, Chapter 13, page 337].

For an embedded submanifold $S \subset M$ of a Riemannian manifold (M, g). For $p \in S$ the tangent space $T_{p} S$ is a subspace $T_{p} M$. We define the normal space to be

$$
N_{p} S:=\left\{v \in T_{p} M: \forall w \in T_{p} S\langle v, w\rangle g=0\right\} .
$$

The normal bundle is the collection

$$
N S:=\bigsqcup_{p \in S} N_{p} S \subset T M
$$

and the bundle projection $\pi: T M \rightarrow M$ restricts to a bundle projection $N S \rightarrow S$. The normal bundle is a vector bundle over S of $\operatorname{rank} \operatorname{dim} M-\operatorname{dim}$ S. For every $p \in S$ we have $T_{p} M=T_{p} S \oplus N_{p} S$.
6.14. Proposition. Let (M, g) be a Riemannian manifold of dimension n and $S \subset M$ an embedded submanifold of dimension k. For each $p \in$ S there exists a neighborhood U of p a smooth local orthonormal frame $\left(E_{1}, \cdots E_{n}\right)$ over U such that $\left(E_{1}, \cdots, E_{k}\right)$ is a local orthonormal frame for $T S$ over $S \cap U$ and $\left(E_{k+1}, \cdots, E_{n}\right)$ is a local orthonromal frame for $N S$ over $S \cap U$.

The integration of functions and the divergence theorem are discussed in [1, Chapter 16, pages 421-424].

The volume integral of a compactly supported continuous function $f \in$ $C(M)$ on a Riemannian manifold (M, g) is defined to be

$$
\int_{M} f d V_{g}:=\int_{M} f \omega_{g} .
$$

The volume integral has the property that if $f \geq 0$ then $\int_{M} f d V_{g} \geq 0$. For a codimension 1 submanifold $S \subset M$, we define a normal vector field to be a vector field $N \in \mathscr{X}(M)$ such that for all $p \in S$ we have $N(p) \in N_{p} S$ and $g(N, N)(p)=1$. If N is outward pointing at each point of S, then it defines an orientation on S. In fact

$$
\omega_{\tilde{g}}^{S}\left(X_{1}, \cdots, X_{n-1}\right):=\omega_{g}^{M}\left(N, X_{1}, \cdots, X_{n-1}\right),
$$

defines the volume form on S with the induced metric \tilde{g} for the orientation determined by N.

Consider the map

$$
\alpha: C^{\infty}(M) \rightarrow \Omega^{n}(M), \quad f \mapsto f \omega_{g},
$$

as well as the map

$$
\beta: \mathscr{X}(M) \rightarrow \Omega^{n-1}(M),
$$

defined by $\beta(X)\left(X_{1}, \cdots, X_{n-1}\right)=\omega_{g}\left(X, X_{1}, \cdots, X_{n-1}\right)$.
6.15. Lemma. Let (M, g) be a Riemannian manifold and $S \subset M$ an embedded submanifold of codimension 1 with $i: S \rightarrow M$ the inclusion and normal vector field N. Then for all $X \in \mathscr{X}(S)$ it holds that

$$
i_{S}^{*} \beta(X)=\langle X, N\rangle_{g} \omega_{\tilde{g}}^{S}
$$

where $\omega_{\tilde{g}}^{S}=\beta(N)$ as above is the volume form on S determined by N.
We define the divergence of a vector field to be $\operatorname{div}(X):=\alpha^{-1} d \beta(X)$. Equivalently $d \beta(X)=\operatorname{div}(X) \omega_{g}$.
6.16. Theorem (Divergence theorem). Let (M, g) be an oriented Riemannian manifold with boundary ∂M and outward pointing normal vector field N. For any compactly supported smooth vector field $X \in \mathscr{X}(M)$ it holds that

$$
\int_{M} \operatorname{div}(X) d V_{g}=\int_{\partial M}\langle X, N\rangle_{g} d V_{\tilde{g}},
$$

where \tilde{g} denotes the induced metric on S.
It should be noted here we equip ∂M with the Stokes orientation, which creates the need to work with an outward pointing normal. However, the divergence theorem holds in this form whenever S is equipped with the orientation inherited from N.

7. Week 7

7.1. Lecture 11, Tue 21-11-2017. The tangent cotangent isomorphism [1, Pages 340-343].

Given a Riemannian manifold (M, g) we can define an isomorphism

$$
\hat{g}: T M \rightarrow T^{*} M
$$

defined on vector fields X via the formula

$$
\hat{g}(X)(Y):=g(X, Y),
$$

so indeed $\hat{g}(X) \in \Omega^{1}(M)$. The map \hat{g} is injective by nondegeneracy of g and because the fibers of $T M$ and $T^{*} M$ are finite dimensional, \hat{g} is fibrewise surjective. In coordinates \hat{g} has the expression

$$
\hat{g}(X)=\sum_{i, j} g_{i j} X_{i} d x_{j}
$$

where X_{i} are the component functions of X and $g_{i j}=g\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)$ in the coordinates x_{i}. Because the matrix $g_{i j}$ is invertible, the inverse

$$
\hat{g}^{-1}: \Omega^{1}(M) \rightarrow \mathscr{X}(M),
$$

takes the coordinate form

$$
\hat{g}^{-1}(\omega)=\sum_{i, j}\left(g^{-1}\right)_{i j} \omega_{j} \frac{\partial}{\partial x_{i}}
$$

with $\left(g^{-1}\right)_{i j}$ the components of the inverse matrix of $\left(g_{i j}\right)$. The existence of the inverse proves that \hat{g} is an isomorphism.
7.1. Definition. Let (M, g) be a Riemannian manifold and $f \in C^{\infty}(M)$. The gradient of f is the vector field $\operatorname{grad} f:=\hat{g}^{-1}(d f)$. Equivalently $\operatorname{grad} f$ is determined by the equality

$$
\langle\operatorname{grad} f, X\rangle_{g}=X f
$$

for all smooth vector fields $X \in \mathscr{X}(M)$.
The coordinate form of the gradient is

$$
\operatorname{grad} f=\sum_{i, j}\left(g^{-1}\right)_{i j} \frac{\partial f}{\partial x_{j}} \frac{\partial}{\partial x_{i}}
$$

Let (M, g) be an oriented manifold with boundary. We wish to show there always exists an outward pointing normal vector field along ∂M. See [1, Pages 118-119].
7.2. Definition. Let M be a smooth manifold with boundar. A boundary defining function is a smooth function $f: M \rightarrow \mathbb{R}$ with properties

- $f^{-1}(0)=\partial M$;
- for all $p \in \partial M$ the differential $d f_{p} \neq 0$
7.3. Proposition. Every manifold with boundary admits a boundary defining function.

The following result is found on [1, Page 391]:
7.4. Corollary. Every manifold with boundary admits an outward pointing unit normal vector field.

Given a boundary defining function f one sets $N:=-\operatorname{grad} f /|\operatorname{grad} f|_{g}$. This is well defined in a neighborhood

$$
\partial M \subset\left\{p \in M:\left|d f_{p}\right|_{g}>\varepsilon\right\}
$$

and can thus be extended to all of M.

Line integrals [1, Pages 287-292]

7.5. Definition. By a piecewise smooth curve in a manifold M we mean a smooth map $\gamma:[a, b] \rightarrow M$ such that there exists a partition

$$
a=a_{0}<a_{1}<\cdots<a_{n-1}<a_{n}=b
$$

such that the restrictions $\left.\gamma\right|_{\left[a_{i}, a_{i+1}\right]}:\left[a_{i}, a_{i+1}\right] \rightarrow M$ are smooth.
7.2. Lecture 12, Wed 22-11-2017. For a one form ω on M we define the integral of ω over γ as

$$
\int_{\gamma} \omega:=\sum_{i} \int_{\left[a_{i}, a_{i+1}\right]} \gamma^{*} \omega .
$$

By a reparametrization of the curve γ we mean a curve of the form

$$
\tilde{\gamma}:=\gamma \circ \phi:[c, d] \rightarrow M
$$

with $\phi:[c, d] \rightarrow[a, b]$ a diffeomorphism. The integral is invariant for reparametrizations in the following sense:

$$
\int_{\gamma} \omega=\int_{\tilde{\gamma}} \omega
$$

when ϕ is increasing. When ϕ is decreasing the integrals differ by a minus sign. The line integral has the usual linearity properties and if $F: M \rightarrow N$ is a smooth map and $\omega \in \Omega^{1}(N)$ then

$$
\int_{\gamma} F^{*} \omega=\int_{F \circ \gamma} \omega .
$$

The tangent vector field to γ is defined to be the map

$$
\gamma^{\prime}:[a, b] \rightarrow T M, \quad t \mapsto d \gamma\left(\left.\frac{d}{d x}\right|_{t}\right)
$$

with x the coordinate on $[a, b]$. The line integral admits the epxression

$$
\int_{\gamma} \omega=\int_{a}^{b} \omega_{\gamma(t)}\left(\gamma^{\prime}(t)\right) .
$$

The Riemannian distance function [1, Pages 337-341].
7.6. Proposition. If M is a connected manifold then for any two points p, q there exists a piecewise smooth curve $\gamma:[a, b] \rightarrow M$ with $\gamma(a)=p$ and $\gamma(b)=q$.

On a Riemannian manifold (M, g) we define the length of a piecewise smooth curve γ as

$$
L_{g}(\gamma):=\int_{a}^{b}\left|\gamma^{\prime}(t)\right|_{g} d t=\int_{a}^{b} \sqrt{\left\langle\gamma^{\prime}(t), \gamma^{\prime}(t)\right\rangle_{g}} d t
$$

7.7. Proposition. Let (M, g) be a Riemannian manifold and $\gamma:[a, b] \rightarrow M$ a piecewise smooth curve in M. If $\tilde{\gamma}:[c, d] \rightarrow M$ is a reparametrization of γ then $L_{g}(\gamma)=L_{g}(\tilde{\gamma})$.

The Riemannian distance function of (M, g) is defined for points $p, q \in$ M as

$$
d_{g}(p, q):=\inf \left\{L_{g}(\gamma): \gamma:[a, b] \rightarrow M, \gamma(a)=p, \gamma(b)=q .\right\}
$$

the infimum of lengths of piecewise smooth curves joinging p and q. To prove that the distance function is a metric we use the following local result.
7.8. Lemma. Let g be a Riemannian metric on an open subset $U \subset \mathbb{R}^{n}$ and let \bar{g} denote the Euclidean metric. Then for any compact subset $K \subset U$ there exist $c, C \in \mathbb{R}_{>0}$ such that for all $x \in K$ with $v \in T_{x} \mathbb{R}^{n}$ it holds that

$$
c|v|_{\bar{g}} \leq|v|_{g} \leq C|v|_{\bar{g}}
$$

7.9. Theorem. The Riemannian distance function defines a metric on M whose metric topology coincides with the manifold topology.

8. Week 8

8.1. Lecture 13, Tue 28-11-2017. Review of tensor bundles.
8.1. Definition. Let V be a vector space. A covariant k-tensor on V is an element of $\left(V^{*}\right)^{\otimes k}:=V^{*} \otimes \cdots \otimes V^{*}$ (k-fold tensor product). A contravariant k-tensor is an element of $V^{\otimes k}:=V \otimes \cdots \otimes V$ (k-fold tensor product).

A covariant tensor ξ can be viewed as a multilinear functional $V^{k} \rightarrow \mathbb{R}$ via

$$
\left(\xi_{1} \otimes \cdots \otimes \xi_{k}\right)\left(v_{1}, \cdots, v_{k}\right):=\prod_{i=1}^{k} \xi_{i}\left(v_{i}\right)
$$

Similarly a contravariant k-tensor gives a multilinear functional $\left(V^{*}\right)^{k} \rightarrow$ \mathbb{R}, by essentially the same formula.

A k-tensor α is symmetric if for any permutation $\sigma \in S_{k}$ we have

$$
\alpha\left(v_{\sigma(1)}, \cdots, v_{\sigma(k)}\right)=\alpha\left(v_{1}, \cdots, v_{k}\right) .
$$

It is alternating if

$$
\alpha\left(v_{\sigma(1)}, \cdots, v_{\sigma(k)}\right)=\operatorname{sgn}(\sigma) \alpha\left(v_{1}, \cdots, v_{k}\right) .
$$

The symmetrization of a k-tensor α is the k-tensor

$$
\operatorname{Sym}(\alpha)\left(v_{1}, \cdots, v_{k}\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}} \alpha\left(v_{\sigma(1)}, \cdots, v_{\sigma(k)}\right)
$$

The anti-symmetrization of α is the k-tensor

$$
\mathrm{A}(\alpha)\left(v_{1}, \cdots, v_{k}\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \alpha\left(v_{\sigma(1)}, \cdots, v_{\sigma(k)}\right)
$$

Clearly $\mathrm{A}(\alpha)$ is alternating, that is

$$
\mathrm{A}(\alpha)\left(v_{\tau(1)}, \cdots, v_{\tau(k)}\right)=\operatorname{sgn}(\tau) \mathrm{A}\left(V_{1}, \cdots, v_{k}\right)
$$

for any $\tau \in S_{k}$. In general, if α, β are (anti)-symmetric tensors, then $\alpha \otimes$ β is in general neither symmetric nor anti-symmetric. We have seen that the wedge product of alternating tensors is again alternating. Similarly the symmetric product of a symmetric k-tensor α and a symmetric ℓ-tensor β, defined by

$$
\alpha \cdot \beta\left(v_{1}, \cdots, v_{k+\ell}\right):=\frac{1}{(k+\ell)!} \sum_{\sigma \in S_{k+\ell}} \alpha\left(v_{\sigma(1)}, \cdots, v_{\sigma(k)}\right) \beta\left(v_{\sigma(k+1)}, \cdots, v_{\sigma(k+\ell)}\right),
$$

is a symmetric $k+\ell$-tensor. The symmetric product is commutative,

$$
\alpha \cdot \beta=\beta \cdot \alpha
$$

and satisfies the distributive law

$$
(a \alpha+b \beta) \cdot \gamma=a \alpha \cdot \gamma+b \beta \cdot \gamma, \quad a, b \in \mathbb{R} .
$$

8.2. Definition. Let M be a manifold. The bundle of covariant k-tensors on M is

$$
T^{k} M:=\left(T^{*} M\right)^{\otimes k}=\bigsqcup_{p \in M}\left(T_{p}^{*} M\right)^{\otimes k}
$$

and the bundle of contravariant k-tensors is

$$
T_{k} M:=(T M)^{\otimes k}=\bigsqcup_{p \in M}\left(T_{p}^{*} M\right)^{\otimes k} .
$$

The bundle of mixed tensors of type (k, ℓ) is

$$
T_{\ell}^{k} M:=\left(T^{*} M\right)^{\otimes k} \otimes(T M)^{\otimes \ell} .
$$

Using the vector bundle chart lemma, we define maps

$$
\tau_{i j}: U_{i} \cap U_{j} \rightarrow G L\left(\mathbb{R}^{n k} \otimes \mathbb{R}^{* \otimes n \ell}\right)
$$

by

$$
\begin{aligned}
& \tau_{i j}(p)\left(v_{1} \otimes \cdots \otimes v_{k} \otimes \omega_{1} \otimes \cdots \otimes \omega_{\ell}\right):= \\
& \quad \tau_{i j}^{T M}(p) v_{1} \otimes \cdots \otimes \tau_{i j}^{T M}(p) \otimes \tau_{i j}^{T^{*} M}(p) \omega_{1} \otimes \cdots \otimes \tau_{i j}^{T^{*} M}(p) \omega_{\ell} .
\end{aligned}
$$

In this way $T_{\ell}^{k} M$ becomes a vector bundle over M. A tensor field of type (k, ℓ) is a section of $T_{\ell}^{k} M$.

By applying he duality map $\hat{g}: T M \rightarrow T^{*} M$ to any index we get maps $T_{\ell}^{k} M \rightarrow T_{\ell-1}^{k+1} M$ and by applying \hat{g}^{-1} we obtain maps $T_{\ell}^{k} M \rightarrow T_{\ell+1}^{k-1} M$. Lastly,for a contravariant 2-tensor on a Riemannian manifold we define its trace to be the map

$$
T_{2} M \rightarrow M \times \mathbb{R}
$$

determined on vector fields X, Y by

$$
X \otimes Y \mapsto g(X, Y)
$$

Connections. To address the problem of differentiating vector fields we introduce the notion of connection.
8.3. Definition. Let $\pi: E \rightarrow M$ be a smooth vector bundle over a manifold M. A connection is a linear map $\nabla: \Gamma^{\infty}(E) \rightarrow \Gamma^{\infty}(E) \otimes_{C^{\infty}(M)} \Omega^{1}(M)$ satisfying the Leibniz rule:

$$
\nabla(Y \cdot f)=\nabla(Y) f+Y \otimes d f
$$

for all sections $Y \in \Gamma^{\infty}(E)$ and functions $f \in C^{\infty}(M)$.
Using the pairing

$$
\mathscr{X}(M) \times \Omega^{1}(M), \quad(X, \omega) \mapsto \omega(X),
$$

we obtain a pairing

$$
\mathscr{X}(M) \times \Gamma^{\infty}(E) \otimes \Omega^{1}(M), \quad(X, Y \otimes \omega) \mapsto Y \cdot \omega(X) .
$$

Writing this pairing as $(Y \otimes \omega)(X)$ we can view a connection as a map

$$
\mathscr{X}(M) \times \mathscr{X}(M) \rightarrow \mathscr{X}(M), \quad(X, Y) \mapsto \nabla(Y)(X) .
$$

The common notation for $\nabla(Y)(X)$ is $\nabla_{X}(Y)$. Connections are local in the following sense.
8.4. Lemma. The value of vector field $\nabla_{X} Y$ at $p \in M$ depends only on the value of X at p and the values of Y in a neighborhood of p.

Due to this lemma we write $\nabla_{X_{p}} Y$ for $\nabla_{X}(Y)(p)$ and think of it as the directional derivative of Y in the direction X_{p}.
8.5. Definition. An affine or linear connection is a connection in the vector bundle $T M$.

If E_{i} is a local frame for $T M$ in a neighborhood U we can write any section $Y \in \mathscr{X}(T M)$ as $Y=\sum_{i} Y_{i} E_{i}$, with $Y_{i} \in C^{\infty}(M)$. In particular for $X \in \mathscr{X}(M)$ the section $\nabla_{E_{i}} E_{j} \in \Gamma^{\infty}(E)$ can be written

$$
\nabla_{E_{i}} E_{j}=\sum_{k} \Gamma_{i j}^{k} E_{k},
$$

for certain functions $\Gamma_{i j}^{k}: U \rightarrow \mathbb{R}$. These functions are referred to as the Christoffel symbols of the connection ∇ relative to the frame E_{j}. The Christoffel symbols determine the linear connection ∇ locally:
8.6. Lemma. Let ∇ be a linear connection on a manifold M and E_{i} a local frame over the open set U. For vector fields $X, Y \in \mathscr{X}(M)$ we have

$$
\nabla_{X} Y=\sum_{k}\left(X\left(Y_{k}\right)+\sum_{i, j} X_{i} Y_{j} \Gamma_{i j}^{k}\right) E_{k}
$$

over U.

8.2. Lecture 14, Wed 29-11-2017.

8.7. Lemma (Existence of connections on charts). Let $U \subset \mathbb{R}^{n}$ be an open set. There is a bijective correpondence between connections on TU and the choice of n^{3} functions $\Gamma_{i j}^{k}$ via

$$
\nabla_{X} Y=\sum_{k}\left(X\left(Y_{k}\right)+\sum_{i, j} X_{i} Y_{j} \Gamma_{i j}^{k}\right) \frac{\partial}{\partial x_{k}}
$$

for vector fields $\sum_{i} X_{i} \frac{\partial}{\partial x_{i}}$ and $Y=\sum_{i} Y_{i} \frac{\partial}{\partial x_{i}}$.
8.8. Proposition. Every manifold admits a linear connection.

A connection is constructed using the connections ∇_{i} on charts U_{i} and gluing through a partition of unity χ_{i} to set $\nabla:=\sum_{i} \chi_{i} \nabla_{i}$. Here it is important to note that the space of connections is not a vector space: a linear combination $\lambda_{1} \nabla_{1}+\lambda_{2} \nabla_{2}$ of connections ∇_{i} is not a connection in general. It satisfies the Leibniz rule only if $\lambda_{1}+\lambda_{2}=1$.
8.9. Lemma. Let ∇ be a linear connection on M. There is a unique connection ∇ in each tensor bundle $T_{\ell}^{k} M$ with the properties
(1) ∇ agrees with the given connection on $T M$
(2) on $T^{0} M=M \times \mathbb{R} \nabla$ is given by $\nabla(f)=d f, \nabla_{X} f=X(f)$
(3) ∇ obeys the follwoing Leibniz rule for tensor products:

$$
\nabla_{X}(F \otimes G)=\nabla_{X}(F) \otimes G+F \otimes \nabla_{X}(G)
$$

(4) if (M, g) is Riemannian, ∇ commutes with all contractions: if Tr_{g} denotes the trace on any pair of indices then

$$
\nabla_{X}(\operatorname{Tr} Y)=\operatorname{Tr} \nabla_{X}(Y) .
$$

The connection ∇ satisifes the following additional properties:

- for all $\omega \in \Omega^{1}(M)$ and $X, Y \in \mathscr{X}(M)$

$$
\nabla_{X}(\omega(Y))=\nabla_{X}(\omega)(Y)+\omega\left(\nabla_{X}(Y)\right)
$$

- for any $F \in T_{\ell}^{k} M$, vector fields Y_{i} and 1-forms ω_{j} we have

$$
\begin{aligned}
& \nabla_{X}(F)\left(\omega_{1}, \cdots, \omega_{\ell}, Y_{1}, \cdots, Y_{k}\right)=X\left(F\left(\omega_{1}, \cdots, \omega_{\ell}, Y_{1}, \cdots, Y_{k}\right)\right. \\
& \quad-\quad \sum_{j} F\left(\omega_{1}, \cdots, \nabla_{X} \omega_{j}, \cdots, \omega_{\ell}, Y_{1}, \cdots, Y_{k}\right) \\
& \quad-\sum_{i=1}^{k} F\left(\omega_{1}, \cdots, \omega_{\ell}, Y_{1}, \cdots, \nabla_{X} Y_{i}, \cdots, Y_{k}\right)
\end{aligned}
$$

We now construct the total derivative of a (k, ℓ) tensor field.
8.10. Lemma. Let ∇ be a linear connection on a manifold M and $F \in$ $T_{\ell}^{k}(M)$. The map
$\nabla F: \Omega^{1}(M)^{\ell} \times \mathscr{X}(M)^{k+1} \rightarrow C^{\infty}(M)$
$\nabla F\left(\omega_{1}, \cdots, \omega_{\ell}, X_{1}, \cdots, X_{k+1}\right):=\nabla_{X_{k+1}} F\left(\omega_{1}, \cdots, \omega_{\ell}, X_{1}, \cdots, X_{k}\right)$,
defines a $(k+1, \ell)$ tensor field.
For $f \in C^{\infty}(M), \nabla f=d f$ and the 2-tensor field $\nabla(\nabla(f))$ is called the covariant Hessian of the function f.

Tangent vector fields along curves.
8.11. Definition. Let $\gamma:[a, b] \rightarrow M$ be a smooth curve. A vector field along γ is a map $V:[a, b] \rightarrow T M$ such that $V(t) \in T_{\gamma(t)} M$. We write $T(\gamma)$ for the space of all vector fields along γ.

The tangent vector field $\gamma^{\prime}(t)$ is the most important example of a vector field along a curve.
8.12. Example. Let $\gamma:[a, b] \rightarrow \mathbb{R}^{2}$ be a smooth curve and let $J: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the counterclockwise rotation over $\frac{\pi}{2}$. Set $N(t):=J \gamma^{\prime}(t)$. Then $N(t)$ is normal to $\gamma^{\prime}(t)$. In coordinates $N(t)=\left(-\gamma_{2}^{\prime}(t), \gamma_{1}^{\prime}(t)\right)$.
8.13. Example. Let $\tilde{X} \in \mathscr{X}(M)$ and define $X(t):=\tilde{X}_{\gamma(t)}$.

A vector field X along γ is extendible if there exists $\tilde{X} \in \mathscr{X}(M)$ such that $X=\left.\tilde{X}\right|_{\gamma}$. Not all vector fields are extendible, e.g. if $\gamma\left(t_{0}\right)=\gamma\left(t_{1}\right)$ and $\gamma^{\prime}\left(t_{0}\right) \neq \gamma^{\prime}\left(t_{1}\right)$, then $\gamma^{\prime}(t)$ is not extendible.
8.14. Lemma. Let ∇ be a linear connection on a manifold M. For each smooth curve $\gamma:[a, b] \rightarrow M, \nabla$ determines a unique operator $D_{t}: T(\gamma) \rightarrow$ $T(\gamma)$ satisfying
(1) $D_{t}(a V+b W)=a D_{t} V+b D_{t} W$
(2) for all $f \in C^{\infty}([a, b]) D_{t}(f V)=f^{\prime} V+f D_{t} V$
(3) if V is extendible then for any extension \tilde{V} we have $D_{t} V=\nabla_{\gamma^{\prime}(t)} \tilde{V}$.

The operator D_{t} is called the covariant derivative along γ. The acceleration of a smooth curve $\gamma:[a, b] \rightarrow M$ is the vector field $D_{t} \gamma^{\prime}$ along γ.
8.15. Definition. A smooth curve γ is a geodesic with respect to ∇ if $D_{t} \gamma^{\prime}=0$.
8.16. Theorem (Existence and uniqueness of geodesics). Let M be a manifold with a linear connection ∇. For any $p \in M, V \in T_{p}(M)$ and $t_{0} \in \mathbb{R}$ there exists an open interval $I \subset \mathbb{R}$ containing t_{0} and a geodesic $\gamma: I \rightarrow M$ satisfying $\gamma\left(t_{0}\right)=p$ and $\gamma^{\prime}\left(t_{0}\right)=V$. Any two such geodesics agree on their common domain.
8.17. Corollary. For any $p \in M$ and $V \in T_{p} M$ there exists a unique maximal geodesic $\gamma: I \rightarrow M$, that is, a geodesic that cannot be extended to any larger interval, such that $\gamma^{\prime}(0)=p$ and $\gamma^{\prime}(0)=V$. This geodesic is denoted γ_{V}.

9. Week 9

9.1. Lecture 15, Tue 5-12-2017. A vector field V along γ is said to be parallel if $D_{t} V=0$. A vector field $X \in \mathscr{X}(M)$ is parallel if it is parallel along every curve. It is easy to check that X is parallel if and only if $\nabla(X)=0$.
9.1. Theorem (Parallel translation). Given $\gamma:[a, b] \rightarrow M, t_{0} \in[a, b]$ and $V_{0} \in T_{\gamma\left(t_{0}\right)} M$ there exists a unique parallel vector field V along γ such that $V\left(t_{0}\right)=V_{0}$.

This theorem relies on the following existence and uniqueness result of linear ODE's.
9.2. Theorem. Let $I \subset \mathbb{R}$ be an interval and $A_{j}^{k}: I \rightarrow \mathbb{R}$ be smooth functions, $1 \leq j, k \leq n$. The linear initial value problem

$$
V_{k}^{\prime}(t)=\sum_{j} A_{j}^{k} V_{j}(t), \quad V_{k}\left(t_{0}\right)=B_{k}
$$

has a unique solution on all of I for any $t_{0} \in I$ and any $B=\left(B_{1}, \cdots, B_{n}\right) \in$ \mathbb{R}^{n}.

The Riemannian connection [2, Chapter 5, pages 65-76].
Let $M \subset \mathbb{R}^{n}$ be an embedded submanifold. Denote by π^{t} the orthogonal projection $T_{p} \mathbb{R}^{n} \rightarrow T_{p} M$ and $\bar{\nabla}$ the Euclidean connection on \mathbb{R}^{n}.
9.3. Lemma. Let $M \subset \mathbb{R}^{n}$ be an embedded submanifold. The operator ∇^{t} : $\mathscr{X}(M) \times \mathscr{X}(M) \rightarrow \mathscr{X}(M)$ given by $\nabla_{X}^{t} Y:=\pi^{t} \nabla_{X}(Y)$ is a connection on M. This connection is called the tangential connection and satisfies

$$
\left\langle\nabla_{X}^{t} Y, Z\right\rangle+\left\langle Y, \nabla_{X}^{t} Z\right\rangle=\nabla_{X}^{t}\langle Y, Z\rangle,
$$

with respect to the induced Riemannian metric.
Using the deep Nash embedding theorem, which states that any Riemannian manifold can be relaized as an embedded submanifold of some \mathbb{R}^{n} with the induced metric, one could study any manifold as an embedded submanifold. This sheds no light on intrinsic properties. It turns out that the above connection can be characterized by two properties that relate it to the Riemannian metric.
9.4. Definition. Let (M, g) be a Riemannian manifold and ∇ a linear connection on M. The connection ∇ is compatible with the Riemannian metric if we have

$$
\left\langle\nabla_{X} Y, Z\right\rangle+\left\langle Y, \nabla_{X} Z\right\rangle=\nabla_{X}\langle Y, Z\rangle,
$$

for all $X, Y, Z \in \mathscr{M}$.
9.5. Proposition. For a linear connection on (M, g) the following are equivalent:

- ∇ is compatible with g;
- $\nabla g=0$;
- for any curve γ and vector fields V, W along γ we have

$$
\frac{d}{d t}\langle V, W\rangle=\left\langle V, D_{t} W\right\rangle+\left\langle D_{t} V, W\right\rangle
$$

- if V, W are parallel along γ then $D_{t}\langle V, W\rangle$ is constant
- parallel translation $P_{t_{0} t_{1}}: T_{\gamma\left(t_{0}\right)} \rightarrow T_{\gamma\left(t_{1}\right)}$ is an isometry.

The second intrinsic property of connections involves the torsion tensor

$$
\tau(X, Y):=\nabla_{X} Y-\nabla_{Y} X-[X, Y] .
$$

We say that ∇ is torsion free if $\tau(X, Y)=0$ for all $X, Y \in \mathscr{X}(M)$.
9.6. Theorem. Let (M, g) be a Riemannian manifold. There exists a unique linear connection ∇ on M that is compatible with g and torsion free.

The above connection is called the Riemannian connection. Its Christoffel symbols are given by the explicit formula

$$
\Gamma_{i j}^{k}=\sum_{\ell} \frac{1}{2}\left(g^{-1}\right)_{k \ell}\left(\frac{\partial}{\partial x_{i}} g_{j \ell}+\frac{\partial}{\partial x_{j}} g_{i \ell}-\frac{\partial}{\partial x_{\ell}} g_{i j}\right)
$$

9.7. Lemma. Any Riemannian geodesic is a constant speed curve.
9.8. Proposition. Suppose that $\varphi:(M, g) \rightarrow(\tilde{M}, \tilde{g})$ is an isometry and $\nabla, \tilde{\nabla}$ the respective Riemannian connections. Then

- φ intertwines the Riemannian connections:

$$
\left.\varphi_{*}\left(\nabla_{X} Y\right)\right)=\tilde{\nabla}_{\varphi_{*} X} \varphi_{*} Y
$$

- If V is a vector field along a curve γ in M then

$$
\varphi_{*} D_{t} V=\tilde{D}_{t} \varphi_{*} V
$$

- φ takes geodescis to geodesics, that is, if γ_{V} is the geodesic through p with initial velocity V then $\varphi \circ \gamma_{V}$ is the geodesic through $\varphi(p)$ with initial velocity $\varphi_{*} V$.

10. Week 10, lectures 16 and 17, see the notes by Kastenholz

11. Week 11

11.1. Lectures 18-19, Tue 19-12-2017, Wed 20-12-2017. The exponential map, [2, Chapter 5, pages 72-76].

The exponential map is a map defined on an open subset \mathscr{E} of the tangent bundle into M. Its restriction to to specific tangent spaces gives a diffeomorphism exp : $\mathscr{E}_{p} \rightarrow M$ onto its image. To be precise, set

$$
\mathscr{E}:=\left\{V \in T M: \gamma_{V} \text { is defined on an interval containing }[0,1]\right\},
$$

and define $\exp : \mathscr{E} \rightarrow M$ by $V \mapsto \gamma_{V}(1)$. Furthermore, for $p \in M$ define $\mathscr{E}_{p}:=T_{p} M \cap \mathscr{E}$ and $\exp _{p}: \mathscr{E}_{p} \rightarrow M$ the restriction of \exp to \mathscr{E}_{p}. Recall that a subset X of a vector space is star-shaped with respect to $x \in X$ if for all $y \in X$ the line segment connecting x to y lies entirely within X.
11.1. Proposition (Properties of the exponential map). For a Riemannian manifold (M, g) we have that

- $\mathscr{E} \subset T M$ is open, contains the zero section, and each \mathscr{E}_{p} is starshaped with respect to 0 ;
- for each $V \in T M$ the geodesic γ_{V} is given by $\gamma_{V}(t)=\exp (t V)$ whenever either side is defined;
- the exponential map is smooth.

The proof of the above statement relies on
11.2. Lemma (Rescaling lemma). For any $V \in T M$ and $c, t \in \mathbb{R}$ it holds that

$$
\gamma_{c V}(t)=\gamma_{V}(c t)
$$

whenever either side is defined.
The exponential map is natural with respect to Riemannian isometries.
Normal neighborhood and normal coordinates [2, Section 5, pages 7681].
11.3. Lemma. For any $p \in M$ there is a neighborhood V of $0 \in T_{p} M$ and a neighborhood U of p such that $\exp : U \rightarrow V$ is a diffeomorphism.
11.4. Definition. A neighborhood U of $p \in M$ is called a normal neighborhood if U is the image of a star-shaped (with respect to 0) open set $V \subset T_{p} M$ under $\exp _{p}$. If $\exp _{p}$ is a diffeomorphism on the ball $B_{g}(0, \varepsilon)$, then $\exp _{p}\left(B_{g}(0, \varepsilon)\right)$ is a geodesic ball in M. If the closed ball $\overline{B_{g}(0, \varepsilon)}$ is contained in an open set V on which $\exp _{p}$ is a diffeomorphism, then $\exp _{p}\left(\overline{B_{g}(0, \varepsilon)}\right)$ is called a closed geodesic ball and $\exp _{p}\left(\partial \overline{B_{g}(0, \varepsilon)}\right)$ is a geodesic sphere.

Any orthonormal basis E_{i} of $T_{p} M$ gives a diffeomorphism $E: \mathbb{R}^{n} \rightarrow$ $T_{p} M$ by $\left(x_{i}\right) \mapsto \sum_{i} x_{i} E_{i}$ and so gives rise to a coordinate chart by considering $E^{-1} \circ \exp _{p}^{-1}: U \rightarrow \mathbb{R}^{n}$. Such charts are called normal coordinates at p and they are in 1-1 correspondence with with orthonormal bases of $T_{p} M$.

In a normal coordinate chart at p we define the radial distance function by

$$
r(x):=\left(\sum x_{i}^{2}\right)^{\frac{1}{2}}
$$

and the unit radial vector field by

$$
\frac{\partial}{\partial r}:=\sum_{i} \frac{x_{i}}{r(x)} \frac{\partial}{\partial x_{i}} .
$$

We emphasize that these objects depend on the normal coordinate chart at hand.
11.5. Proposition. Let $\left(U,\left(x_{i}\right)\right.$ be a normal coordinate chart at p.

- for any $V=\sum_{i} V_{i} \frac{\partial}{\partial x_{i}}$ the geodesic γ_{V} starting at p is given in coordinates by

$$
\gamma_{V}(t)=\left(t V_{1}, \cdots, t V_{n}\right)
$$

as long as γ_{V} stays within U.

- the coordinates of p are $(0, \cdots, 0)$;
- the components of the metric at p are $g_{i j}(p)=\delta_{i j}$;
- any Euclidean ball $\{x: r(x)<\varepsilon\}$ contained in U is a geodesic ball;
- for any $q \in U \backslash p$ the radial vector field $\frac{\partial}{\partial r}$ gives the velocity vector of the unit speed geodesic from p to q and thus has unit length with respect to g;
- the first partial derivatives of $g_{i j}$ and the Christoffel symbols vanish at p.

An open set $W \subset M$ is called a uniformly normal neighborhood of $p \in W$ if there exists $\delta>0$ such that for every $q \in W$ the geodesic ball of radius δ around q contains W.
11.6. Lemma. For any $p \in M$ and any open neighborhood U of p there exists a uniformly normal neighborhood W of p contained in U.

12. Week 12

12.1. Lecture 20, Tue 9-1-2018. Material discussed can be found in [2, Chapter 6, pages 96-98 and 102-106].
12.1. Definition. A piecwise smooth curve $\gamma:[a, b] \rightarrow M$ is minimizing if for any curve $\tilde{\gamma}$ between $p=\gamma(a)$ and $q=\gamma(b)$ we have $L(\gamma) \leq L(\tilde{\gamma})$.

If γ is minimizing it must hold that $L(\gamma)=d_{g}(p, q)$.
12.2. Definition. An admissible family of curves is a map $\Gamma:(-\varepsilon, \varepsilon) \times$ $[a, b] \rightarrow M$ for which there is a finite subdivision $a=a_{0}<a_{1}<\cdots<$ $a_{k}=b$ such that $\Gamma:(-\varepsilon, \varepsilon) \times\left[a_{i-1}, a_{i}\right] \rightarrow M$ is smooth and for all $s \in$ $(-\varepsilon, \varepsilon) \Gamma_{s}(t):=\Gamma(s, t)$ is an admissible curve.

The curves Γ_{s} are called the main curves. The transverse curves are $\Gamma^{t}(s):=\Gamma(s, t)$ for t fixed and are smooth.

A vector field along an admissible curve Γ is a map $V:(-\varepsilon, \varepsilon) \times[a, b] \rightarrow$ $T M$ such that $V_{(s, t)} \in T_{\Gamma(s, t)} M$. Moreover there should a (possibly finer) subdivision $a=b_{0}<b_{1}<\cdots<b_{\ell}=b$ for which $V_{(-\varepsilon, \varepsilon) \times\left[b_{i-1}, b_{i}\right]}$ is smooth.

The most important examples of such vector fields are

$$
\partial_{t} \Gamma(s, t):=\frac{d}{d t} \Gamma_{s}(t), \quad \partial_{s} \Gamma(s, t):=\frac{d}{d s} \Gamma^{t}(s)
$$

The vector field $\partial_{s} \Gamma$ is continuous, but $\partial_{t} \Gamma$ is in general not continuous at the points a_{i}. For a vector field V along Γ we denote by $D_{t} V$ the derivative of V along Γ_{s} and by $D_{s} V$ the derivative of V along Γ^{t}.
12.3. Lemma (Symmetry Lemma). Let $\Gamma:(-\varepsilon, \varepsilon) \times[a, b] \rightarrow M$ be an admissible family of curves. On each rectangle $(-\varepsilon, \varepsilon) \times\left[a_{i-1}, a_{i}\right]$ where Γ is smooth it holds that $D_{s} \partial_{t} \Gamma=D_{t} \partial_{s} \Gamma$.
12.4. Theorem (Gauss Lemma). Let (M, g) be a Riemannian manifold and U be a geodesic ball centered at $p \in M$. The unit radial vector field $\frac{\partial}{\partial r}$ is g -orthogonal to the geodesic spheres in U.
12.5. Corollary. Let $\left(x_{i}\right)$ be normal coordinates on a geodesic ball centered at p and $r(x)$ the radial distance function. Then $\operatorname{grad} r=\frac{\partial}{\partial r}$ on $U \backslash p$.
12.6. Proposition. Suppose that q is contained in a geodesic ball around p. Then (up to reparametrization) the radial geodesic from p to q is the unique minimizing curve from p to q.
12.7. Corollary. Within a geodesic ball around p we have $r(x)=d_{g}(p, x)$.
12.2. Lecture 21, Wed 10-1-2018. Material discussed can be found in [2, Chapter 6, pages 107-111].
12.8. Definition. A piecewise smooth curve $\gamma: I \rightarrow M$ is locally minimizing if every $t_{0} \in I$ has an open neighborhood U such that $\gamma_{\mid U}$ is minimizing between each pair of points in $\gamma(U)$.
12.9. Theorem. Every Riemannian geodesic is locally mimimizing.
12.10. Theorem. Every minimizing curve is a geodesic.
12.11. Definition. A Riemannian manifold (M, g) is geodesically complete if every maximal geodesic is defined for all $t \in \mathbb{R}$.
12.12. Example. An open ball in \mathbb{R}^{n} is not geodesically complete.

Note that geodesic completeness implies that the exponential map is defined on all of $T_{p} M$ for all $p \in M$.
12.13. Theorem (Hopf-Rinow). A connected Riemannian manifold without boundary is geodesically complete if and only if it is complete as a metric space.

In fact our proof showed that if $\exp _{p}$ is defined on all of $T_{p} M$ for some $p \in M$, then M is complete.

13. Week 13

13.1. Lecture 22, Tue 16-1-2018. [2, Chapter 7].

13.1. Definition. The curvature endomorphism of the Riemannian manifold (M, g) is the map

$$
R: \mathscr{X}(M) \times \mathscr{X}(M) \times \mathscr{X}(M) \rightarrow \mathscr{X}(M),
$$

defined by

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z .
$$

R is a $(3,1)$ tensor field and admits the local expression

$$
R=\sum_{i, j, k, \ell} R_{i j k}^{\ell} d x_{i} \otimes d x_{j} \otimes d x_{k} \otimes \partial_{\ell} .
$$

13.2. Definition. The Riemann curvature tensor Rm is the covariant 4tensor field

$$
R m(X, Y, Z, W)=\langle R(X, Y) Z, W\rangle_{g}
$$

Locally this is written as

$$
R m=\sum_{i, j, k, \ell} R_{i j k \ell} d x_{i} \otimes d x_{j} \otimes d x_{k} \otimes d x_{\ell},
$$

with

$$
R_{i j k \ell}=\sum g_{\ell m} R_{i j k}^{m} .
$$

13.3. Lemma. The curvature endomorphism and Riemann tensor are local isometry invariants of (M, g). That is if $\phi: M \rightarrow \tilde{M})$ is a local isometry then

$$
\phi^{*}(\widetilde{R m})=R m, \quad \tilde{R}\left(\phi_{*} X, \phi_{*} Y\right) \phi_{*} Z=\phi_{*}(R(X, Y) Z) .
$$

13.4. Definition. A Riemannian manifold is flat if it is locally isometric to \mathbb{R}^{n} with its Euclidean metric.

It is clear that for flat manifolds, $R m=0$. The converse is true as well. In order to prove this we need some facts about vector fields. A point $p \in M$ is a regular point of the vector field V if $V_{p} \neq 0$. The following canonical form result is [1, Theorem 9.22].
13.5. Theorem. Let V be a smooth vector field on M and p a regular point of V. There there exists a neighborhood of p and coordinates $\left(x_{i}\right)$ such that $V=\frac{\partial}{\partial x_{1}}$.
13.6. Definition. Let $D \subset M \times \mathbb{R}$ and $\theta: D \rightarrow M$ be a smooth flow. We say that the vector field W is invariant under θ if

$$
\left(d \theta_{t}\right)_{p}\left(W_{p}\right)=W_{\theta_{t}(p)},
$$

for all $(t, p) \in D$.
We define the Lie derivative of W with respect to V as

$$
\begin{aligned}
\left(\mathscr{L}_{V} W\right)_{p}: & =\left.\frac{d}{d t}\right|_{t=0} d\left(\theta_{-t}^{V}\right)_{\theta_{t}^{V}(p)}\left(W_{\theta_{t}^{V}(p)}\right) \\
& =\lim _{t \rightarrow 0} \frac{d\left(\theta_{-t}^{V}\right)_{\theta_{t}^{V}(p)}\left(W_{\theta_{t}^{V}(p)}\right)-W_{p}}{t} .
\end{aligned}
$$

Here θ^{V} denotes the flow of V.
13.7. Lemma. $\mathscr{L}_{V}(W)_{p}$ exists for all $p \in M$ and defines a smooth vector field.
13.8. Theorem. $\mathscr{L}_{V}(W)=[V, W]$.

13.2. Lecture 23, Wed 17-1-2018.

13.9. Theorem. For vector fields $V, W \in \mathscr{X}(M)$ the following are equivalent:
(1) $[V, W]=0$;
(2) V is invariant under the flow of W;
(3) W is invariant under the flow of V.

Two flows θ and ψ are said to commute if whenever one of the expressions

$$
\theta_{t} \circ \psi_{s}(p), \quad \psi_{s} \circ \theta_{t}(p),
$$

is defined then both are defined and they are equal.
13.10. Theorem. Two vector fields V, W commute if and only if their flows commute.

We now provide a criterion for when a given frame can be regarded as a coordinate frame.
13.11. Theorem. Let M be an n-dimensional manifold and $\left(E_{1}, \cdots, E_{n}\right)$ a local frame over an open set W such that $\left[E_{i}, E_{j}\right]=0$ on W. Then for each $p \in W$ there exists a smooth chart $\left(U,\left(x_{i}\right)\right)$ around p such that $E_{i}=\frac{\partial}{\partial x_{i}}$.

The above results are needed to proof the following characterization of flat manifolds.
13.12. Theorem. A Riemannian manifold is flat if and only if $R m=0$.

14. Week 14

14.1. Lecture 24, Tue 23-1-2018. We collect some symmetries of the Riemann tensor $R m$ which can be found [2, Chapter 7].
14.1. Proposition. The identities
(1) $\operatorname{Rm}(W, X, Y, Z)=-\operatorname{Rm}(X, W, Y, Z)$
(2) $R m(W, X, Y, Z)=-R m(W, X, Z, Y)$
(3) $\operatorname{Rm}(W, X, Y, Z)=\operatorname{Rm}(Y, Z, W, X)$
(4) $\operatorname{Rm}(W, X, Y, Z)+\operatorname{Rm}(X, Y, W, Z)+\operatorname{Rm}(Y, W, X, Z)=0$

The last identity is known as the first Bianchi identity.
14.2. Proposition (Second Bianchi identity).

$$
\nabla_{W} R m(X, Y, Z, V)+\nabla_{Z} R m(X, Y, V, W)+\nabla_{V} R m(X, Y, W, Z)=0 .
$$

We now consider some simpler tensors derived from the Riemann tensor.
14.3. Definition. The Ricci tensor is the covariant 2-tensor field

$$
R c:(X, Y) \mapsto \operatorname{Tr}_{g}(Z \mapsto R(Z, Y) X)
$$

In coordinates

$$
R c=\sum_{i, j} R_{i j} d x_{i} \otimes d x_{j}=\sum_{i, j, k, \ell, m} g^{k m} R_{k i j m} d x_{i} \otimes d x_{j} .
$$

The scalar curvature is the function $S:=\operatorname{Tr}_{g} R c=\sum g^{i j} R_{i j}$, where the last expression is a local one. The following result is [2, Lemma 8.7]
14.4. Proposition. Let (M, g) be a 2-dimensional manifold. Then

$$
\begin{aligned}
\operatorname{Rm}(X, Y, Z, W) & =\frac{1}{2} S(\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle) \\
R c(X, Y) & =\frac{1}{2} S\langle X, Y\rangle \\
S & =2 \frac{R m\left(E_{1}, E_{2}, E_{2}, E_{1}\right)}{\left|E_{1}\right|^{2}\left|E_{2}\right|^{2}-\left\langle E_{1}, E_{2}\right\rangle^{2}},
\end{aligned}
$$

where in the last expression, E_{1}, E_{2} is any basis of $T_{p} M$.
14.2. Lecture 25, Wed 24-1-2018. The discussion of the Gauss-Bonnet theorem is to be found in [2, Chapter 9].

Suppose that $\gamma:[a, b] \rightarrow \mathbb{R}^{2}$ is a smooth unit speed closed curve. The tangent angle function is the map $\theta:[a, b] \rightarrow \mathbb{R}$ satisfying $\theta(a) \in(-\pi, \pi]$ and $\gamma^{\prime}(t)=(\cos \theta(t), \sin \theta(t))$. This map is smooth as it is the lift of γ to the universal cover \mathbb{R} of the unit circle.
14.5. Definition. If $\gamma:[a, b] \rightarrow \mathbb{R}^{2}$ is a unit speed smooth closed curve satisfying $\gamma^{\prime}(a)=\gamma^{\prime}(b)$ we define its rotation angle to be $\operatorname{Rot}(\gamma):=\theta(b)-$ $\theta(a)$.

It is clear that $\operatorname{Rot}(\gamma)=2 k \pi$ for some integer k. We now extend the definition of rotation angle to piecewise smooth closed curves. Let

$$
a=a_{0}<a_{1}<\cdots<a_{k}=b,
$$

be the subdivision for which $\left.\gamma\right|_{\left[a_{i-1}, a_{i}\right]}$ is smooth. We call the points $\gamma\left(a_{i}\right)$ vertices and the segments $\left.\gamma\right|_{\left[a_{i-1}, a_{i}\right]}$ edges. Note that the limits

$$
\gamma^{\prime}\left(a_{i}^{+}\right):=\lim _{t \downarrow a_{i}} \gamma^{\prime}(t), \quad \gamma\left(a_{i}^{-}\right)=\lim _{t \uparrow a_{i}} \gamma^{\prime}(t),
$$

both exist. We define the exterior angle ε_{i} between $\gamma^{\prime}\left(a_{i}^{+}\right)$and $\gamma^{\prime}\left(a_{i}^{-}\right)$to be chosen in $[-\pi, \pi]$ with a positive sign if $\left(\gamma^{\prime}\left(a_{i}^{-}\right), \gamma^{\prime}\left(a_{i}^{+}\right)\right)$is an oriented basis of \mathbb{R}^{2} and a negative sign otherwise. If $\gamma\left(a_{i}^{+}\right)=-\gamma\left(a_{i}^{-}\right)$there is no way to choose between π and $-\pi$ and we leave this case undefined.
14.6. Definition. A curved polygon in \mathbb{R}^{2} is a simple closed piecewise smooth unit speed curve $\gamma:[a, b] \rightarrow \mathbb{R}^{2}$ such that

- None of the exterior angles equals $\pm \pi$;
- γ is the boundary of a bounded open set $\Omega \subset \mathbb{R}^{2}$.

A curved polygon γ is positively oriented if γ^{\prime} is compatible with the Stokes orientation of $\partial \Omega$.

The tangent angle function can now be defined as follows: choose $\theta(a) \in$ $(-\pi, \pi]$ and $\theta(t)$ as before for $t \in\left(a, a_{1}\right)$. Then set

$$
\theta\left(a_{1}\right):=\lim _{t \uparrow a_{1}} \theta(t)+\varepsilon_{1},
$$

and proceed as before for $t \in\left(a_{1}, a_{2}\right)$. Inductively we then set

$$
\theta\left(a_{i}\right):=\lim _{t \uparrow a_{i}} \theta(t)+\varepsilon_{i} .
$$

We so obtain the tangent angle function $\theta:[a, b] \rightarrow \mathbb{R}^{2}$ and define the rotation angle of the curved polygon γ as $\operatorname{Rot}(\gamma)=\theta(b)-\theta(a)$.
14.7. Theorem (Hopf). If γ is a positively oriented curved polygon in \mathbb{R}^{2} then $\operatorname{Rot}(\gamma)=2 \pi$.
14.8. Definition. Let (M, g) be a Riemannian 2-manifold. A curved polygon in M is a piecewise smooth unit speed curve $\gamma:[a, b] \rightarrow M$ that is the boundary of an open set Ω with compact closure. Moreover we require that γ is contained in a single chart (U, φ) such that $\varphi \circ \gamma$ is a curved polygon in \mathbb{R}^{2}.

Becuase of the above definition, to define the tangent and exterior angles of a curved polygon in a 2-manifold, it is enough to do so for curved polygons contained in an open set of \mathbb{R}^{2} with an arbitrary metric g. Using the Stokes orientation we define the exterior angle $\varepsilon_{i} \in[-\pi, \pi]$ at a_{i} by

$$
\cos \varepsilon_{i}:=\left\langle\gamma\left(a_{i}^{+}\right), \gamma\left(a_{i}^{-}\right)\right\rangle_{g} .
$$

The tangent angle θ at smooth smooth points can be defined relative to $\frac{\partial}{\partial x_{1}}$, so this definition may depend on the chart chosen. As before we obtain $\theta:[a, b] \rightarrow \mathbb{R}$ and set $\operatorname{Rot}_{g}(\gamma):=\theta(b)-\theta(a)$.
14.9. Lemma. If γ is a positively oriented polygon in M then $\operatorname{Rot}_{g}(\gamma)=$ 2π.

We denote by $N(t)$ the normal vector field to γ at smooth points that makes $\left(\gamma^{\prime}(t), N(t)\right)$ into an oriented basis. The signed curvature at smooth points is defined as

$$
\kappa_{N}(t):=\left\langle D_{t} \gamma^{\prime}(t), N(t)\right\rangle_{g} .
$$

Since $D_{t} \gamma^{\prime}(t)$ is orthogonal to $\gamma^{\prime}(t)$ we obtain that $D_{t} \gamma^{\prime}(t)=\kappa_{N}(t) N(t)$.
14.10. Theorem. Let (M, g) be an oriented Riemannian 2-manifold and γ a positively oriented curved polygon in M. Then

$$
\frac{1}{2} \int_{M} S d V_{g}+\int_{\gamma} \kappa_{N} d s+\sum_{i=1}^{k} \varepsilon_{i}=2 \pi
$$

14.11. Definition. Let (M, g) be a Riemannian 2-manifold. A triangulation of M is a finite collection $\mathscr{T}=\left\{T_{i}\right\}$ of curved triangles T_{i} such that

- $T_{i}=\partial \Omega_{i}$ for precompact open sets Ω_{i};
- $\bigcup_{i} \overline{\Omega_{i}}=M$;
- the intersections $T_{i} \cap T_{j}$ consist of at most a single vertex or a single edge.
Every smooth compact surface admits a triangulation and if N_{v} is the number of vertices, N_{e} the number of edges and N_{f} the number of faces (all counted once, that is without multiplicities) in the triangulation the the Euler characteristic

$$
\chi(M, \mathscr{T})=N_{v}-N_{e}+N_{f}
$$

is independent of the triangulation and is in fact a topological invariant of M.
14.12. Theorem (Gauss-Bonnet). Let (M, g) be a compact oriented Riemannian 2-manifold. Then

$$
\int_{M} S d V_{g}=4 \pi \chi(M)
$$

References

[1] John. M. Lee, Introduction to smooth manifolds, 2nd edition, Springer 2013.
[2] John. M. Lee, Riemannian manifolds - An introduction to curvature, Springer.

