
GLOBAL ANALYSIS I - WS 2017/2018

DR. B. MESLAND

1. Week 1

1.1. Lecture 1 - Tue 10-10-2017. Material covered:

[1, Chapter 1 "Smooth manifolds"] and
[1, Chapter 2 "Smooth maps" up to page 40].

Review of defintions of topological manifold, smooth compatibility of charts,
smooth manifold, smooth atlas, smooth structure, smooth map, diffeomor-
phism. Example: the sphere Sn ⊂ Rn+1.

1.2. Lecture 2 - Wed 11-10-2017. Material covered:

[1, Chapter 2 "Smooth maps" section "Bump functions and partitions
of unity", pages 40-47]

Important definitions and results:

1.1. Definition. A collection {Uα}α∈A of a topological space M is locally
finite if every p ∈ M has a neighborhood V such that V ∩ Uα is nonempty
for only finitely many α.

1.2. Lemma. Let U = {Uα}α∈A be an open cover for which each Uα is a
precompact set. Then U is locally finite if and only if for each α there are
at most finitely many β for which Uα ∩ Uβ is nonempty.

Proof. Is one of this weeks exercises. As noted during the lecture, precom-
pactness is necessary for the equivalence to hold. �

1.3. Lemma. Every topological manifold admits a locally finite cover by
precompact open sets.

1.4. Definition. Let M a manifold and W = {Wi}i∈I an open cover. The
cover W is regular if

(1) the cover W is countable and locally finite;
(2) for each i there is a diffeomorphism ψi : Wi → B(0, 3) ⊂ Rn;
(3) the collection Ui := ψ−1

i (B(0, 1)) still covers M .
1
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1.5. Proposition. Let M be a smooth manifold. Then every open cover
admits a regular refinement. In particular M is paracompact.

1.6. Definition. Let X = {Xα} be an open cover of the smooth manifold
M . A partition of unity subordinate toX is a collection of smooth functions
φα : M → R, α ∈ A such that

• 0 ≤ φα ≤ 1;
• suppφα ⊂ Uα;
• the set of supports {suppφα} is locally finite;
• for each x ∈M we have

∑
α∈A φα(x) = 1.

Note that the last sum is finite by the condition preceding it.

1.7. Theorem. Let M be a smooth manifold and X := {Xα}α∈A an open
cover. Then there exists a partition of unity φα subordinate to X .

An important corollary this the above theorem is

1.8. Lemma. Let M be a smooth manifold, and suppose f is a smooth func-
tion defined on a closed subset A ⊂ M . For any open set U containing
A, there exists a smooth function f̃ ∈ C∞(M) such that f̃ |A = f and
suppf ⊂ U .

2. Week 2

2.1. Lecture 3 - Tue 17-10-2017. Material covered:

[1, Chapter 3 "The tangent bundle", pages 50-60]

2.1. Definition. A map v : C∞(M) → R is called a derivation at p ∈ M
if it satisfies the Leibniz rule

v(fg) = f(p)v(g) + v(f)g(p),

for all f, g ∈ C∞(M). The tangent space at p is defined to be

Tp(M) := {v : C∞(M)→ R : v a derivation at p}.
For F : M → N a smooth map we define the differential of F at p to the
map

(dF )p : Tp(M)→ TF (p)(N),

defined by the rule (dF )p(v)(f) := v(f ◦ F ) where v ∈ Tp(M) and f ∈
C∞(N).

2.2. Proposition (Properties of the differential). Let M,N,P be smooth
manifolds and F : M → N , G : N → P be smooth maps. For p ∈ M we
have

(1) (dF )p : Tp(M)→ Tp(N) is linear;
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(2) (dG)F (p) ◦ (dF )p = (d(G ◦ F ))p : TpM → TG◦F (p)P ;
(3) (dIdM)p = IdTp(M) : TpM → Tp(M);
(4) if F is a diffeomorphism then (dF )p : Tp(M) → Tp(N) is an iso-

morphism with inverse (dF )−1
p = (dF−1)p.

2.3. Proposition (Locality of the differential). Let M be a smooth manifold
with or without boundary, p ∈ M and v ∈ Tp(M). Suppose that f, g ∈
C∞(M) are such that there is a neighborhood U of p for which f |U = g|U .
Then v(f) = v(g).

2.4. Proposition (Open submanifold). Let M be a smooth manifold with
or without boundary, U ⊂ M an open subset and i : U → M the inclu-
sion map. For any p ∈ U the differential (di)p : Tp(U) → Tp(M) is an
isomorphism.

2.5. Proposition. Let M be a smooth n-dimensional manifold with or with-
out boundary. Then for every p ∈ M the tangent space Tp(M) is an n-
dimensional vector space.

An abstract vector space V carries a canonical topology and smooth
structure making in an n-dimensional manifold. Thus the tangent space
TaV is isomorphic to V . The isomorphism is canonical and of the form

V → TaV, v 7→ Dv|a, Dv|af =
d

dt
|t=0f(a+ tv),

with f ∈ C∞(V ). If L : V → W is a linear map, the above isomorphism
satisfies the compatibilty

(dL)a(Dv|a)f = DLv|Laf,

for f ∈ C∞(V ).

2.6. Definition. The tangent bundle of the manifold M is the set

TM :=
⊔
p∈M

Tp(M).

The projection map π : TM →M is defined by π(p, v) := p.

2.2. Lecture 4 - Wed 18-10-2017. Material covered:

[1, Chapter 3 "The tangent bundle" pages 60-75]

First we covered a discussion of explicit coordinate expressions for bases
of tangent spaces, differentials of smooth maps and change of coordinate
maps. This can be found on pages 60-65 of [1].
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2.7. Proposition. For an n-dimensional manifold M , the tangent bundle
TM carries a natural topology and smooth structure making it into a 2n-
dimensional manifold and the projection map π : TM →M is smooth.

2.8. Definition. The global differential of a smooth map F : M → N is
the map

dF : TM → TN, dF (p, v) := (F (p), (dF )pv).

2.9. Proposition. The global differential of a smooth map F : M → N is
a smooth map dF : TM → TN between the tangent bundles.

As the pointwise differentials, the global differential satisfies

d(F ◦G) = dF ◦ dG, dIdM = IdTM

and if F is a diffeomorphism then so is dF .

[1, Chapter 10 "Vector bundles" pages 249-252]

2.10. Definition (Vector bundles). Let M be a topological space. A real
vector bundle of rank k over M is a topological space E together with a
continuous map π : E →M satisfying

(1) for each p ∈ M the fiber Ep := π−1(p) is a k dimensional real
vector space;

(2) for every p ∈ M there exists a neighborhood U of p and a homeo-
morphism

Φ : π−1(U)→ U × Rk

with the property that πU ◦ Φ = π, where πU : U × Rk → U is the
coordinate projection, and for every p the restriction

Φ : π−1(p)→ {p} × Rk,

is a vector space isomorphism.
In case M,E are manifolds and π,Φ are smooth, then π : E → M is a
smooth vector bundle.

We often refer to E as the total space M as the base and π as the bun-
dle projection. The maps φ are called local trivializations. The pertinent
example is the tangent bundle TM →M .

2.11. Lemma. Let π : E →M be a smooth vector bundle and

Φ : π−1(U)→ U × Rk, Ψ : π−1(U)→ U × Rk,

two local trivializations. There exists a smooth map

τ : U ∩ V → GL(k,R),
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such that
Φ ◦Ψ−1(p, v) = (p, τ(p) · v).

Here τ(p) · v denotes the usual matrix multiplication.

3. Week 3

3.1. Lecture 5, Tue 24-10-2017.
[1, Chapter 10 "Vector bundles" pages 252-255]

3.1. Lemma (Vector bundle chart lemma). Let M be a smooth manifold
(with or without boundary). Suppose that we are given

(1) for each p ∈M a vector space Ep;
(2) an open cover {Uα}α∈A of M ;
(3) a fixed k-dimensional vector space V and for each α ∈ A a bijec-

tion
Φα :

⊔
p∈Uα

Ep → Uα × V,

such that the restriction Φα : Ep → V is a vector space isomor-
phism;

(4) for each pair (α, β) with Uα ∩ Uβ 6= ∅ a smooth map

ταβ : Uα ∩ Uβ → GL(V ),

such that the map

Φα ◦ Φ−1
β : Uα ∩ Uβ × V → Uα ∩ Uβ × V,

is given by (u, v) 7→ (u, ταβ(u) · v).
Then E :=

⊔
p∈M Ep admits a unique topology and smooth structure mak-

ing it into a manifold with or without boundary and such that

π : E →M, (p, v) 7→ p

is a rank k real vector bundle with local trivializations {(Uα,Φα)}α∈A.

[1, Pages 276-277]

3.2. Example (The cotangent bundle). Let Ep := T ∗p (M)(Tp(M))∗ be the
dual of Tp(M) and {(Ui, φi)}i∈I a cover of M by coordinate charts. Define

Φi :
⊔
p∈Ui

Ep → Ui × Rn

n∑
i=1

vidxi|p 7→ (p, v1, · · · vn),
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where dxi|p is the basis dual to the basis ∂
∂xi
|p of TpM . If (Uj, ψj) is another

chart with coordinates yj and Ui ∩ Uj 6= ∅ then

φi ◦ φ−1
j (p, v1, · · · , vn) = (p,

∑
j

vj
∂yj
∂x1

(p), · · · ,
∑
j

vj
∂yj
∂xn

(p)),

which is smooth because Ui and Uj are smoothly compatible. The map

(1) τij : Ui ∩ Uj → GL(n,R), p 7→ (
∂yj
∂xi

(p))ij,

thus satisfies the axioms of the chart lemma. We so obtain the cotangent
bundle T ∗M of M .

3.3. Example (Alternating tensors). The bundle of alternating tensors of
degree k is defined to be

k∧
T ∗M :=

⊔
p∈M

k∧
T ∗pM,

where
∧k T ∗pM is the k-th exterior power of T ∗p (M). To a cover of coordi-

nate charts {(Ui, φi)}i∈I of M we associate the maps

Φi :
⊔
p∈Ui

k∧
T ∗pM → Ui ×

k∧
Rn

∑
J

ωIdxj1 ∧ · · · ∧ dxjk |p 7→ (p,
∑
J

ωJ(p)ej1 ∧ · · · ejk),

where ej is the standard basis of Rn. The transition maps for this bundle are
given by the functions

τ kij : Ui ∩ Uj → GL

(
k∧
Rn

)
,

defined through τ kij(p)(v1 ∧ · · · ∧ vk) := τij(p)v1 ∧ · · · ∧ τij(p)vk, where τij
is as in (1).

[1, Chapter 10, pages 255-261]

3.4. Definition. Let π : E → M be a vector bundle. A global section of E
is a map s : M → E such that π◦s = idM . In case E →M is a topological
vector bundle, we denote by Γ(M,E) the space of continuous sections of
E.
In case E → M is a smooth vector bundle we denote by Γ∞(M,E) the
space of smooth sections of E.
A local section over an open set U ⊂ M is a map s : U → E such that



GLOBAL ANALYSIS I - WS 2017/2018 7

π ◦ s = idU and we adopt the same notational conventions for continuous
and smooth local sections.

3.5. Example. Γ(M,TM) is the space of continuous vector fields on M ;

X (M) := Γ∞(M,TM) is the space of smooth vector fields on M .

For a trivial bundle E := M × Rk we have Γ(M,E) ' C(M,Rk) and
Γ∞(M,E) ' C∞(M,Rk).

3.6. Definition. A smooth covector field or differential 1-form is a smooth
section of the contangent bundle T ∗M .

3.7. Definition. Let E →M be a vector bundle. A k-tuple of local sections
(σi)

k
i=1 over an open U is a local frame over U if for all p ∈ U the vectors

(σi(p))
k
i=1 form a basis for Ep.

3.8. Example (Frames and trivializations). Given a trivialization

Φ : π−1(U)→ U × Rk,

over U and ei the standard basis of Rk the maps σi(u) := Φ−1(u, ei) define
a local frame over U .

3.9. Proposition. Any smooth local frame over U is associated with a local
trivialization as in the previous example.

The trivialization associated with the local frame (σi) is defined by

Φ : π−1(U)→ U × Rk, vp 7→ (p, v1(p), · · · , vk(p)),
where the functions vi are defined by vp =

∑
vi(p)σi(p).

3.10. Corollary. If the bundle E → M admits a frame defined on all of
M then E ' M × Rk and this is identification is continuous or smooth
whenever the σi are continuous or smooth.

3.11. Corollary. Let (V, φ) be a smooth chart for M and (σi) a smooth
local frame over V . Then

φ̃ : π−1(V )→ φ(V )× Rk∑
viσi(p) 7→ (x1(p), · · · , xn(p), v1, · · · , vk),

is a smooth chart for π−1(V ) ⊂ E.

3.12. Proposition. Let π : E → M be a smooth vector bundle, (σi) a
smooth local frame and τ : M → E a section. Then τ is smooth if and only
if the coordinate functions τi : M → R defined by τ(p) =

∑
i τi(p)σi(p)

are smooth.
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3.2. Lecture 6, Wed 25-10-2017. A vector fieldX ∈X (M) associates to
a smooth function on M a new function Xf on M via (Xf)(p) := Xp(f),
since Xp ∈ Tp(M) is a derivation at p.

[1, Chapter 8, pages 180-181 and 185-186]

3.13. Proposition (Smoothness criterion for vector fields). Let M be a
smooth manifold and X : M → TM a vector field. The following are
equivalent:

(1) X is smooth;
(2) for every f ∈ C∞(M) the function Xf is smooth;
(3) for every open set U ⊂ M and f ∈ C∞(U) the function Xf is

smooth on U .

We thus have that a smooth vector field X induces a map

X : C∞(M)→ C∞(M)

(Xf)(p) := Xpf,

and this map is a derivation, that is, it satisfies the Leibniz rule X(fg) =
(Xf)g + f(Xg). The converse is true as well.

3.14. Proposition. Let D : C∞(M) → C∞(M) be a derivation. Then
there is a vector field X : M → TM such that Xf = Df .

The Lie bracket of vector fields is the map

X (M)×X (M)→X (M), (X, Y ) 7→ [X, Y ],

where [X, Y ] is defined by its action on functions

[X, Y ]f = X(Y f)− Y (Xf).

It is straightforward to check that [X, Y ] is a derivation and thus defines a
vector field.
[1, Chapter 11, pages 278-282]

3.15. Proposition (Smoothness of covector fields). Let M a smooth mani-
fold with or without boundary and ω : M → T ∗M a 1-form. The following
are equivalent:

(1) ω is smooth;
(2) in every chart the component functions with respect to the local

frame dxi are smooth;
(3) every point of M is contained in some chart for which the compo-

nent functions with respect to the local frame dxi are smooth;
(4) for every vector field X : M → TM the function ω(X) is smooth;
(5) for every open set U ⊂ M and vector field X : U → TM , the

function ω(X) is smooth in U .



GLOBAL ANALYSIS I - WS 2017/2018 9

3.16. Definition (The differential of a function). Let f ∈ C∞(M) and vp ∈
Tp(M). We define the differential of f at p to be the covector

(df)p(vp) := vp(f).

3.17. Proposition. The differential of a smooth function is a smooth covec-
tor field.

[1, Chapter 14, pages 259-372]

Pages 249-259 contain a review multilinear algebra on vector spaces. We
did not review this material in the lecture but it is recommended reading.

3.18. Definition. A differential k-form is a section of the bundle
∧k T ∗M .

We introduce the notation

Ωk(M) := Γ∞(M,
k∧
T ∗M), Ω∗(M) :=

dimM⊕
k=0

Ωk(M).

The wedge product of differential forms is defined as follows:
For ω ∈ Ωk(M) and η ∈ Ω`(M) and vector fields X1, · · · , Xn+k we

define

ω∧η(X1, · · ·X`+k) :=
∑

σ∈S`+k

sgn(σ)ω(Xσ(1), · · · , Xσ(k))η(Xσ(k+1), · · · , Xσ(`+k)).

The summation runs over all permutations σ in the symmetric group S`+k
on `+ k elements. The wedge product satisfies

(λω1 + µω2) ∧ η = λω1 ∧ η + µω2 ∧ η,

ω ∧ η = (−1)k`η ∧ ω.
Given a smooth map F : M → N , the pull back of a form ω ∈ Ωk(N) is
the k-form

(F ∗ω)(X1, · · · , Xk) := ω(dF (X1), · · · , (dF )(Xk)),

or more comapctly F ∗ω := ω ◦ dF . Also recall that for a k-form

ω =
∑

ωIdxi1 ∧ · · · ∧ dxik ,

defined on an open set of Rn is exterior derivative is defined by

dω =
∑

dωI ∧ dxi1 ∧ · · · ∧ dxik .

3.19. Lemma. Suppose F : M → N is a smooth map. Then
(1) F ∗ : Ωk(N)→ Ωk(M) is linear;
(2) F ∗(ω ∧ η) = F ∗ω ∧ F ∗η;
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(3) in any chart on N with coordinates yi

F ∗(
∑
I

ωIdyi1 ∧ · · · ∧ dyik) =
∑
I

(ωI ◦ F )d(yi1 ◦ F ) ∧ · · · ∧ d(yik ◦ F )

(4) if M ⊂ Rm and N ⊂ Rn are open sets then F ∗(dω) = d(F ∗ω);
(5) if G : P →M is another smooth map then (F ◦G)∗ = G∗ ◦ F ∗.

3.20. Theorem. Let M be a smooth manifold with or without boundary.
There are operators d : Ωk(M)→ Ωk+1(M), uniquely determined by

(1) d is R-linear
(2) for ω ∈ Ωk(M) and η ∈ Ω`(M) we have

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη;

(3) d2 = 0;
(4) for f ∈ C∞(M) and X ∈X (M) it holds that df(X) = Xf .

In any chart we have

d(
∑
J

ωJdxj1 ∧ · · · ∧ dxjk) =
∑
J

dωJ ∧ dxj1 ∧ · · · ∧ dxjk .

3.21. Theorem. For a k-form ω and vector fields X1, · · · , Xk+1 it holds
that

dω(X1, · · ·xk+1) =
∑

1≤i≤k+1

(−1)i−1Xiω(X1, · · · , X̂i, · · · , Xk+1)

+
∑

1≤i<j≤k+1

(−1)i+jω([Xi, Xj], X1, · · · , X̂i, · · · , X̂j, · · · , Xk+1).

In particular, for a 1-form ω we have

dω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ]).

4. Week 4

No lectures in week 4.

5. Week 5

5.1. Lecture 7, Tue 07-11-2017. This lecture coves the material in [1,
Chapter 15, pages 377-384] concerning orientations of manifolds.

5.1. Definition. Let e := (e1, · · · , en) and E := (E1, · · · , En) be two or-
dered bases for the vector space V . We say that e and E are consistently
oriented if the transition matrix (Bj

i ) defined by ei =
∑

j B
j
iEj has positive

determinant.
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The above definition gives an equivalence relation on the set of ordered
basis with exactly two equivalence classes. The orientation determined by
the basis e is denoted [e]. If [E] = [e] we say that E is positively oriented
with respect to e. Otherwise it is negatively oriented.

5.2. Proposition. Let V be a vector space of dimension n ≥ 1. Then any
ω ∈

∧n V ∗ with ω 6= 0 determines a unique orientation Oω on V . An
ordered basis (e1, · · · , en) is positively oriented with respect to ω if

ω(e1, · · · en) > 0,

and negatively oriented with respect ω if

ω(e1, · · · , en) < 0.

Two elements ω, η ∈
∧n V ∗ define the same orientation on V if and only if

ω = λη for some λ > 0.

5.3. Example. Let (e1, · · · , en) be an ordered basis for V with dual basis
(ε1, · · · , εn). Then (e1, · · · , en) and ω := ε1 ∧ · · · ∧ εn define the same
orientation.

For manifolds the situation is more complicated. A pointwise orientation
of a manifold M is a choice of orientation on each tangent space TpM , p ∈
M . A local frame (X1, · · · , Xn) is psotively oriented if (X1,p, · · · , Xn,p) ∈
Tp(M) is positively oriented.

5.4. Definition. A pointwise orientation for M is continuous if every p ∈
M has a neighborhood U such that there exists a positively oriented local
frame over U . A manifold M is oriented if it is equipped with a continuous
pointwise orientation.

5.5. Definition. Let M be an n-dimensional manifold. An n-form ω ∈
Ωn(M) is non-vanishing if for for every p ∈ M there exists a local frame
(X1, · · · , Xn) with dual coframe (dx1, · · · , dxn) such that ω = fdx1 ∧
· · · dxn and f(p) 6= 0.

5.6. Proposition. Let M be a smooth manifold of dimension n (with or
without boundary). Any non-vanishing n-form ω ∈ Ωn(M) determines a
unique orientation on M . Conversely if M is oriented there exists a non-
vanishing n-form defining the orientation.

5.7. Definition. LetM be an oriented manifold (with or without boundary).
A chart (U,ϕ) is positively oriented if the frame ∂

∂xi
is positively oriented.

An atlas {(Ui, ϕi)} is positively oriented if the transition maps

ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj),

have positive Jacobian determinant at each point of ϕj(Ui ∩ Uj).



12 DR. B. MESLAND

5.8. Proposition. Let M be a smooth manifold of dimension n ≥ 1. Sup-
pose M admits a consistently oriented smooth atlas {(Ui, ϕi)}. Then M is
orientable and there is a unique orientation for which each (Ui, ϕi) is posi-
tively oriented. Conversely if M is oriented and n > 1 or ∂M = ∅ then the
collection of all positively oriented smooth charts is a consistently oriented
atlas.

Now suppose F : M → N is a local diffeomorphism between smooth
manifolds M and N . If M and N are oriented we say that F is orientation
preserving if (dF )p : TpM → TpN maps positively oriented bases to pos-
itively oriented bases. F is orientation reversing if (dF )p maps positively
oriented bases to negatively oriented bases.

5.9. Proposition. Let F : M → N be a local diffeomorphism and sup-
pose that N is oriented. Then M is orientable and there exists a unique
orientation on M for which F is orientation preserving.

In this case, if ω is an orientation form for N then F ∗ω is an orientation
form for M .

5.2. Lecture 8. We return to some structural results about manifold with
boundary, see [1, Chapter 1, pages 27-29].
5.10. Theorem. Let M be a smooth manifold with boundary and p ∈ M .
Suppose that there is a boundary chart (U,ϕ) with p ∈ U such that ϕ(U) ⊂
Hn

and ϕ(p) ∈ ∂Hn
. Then for any other chart (V, ψ) with p ∈ V it holds

that ϕ(V ) ⊂ Hn
and ϕ(p) ∈ ∂Hn

.

5.11. Corollary. A manifold with boundary decomposes as a disjoint union
M = IntM t ∂M .

To equip ∂M with a smooth structure we use the results from [1, Chapter
5, pages 101-104].
5.12. Definition. Let M be a manifold and S ⊂ M a subset. Then S is
an embedded submanifold if, equipped with the subspace topology, it has a
smooth structure such that the inclusion map i : S →M is a smooth embed-
ding. That is, i is a homeomorphism onto its image and (di)p : TpS → TpM
is injective for all p ∈M .

5.13. Theorem. Let M be a manifold of dimension n with boundary ∂M .
Then ∂M is a manifold of dimension n− 1 with charts (V, ψ) given by

V := U ∩ ∂M, ψ := πn−1 ◦ ϕ,
where (U,ϕ) is a chart for M and πn−1 : Rn → Rn−1 is given by

πn−1(x1, · · · , xn) := (x1, · · · , xn−1).

With these charts the inclusion i : ∂M →M becomes a smooth embedding.
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To equip ∂M with an orientation, we return to [1, Chapter 15, pages
384-387].

For an oriented manfiold with boundary the tangent space at a boundary
point p ∈ ∂M decomposes as a disjoint union

TpM = T in
p M t T out

p M t Tp∂M,

where

T in
p M := {

n∑
k=1

vk
∂

∂xk
: vn > 0}, T out

p M := {
n∑
k=1

vk
∂

∂xk
: vn < 0}.

We call T in
p M the inward pointing tangent vectors and T out

p M the outward
pointing tangent vectors.

5.14. Lemma. Let M be an oriented manifold with boundary. There exists
a vector field X ∈ X (M) such that for every p ∈ ∂M , Xp is an outward
pointing vector. Similarly there exists a vector field Y ∈ X (M) such that
for every p ∈ ∂M , Xp is an inward pointing vector.

5.15. Proposition. Let n ≥ 1 and M an oriented smooth n-dimensional
manifold. Then ∂M is oriented and all outward pointing vector fields define
the same orientation on ∂M .

[1, Chapter 16, pages 400-404] Recall that a domain of integration in
Rn is a subset D ⊂ Rn whose topological boundary D \D◦ has Lebesgue
measure zero. A continuous n-form ω on D can be written

ω = fdx1 ∧ · · · ∧ dxn.
We define the integral of ω over D by∫

D

ω :=

∫
D

fdx1 · · · dxn.

5.16. Lemma. Let U ⊂ Rn be an open set and K ⊂ U a compact set. Then
there exists a domain of integration D such that K ⊂ D ⊂ D ⊂ U .

If ω is an n-form with compact support contained in an open set U we
define ∫

U

ω :=

∫
D

ω,

where D is any domain with supp ω ⊂ D ⊂ D ⊂ U .

5.17. Proposition. Let D and E be domains of integration in Rn or Hn
and

G : D → E a smooth map which restricts to an orientation preserving
diffeomorphism G : D → E. Then for an n-form ω on E∫

D

G∗ω =

∫
E

ω.
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In case G : D → E is orientation reversing, we have∫
D

G∗ω = −
∫
E

ω.

5.18. Proposition. Let U, V be open subsets of Rn or Hn
and G : U → V

an orientation preserving diffeomorphism. If ω is a compactly supported
n-form on V then ∫

V

ω =

∫
U

G∗ω,

and if G is orentation reversing then∫
V

ω = −
∫
U

G∗ω.

6. Week 6

6.1. Lecture 9, Tue 14-11-2017. [1, Chapter 16, pages 404-408 and 411-
415]

We are now ready to define integration of n-froms on an oriented mani-
fold M . First suppose ω is an n-form whose support is contained in a single
positively oriented chart (U,ϕ). For such ω we set∫

M

ω :=

∫
ϕ(U)

(ϕ−1)∗ω.

If the chart (U,ϕ) is negatively oriented we set∫
M

ω := −
∫
ϕ(U)

(ϕ−1)∗ω.

6.1. Proposition. Suppose ω is a compactly support n-form on an oriented
manifold M , and (U,ϕ), (V, ψ) are charts such that supp ω ⊂ U ∩V . Then∫

ϕ(U)

(ϕ−1)∗ω =

∫
ψ(V )

(ψ−1)∗ω,

and in particular
∫
M
ω is independent of the choice of chart.

6.2. Definition. Let M be an oriented smooth manifold and ω a compactly
supported n-form. Let {(Ui, ϕ)} be an atlas of oriented charts and χi a
partition of unity subordinate to Ui. The integral of ω over M is defined to∫

M

ω :=
∑
i

∫
M

χiω.

6.3. Proposition. The definition of
∫
M
ω is independent of the choice of

cover and the choice of partition of unity.
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The integral so defined has the following properties:
(1) for a, b ∈ R and ω, η compactly supported n-forms,∫

M

aω + bη = a

∫
M

ω + b

∫
M

η

(2) if −M denotes M with the opposite orientation then∫
−M

ω = −
∫
M

ω

(3) if ω is a positively oriented orientation form then
∫
M
ω > 0

(4) if F : M → N is an orientation preserving diffeomorphism be-
tween oriented manifolds M and N then

∫
M
ω =

∫
N
F ∗ω.

For an oriented manifold M with boundary ∂M we always equip ∂M with
the induced (or Stokes) orientation. Given an n− 1-form ω we set∫

∂M

ω :=

∫
∂M

i∗ω,

with i : ∂M →M the embedding. Note that dω is a n-form on M

6.4. Theorem (Stokes’ theorem). LetM be an oriented manifold with bound-
ary ∂M ad ω a compactly supported n− 1-form on M . Then∫

M

dω =

∫
∂M

ω,

where ∂M carries the Stokes orientation.

We now turn to the discussion of Riemannian metrics [1, Chapter 13,
pages 327-337].

6.5. Definition. Let M be a smooth manifold with or without boundary. A
Riemannian metric on M is a paring

g : X (M)×X (M)→ C∞(M)

(X, Y ) 7→ g(X, Y ),

with the following properties.
• (symmetry) for all X, Y ∈X (M) we have g(X, Y ) = g(Y,X)
• (bilinearity) for all f1, f2 ∈ C∞(M) and X, Y!, Y2 we have

g(X, f1Y1 + f2Y2) = f1g(X, Y1) + f2g(X, Y2),

• (nondegeneracy) for p ∈ M and all X ∈ X (M) it holds that
g(X,X)(p) > 0.

The pair (M, g) is called a Riemannian manifold.
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For each p ∈ M the metric g defines an inner product on the tangent
space Tp(M) denoted 〈·, ·〉g. It is defined by

〈Xp, Yp〉g := g(X, Y )(p).

6.6. Lemma. For any manifold there exists a Riemannian metric.

For 1-forms ω, η ∈ Ω1(M) we define their symmetric product to be the
two form ω · η given on vector fields X, Y by

ω · η(X, Y ) :=
1

2
(ω(X)η(Y ) + ω(Y )η(X)).

6.7. Example (Euclidean metric on Rn). The expression

g =
n∑
i=1

dxi · dxi =
n∑
i=1

(dxi)
2,

defines a Riemannian metric on Rn called the Euclidean metric.

6.8. Example (Round metric on Sn). The restriction of the Euclidean metric
on Rn+1 to X (M) gives the round metric on Sn.

6.9. Example (Hyperbolic metric on Hn). Recall that Hn is the upper half
space

Hn := {(x1, · · · , xn) ∈ Rn : xn > 0}.
The hyperbolic metric on Hn is given by

g =

∑n
i=1(dxi)

2

x2
n

.

6.2. Lecture 10. A Riemannian metric defines an inner product on each
tangent space. This allows us to talk about the length of tangent vectors and
angles between them:

Two vector fields X, Y are orthogonal over a set U if g(X, Y )(p) = 0
for all p ∈ U . For a vector field X we denote by |X| the function p 7→√
g(X,X)(p) on M .

6.10. Definition. A smooth local frame (X1, · · · , Xn) over U is orthonor-
mal if

g(Xi, Xj)(p) = δij, for all p ∈ U.

In particular Xi(p) is an orthonormal basis for TpM for all p ∈ U . It is
in general not true that the coordinate frame ∂

∂xi
associated to a chart (U,ϕ)

is orthonormal.

6.11. Proposition. For every p ∈ M there is a neighborhood U of p and a
smooth orthonormal frame over U .



GLOBAL ANALYSIS I - WS 2017/2018 17

The following discussion of the Riemannian volume form can found in
[1, Chapter 15, pages 388-390]

6.12. Proposition. On an oriented Riemannian manifold (M, g) there is a
unique positive orientation form ωg such that

ωg(E1, · · · , En) = 1,

for every orthonormal frame Ei.

6.13. Proposition (Volume form in a coordinate frame). Let (M, g) be an
oriented Riemannian manifold of dimension n ≥ 1 and (U,ϕ) a positively
oriented chart with coordinates xi. The volume form ωg in these cooridnates
is given by

ωg =
√

det(gij)dx1 ∧ · · · ∧ dxn,

with gij := g
(

∂
∂xi
, ∂
∂xj

)
.

The normal bundle and its orthonormal frames are introduced in [1, Chap-
ter 13, page 337].

For an embedded submanifold S ⊂M of a Riemannian manifold (M, g).
For p ∈ S the tangent space TpS is a subspace TpM . We define the normal
space to be

NpS := {v ∈ TpM : ∀w ∈ TpS〈v, w〉g = 0}.
The normal bundle is the collection

NS :=
⊔
p∈S

NpS ⊂ TM,

and the bundle projection π : TM → M restricts to a bundle projection
NS → S. The normal bundle is a vector bundle over S of rank dimM−dim
S. For every p ∈ S we have TpM = TpS ⊕NpS.

6.14. Proposition. Let (M, g) be a Riemannian manifold of dimension n
and S ⊂ M an embedded submanifold of dimension k. For each p ∈
S there exists a neighborhood U of p a smooth local orthonormal frame
(E1, · · ·En) over U such that (E1, · · · , Ek) is a local orthonormal frame
for TS over S ∩ U and (Ek+1, · · · , En) is a local orthonromal frame for
NS over S ∩ U .

The integration of functions and the divergence theorem are discussed in
[1, Chapter 16, pages 421-424].

The volume integral of a compactly supported continuous function f ∈
C(M) on a Riemannian manifold (M, g) is defined to be∫

M

fdVg :=

∫
M

fωg.
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The volume integral has the property that if f ≥ 0 then
∫
M
fdVg ≥ 0. For

a codimension 1 submanifold S ⊂ M , we define a normal vector field to
be a vector field N ∈ X (M) such that for all p ∈ S we have N(p) ∈ NpS
and g(N,N)(p) = 1. If N is outward pointing at each point of S, then it
defines an orientation on S. In fact

ωSg̃ (X1, · · · , Xn−1) := ωMg (N,X1, · · · , Xn−1),

defines the volume form on S with the induced metric g̃ for the orientation
determined by N .

Consider the map

α : C∞(M)→ Ωn(M), f 7→ fωg,

as well as the map

β : X (M)→ Ωn−1(M),

defined by β(X)(X1, · · · , Xn−1) = ωg(X,X1, · · · , Xn−1).

6.15. Lemma. Let (M, g) be a Riemannian manifold and S ⊂ M an em-
bedded submanifold of codimension 1 with i : S → M the inclusion and
normal vector field N . Then for all X ∈X (S) it holds that

i∗Sβ(X) = 〈X,N〉gωSg̃ ,

where ωSg̃ = β(N) as above is the volume form on S determined by N .

We define the divergence of a vector field to be div(X) := α−1dβ(X).
Equivalently dβ(X) = div(X)ωg.

6.16. Theorem (Divergence theorem). Let (M, g) be an oriented Riemann-
ian manifold with boundary ∂M and outward pointing normal vector field
N . For any compactly supported smooth vector field X ∈ X (M) it holds
that ∫

M

div(X)dVg =

∫
∂M

〈X,N〉gdVg̃,

where g̃ denotes the induced metric on S.

It should be noted here we equip ∂M with the Stokes orientation, which
creates the need to work with an outward pointing normal. However, the
divergence theorem holds in this form whenever S is equipped with the
orientation inherited from N .
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7. Week 7

7.1. Lecture 11, Tue 21-11-2017. The tangent cotangent isomorphism [1,
Pages 340-343].

Given a Riemannian manifold (M, g) we can define an isomorphism

ĝ : TM → T ∗M

defined on vector fields X via the formula

ĝ(X)(Y ) := g(X, Y ),

so indeed ĝ(X) ∈ Ω1(M). The map ĝ is injective by nondegeneracy of g
and because the fibers of TM and T ∗M are finite dimensional, ĝ is fibrewise
surjective. In coordinates ĝ has the expression

ĝ(X) =
∑
i,j

gijXidxj,

where Xi are the component functions of X and gij = g( ∂
∂xi
, ∂
∂xj

) in the
coordinates xi. Because the matrix gij is invertible, the inverse

ĝ−1 : Ω1(M)→X (M),

takes the coordinate form

ĝ−1(ω) =
∑
i,j

(g−1)ijωj
∂

∂xi
,

with (g−1)ij the components of the inverse matrix of (gij). The existence of
the inverse proves that ĝ is an isomorphism.

7.1. Definition. Let (M, g) be a Riemannian manifold and f ∈ C∞(M).
The gradient of f is the vector field gradf := ĝ−1(df). Equivalently gradf
is determined by the equality

〈gradf,X〉g = Xf,

for all smooth vector fields X ∈X (M).

The coordinate form of the gradient is

gradf =
∑
i,j

(g−1)ij
∂f

∂xj

∂

∂xi

Let (M, g) be an oriented manifold with boundary. We wish to show there
always exists an outward pointing normal vector field along ∂M . See [1,
Pages 118-119].

7.2. Definition. Let M be a smooth manifold with boundar. A boundary
defining function is a smooth function f : M → R with properties

• f−1(0) = ∂M ;
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• for all p ∈ ∂M the differential dfp 6= 0

7.3. Proposition. Every manifold with boundary admits a boundary defin-
ing function.

The following result is found on [1, Page 391]:

7.4. Corollary. Every manifold with boundary admits an outward pointing
unit normal vector field.

Given a boundary defining function f one sets N := −gradf/|gradf |g.
This is well defined in a neighborhood

∂M ⊂ {p ∈M : |dfp|g > ε},
and can thus be extended to all of M .

Line integrals [1, Pages 287-292]

7.5. Definition. By a piecewise smooth curve in a manifold M we mean a
smooth map γ : [a, b]→M such that there exists a partition

a = a0 < a1 < · · · < an−1 < an = b,

such that the restrictions γ|[ai,ai+1] : [ai, ai+1]→M are smooth.

7.2. Lecture 12, Wed 22-11-2017. For a one form ω on M we define the
integral of ω over γ as ∫

γ

ω :=
∑
i

∫
[ai,ai+1]

γ∗ω.

By a reparametrization of the curve γ we mean a curve of the form

γ̃ := γ ◦ φ : [c, d]→M,

with φ : [c, d] → [a, b] a diffeomorphism. The integral is invariant for
reparametrizations in the following sense:∫

γ

ω =

∫
γ̃

ω,

when φ is increasing. When φ is decreasing the integrals differ by a minus
sign. The line integral has the usual linearity properties and if F : M → N
is a smooth map and ω ∈ Ω1(N) then∫

γ

F ∗ω =

∫
F◦γ

ω.

The tangent vector field to γ is defined to be the map

γ′ : [a, b]→ TM, t 7→ dγ(
d

dx
|t),
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with x the coordinate on [a, b]. The line integral admits the epxression∫
γ

ω =

∫ b

a

ωγ(t)(γ
′(t)).

The Riemannian distance function [1, Pages 337-341].

7.6. Proposition. If M is a connected manifold then for any two points p, q
there exists a piecewise smooth curve γ : [a, b] → M with γ(a) = p and
γ(b) = q.

On a Riemannian manifold (M, g) we define the length of a piecewise
smooth curve γ as

Lg(γ) :=

∫ b

a

|γ′(t)|gdt =

∫ b

a

√
〈γ′(t), γ′(t)〉gdt

7.7. Proposition. Let (M, g) be a Riemannian manifold and γ : [a, b]→M
a piecewise smooth curve in M . If γ̃ : [c, d]→M is a reparametrization of
γ then Lg(γ) = Lg(γ̃).

The Riemannian distance function of (M, g) is defined for points p, q ∈
M as

dg(p, q) := inf{Lg(γ) : γ : [a, b]→M,γ(a) = p, γ(b) = q.},

the infimum of lengths of piecewise smooth curves joinging p and q. To
prove that the distance function is a metric we use the following local result.

7.8. Lemma. Let g be a Riemannian metric on an open subset U ⊂ Rn and
let g denote the Euclidean metric. Then for any compact subset K ⊂ U
there exist c, C ∈ R>0 such that for all x ∈ K with v ∈ TxRn it holds that

c|v|g ≤ |v|g ≤ C|v|g.

7.9. Theorem. The Riemannian distance function defines a metric on M
whose metric topology coincides with the manifold topology.

8. Week 8

8.1. Lecture 13, Tue 28-11-2017. Review of tensor bundles.

8.1. Definition. Let V be a vector space. A covariant k-tensor on V is
an element of (V ∗)⊗k := V ∗ ⊗ · · · ⊗ V ∗ (k-fold tensor product). A con-
travariant k-tensor is an element of V ⊗k := V ⊗ · · · ⊗ V (k-fold tensor
product).
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A covariant tensor ξ can be viewed as a multilinear functional V k → R
via

(ξ1 ⊗ · · · ⊗ ξk)(v1, · · · , vk) :=
k∏
i=1

ξi(vi).

Similarly a contravariant k-tensor gives a multilinear functional (V ∗)k →
R, by essentially the same formula.

A k-tensor α is symmetric if for any permutation σ ∈ Sk we have

α(vσ(1), · · · , vσ(k)) = α(v1, · · · , vk).
It is alternating if

α(vσ(1), · · · , vσ(k)) = sgn(σ)α(v1, · · · , vk).
The symmetrization of a k-tensor α is the k-tensor

Sym(α)(v1, · · · , vk) =
1

k!

∑
σ∈Sk

α(vσ(1), · · · , vσ(k)).

The anti-symmetrization of α is the k-tensor

A(α)(v1, · · · , vk) =
1

k!

∑
σ∈Sk

sgn(σ)α(vσ(1), · · · , vσ(k)).

Clearly A(α) is alternating, that is

A(α)(vτ(1), · · · , vτ(k)) = sgn(τ)A(V1, · · · , vk),
for any τ ∈ Sk. In general, if α, β are (anti)-symmetric tensors, then α ⊗
β is in general neither symmetric nor anti-symmetric. We have seen that
the wedge product of alternating tensors is again alternating. Similarly the
symmetric product of a symmetric k-tensor α and a symmetric `-tensor β,
defined by

α·β(v1, · · · , vk+`) :=
1

(k + `)!

∑
σ∈Sk+`

α(vσ(1), · · · , vσ(k))β(vσ(k+1), · · · , vσ(k+`)),

is a symmetric k + `-tensor. The symmetric product is commutative,

α · β = β · α,
and satisfies the distributive law

(aα + bβ) · γ = aα · γ + bβ · γ, a, b ∈ R.

8.2. Definition. Let M be a manifold. The bundle of covariant k-tensors
on M is

T kM := (T ∗M)⊗k =
⊔
p∈M

(T ∗pM)⊗k,
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and the bundle of contravariant k-tensors is

TkM := (TM)⊗k =
⊔
p∈M

(T ∗pM)⊗k.

The bundle of mixed tensors of type (k, `) is

T k`M := (T ∗M)⊗k ⊗ (TM)⊗`.

Using the vector bundle chart lemma, we define maps

τij : Ui ∩ Uj → GL(Rnk ⊗ R∗⊗n`),
by

τij(p)(v1 ⊗ · · · ⊗ vk ⊗ ω1 ⊗ · · · ⊗ ω`) :=

τTMij (p)v1 ⊗ · · · ⊗ τTMij (p)⊗ τT ∗Mij (p)ω1 ⊗ · · · ⊗ τT
∗M

ij (p)ω`.

In this way T k`M becomes a vector bundle over M . A tensor field of type
(k, `) is a section of T k` M .

By applying he duality map ĝ : TM → T ∗M to any index we get maps
T k`M → T k+1

`−1 M and by applying ĝ−1 we obtain maps T k`M → T k−1
`+1 M .

Lastly,for a contravariant 2-tensor on a Riemannian manifold we define its
trace to be the map

T2M →M × R,
determined on vector fields X, Y by

X ⊗ Y 7→ g(X, Y ).

Connections. To address the problem of differentiating vector fields we
introduce the notion of connection.

8.3. Definition. Let π : E →M be a smooth vector bundle over a manifold
M . A connection is a linear map ∇ : Γ∞(E) → Γ∞(E) ⊗C∞(M) Ω1(M)
satisfying the Leibniz rule:

∇(Y · f) = ∇(Y )f + Y ⊗ df,
for all sections Y ∈ Γ∞(E) and functions f ∈ C∞(M).

Using the pairing

X (M)× Ω1(M), (X,ω) 7→ ω(X),

we obtain a pairing

X (M)× Γ∞(E)⊗ Ω1(M), (X, Y ⊗ ω) 7→ Y · ω(X).

Writing this pairing as (Y ⊗ ω)(X) we can view a connection as a map

X (M)×X (M)→X (M), (X, Y ) 7→ ∇(Y )(X).

The common notation for ∇(Y )(X) is ∇X(Y ). Connections are local in
the following sense.
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8.4. Lemma. The value of vector field∇XY at p ∈M depends only on the
value of X at p and the values of Y in a neighborhood of p.

Due to this lemma we write ∇XpY for ∇X(Y )(p) and think of it as the
directional derivative of Y in the direction Xp.

8.5. Definition. An affine or linear connection is a connection in the vector
bundle TM .

If Ei is a local frame for TM in a neighborhood U we can write any
section Y ∈ X (TM) as Y =

∑
i YiEi, with Yi ∈ C∞(M). In particular

for X ∈X (M) the section∇EiEj ∈ Γ∞(E) can be written

∇EiEj =
∑
k

ΓkijEk,

for certain functions Γkij : U → R. These functions are referred to as
the Christoffel symbols of the connection ∇ relative to the frame Ej . The
Christoffel symbols determine the linear connection∇ locally:

8.6. Lemma. Let∇ be a linear connection on a manifold M and Ei a local
frame over the open set U . For vector fields X, Y ∈X (M) we have

∇XY =
∑
k

(
X(Yk) +

∑
i,j

XiYjΓ
k
ij

)
Ek,

over U .

8.2. Lecture 14, Wed 29-11-2017.

8.7. Lemma (Existence of connections on charts). Let U ⊂ Rn be an open
set. There is a bijective correpondence between connections on TU and the
choice of n3 functions Γkij via

∇XY =
∑
k

(
X(Yk) +

∑
i,j

XiYjΓ
k
ij

)
∂

∂xk
,

for vector fields
∑

iXi
∂
∂xi

and Y =
∑

i Yi
∂
∂xi

.

8.8. Proposition. Every manifold admits a linear connection.

A connection is constructed using the connections ∇i on charts Ui and
gluing through a partition of unity χi to set ∇ :=

∑
i χi∇i. Here it is

important to note that the space of connections is not a vector space: a
linear combination λ1∇1 + λ2∇2 of connections ∇i is not a connection in
general. It satisfies the Leibniz rule only if λ1 + λ2 = 1.

8.9. Lemma. Let ∇ be a linear connection on M . There is a unique con-
nection ∇ in each tensor bundle T k`M with the properties
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(1) ∇ agrees with the given connection on TM
(2) on T 0M = M × R ∇ is given by∇(f) = df ,∇Xf = X(f)
(3) ∇ obeys the follwoing Leibniz rule for tensor products:

∇X(F ⊗G) = ∇X(F )⊗G+ F ⊗∇X(G)

(4) if (M, g) is Riemannian, ∇ commutes with all contractions: if Trg
denotes the trace on any pair of indices then

∇X(TrY ) = Tr∇X(Y ).

The connection∇ satisifes the following additional properties:
• for all ω ∈ Ω1(M) and X, Y ∈X (M)

∇X(ω(Y )) = ∇X(ω)(Y ) + ω(∇X(Y ))

• for any F ∈ T k`M , vector fields Yi and 1-forms ωj we have

∇X(F )(ω1, · · · , ω`, Y1, · · · , Yk) = X(F (ω1, · · · , ω`, Y1, · · · , Yk)

−
∑
j

F (ω1, · · · ,∇Xωj, · · · , ω`, Y1, · · · , Yk)

−
k∑
i=1

F (ω1, · · · , ω`, Y1, · · · ,∇XYi, · · · , Yk)

We now construct the total derivative of a (k, `) tensor field.

8.10. Lemma. Let ∇ be a linear connection on a manifold M and F ∈
T k` (M). The map

∇F : Ω1(M)` ×X (M)k+1 → C∞(M)

∇F (ω1, · · · , ω`, X1, · · · , Xk+1) := ∇Xk+1
F (ω1, · · · , ω`, X1, · · · , Xk),

defines a (k + 1, `) tensor field.

For f ∈ C∞(M), ∇f = df and the 2-tensor field ∇(∇(f)) is called the
covariant Hessian of the function f .

Tangent vector fields along curves.

8.11. Definition. Let γ : [a, b] → M be a smooth curve. A vector field
along γ is a map V : [a, b] → TM such that V (t) ∈ Tγ(t)M . We write
T (γ) for the space of all vector fields along γ.

The tangent vector field γ′(t) is the most important example of a vector
field along a curve.

8.12. Example. Let γ : [a, b]→ R2 be a smooth curve and let J : R2 → R2

be the counterclockwise rotation over π
2
. Set N(t) := Jγ′(t). Then N(t) is

normal to γ′(t). In coordinates N(t) = (−γ′2(t), γ′1(t)).
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8.13. Example. Let X̃ ∈X (M) and define X(t) := X̃γ(t).

A vector field X along γ is extendible if there exists X̃ ∈ X (M) such
that X = X̃|γ . Not all vector fields are extendible, e.g. if γ(t0) = γ(t1) and
γ′(t0) 6= γ′(t1), then γ′(t) is not extendible.

8.14. Lemma. Let ∇ be a linear connection on a manifold M . For each
smooth curve γ : [a, b]→M ,∇ determines a unique operatorDt : T (γ)→
T (γ) satisfying

(1) Dt(aV + bW ) = aDtV + bDtW
(2) for all f ∈ C∞([a, b]) Dt(fV ) = f ′V + fDtV
(3) if V is extendible then for any extension Ṽ we haveDtV = ∇γ′(t)Ṽ .

The operator Dt is called the covariant derivative along γ. The accel-
eration of a smooth curve γ : [a, b] → M is the vector field Dtγ

′ along
γ.

8.15. Definition. A smooth curve γ is a geodesic with respect to ∇ if
Dtγ

′ = 0.

8.16. Theorem (Existence and uniqueness of geodesics). Let M be a man-
ifold with a linear connection ∇. For any p ∈ M , V ∈ Tp(M) and t0 ∈ R
there exists an open interval I ⊂ R containing t0 and a geodesic γ : I →M
satisfying γ(t0) = p and γ′(t0) = V . Any two such geodesics agree on their
common domain.

8.17. Corollary. For any p ∈ M and V ∈ TpM there exists a unique
maximal geodesic γ : I → M , that is, a geodesic that cannot be extended
to any larger interval, such that γ′(0) = p and γ′(0) = V . This geodesic is
denoted γV .

9. Week 9

9.1. Lecture 15, Tue 5-12-2017. A vector field V along γ is said to be
parallel if DtV = 0. A vector field X ∈ X (M) is parallel if it is paral-
lel along every curve. It is easy to check that X is parallel if and only if
∇(X) = 0.

9.1. Theorem (Parallel translation). Given γ : [a, b] → M , t0 ∈ [a, b] and
V0 ∈ Tγ(t0)M there exists a unique parallel vector field V along γ such that
V (t0) = V0.

This theorem relies on the following existence and uniqueness result of
linear ODE’s.
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9.2. Theorem. Let I ⊂ R be an interval and Akj : I → R be smooth
functions, 1 ≤ j, k ≤ n. The linear initial value problem

V ′k(t) =
∑
j

AkjVj(t), Vk(t0) = Bk,

has a unique solution on all of I for any t0 ∈ I and anyB = (B1, · · · , Bn) ∈
Rn.

The Riemannian connection [2, Chapter 5, pages 65-76].
Let M ⊂ Rn be an embedded submanifold. Denote by πt the orthogonal

projection TpRn → TpM and ∇ the Euclidean connection on Rn.

9.3. Lemma. LetM ⊂ Rn be an embedded submanifold. The operator∇t :
X (M)×X (M)→ X (M) given by ∇t

XY := πt∇X(Y ) is a connection
on M . This connection is called the tangential connection and satisfies

〈∇t
XY, Z〉+ 〈Y,∇t

XZ〉 = ∇t
X〈Y, Z〉,

with respect to the induced Riemannian metric.

Using the deep Nash embedding theorem, which states that any Riemann-
ian manifold can be relaized as an embedded submanifold of some Rn with
the induced metric, one could study any manifold as an embedded subman-
ifold. This sheds no light on intrinsic properties. It turns out that the above
connection can be characterized by two properties that relate it to the Rie-
mannian metric.

9.4. Definition. Let (M, g) be a Riemannian manifold and ∇ a linear con-
nection onM . The connection∇ is compatible with the Riemannian metric
if we have

〈∇XY, Z〉+ 〈Y,∇XZ〉 = ∇X〈Y, Z〉,
for all X, Y, Z ∈M .

9.5. Proposition. For a linear connection on (M, g) the following are equiv-
alent:

• ∇ is compatible with g;
• ∇g = 0;
• for any curve γ and vector fields V,W along γ we have

d

dt
〈V,W 〉 = 〈V,DtW 〉+ 〈DtV,W 〉

• if V,W are parallel along γ then Dt〈V,W 〉 is constant
• parallel translation Pt0t1 : Tγ(t0) → Tγ(t1) is an isometry.
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The second intrinsic property of connections involves the torsion tensor

τ(X, Y ) := ∇XY −∇YX − [X, Y ].

We say that ∇ is torsion free if τ(X, Y ) = 0 for all X, Y ∈X (M).

9.6. Theorem. Let (M, g) be a Riemannian manifold. There exists a unique
linear connection∇ on M that is compatible with g and torsion free.

The above connection is called the Riemannian connection. Its Christof-
fel symbols are given by the explicit formula

Γkij =
∑
`

1

2
(g−1)k`

(
∂

∂xi
gj` +

∂

∂xj
gi` −

∂

∂x`
gij

)
.

9.7. Lemma. Any Riemannian geodesic is a constant speed curve.

9.8. Proposition. Suppose that ϕ : (M, g) → (M̃, g̃) is an isometry and
∇, ∇̃ the respective Riemannian connections. Then

• ϕ intertwines the Riemannian connections:

ϕ∗(∇XY )) = ∇̃ϕ∗Xϕ∗Y

• If V is a vector field along a curve γ in M then

ϕ∗DtV = D̃tϕ∗V

• ϕ takes geodescis to geodesics, that is, if γV is the geodesic through
p with initial velocity V then ϕ ◦ γV is the geodesic through ϕ(p)
with initial velocity ϕ∗V .

10. Week 10, lectures 16 and 17, see the notes by Kastenholz

11. Week 11

11.1. Lectures 18-19, Tue 19-12-2017, Wed 20-12-2017. The exponential
map, [2, Chapter 5, pages 72-76].

The exponential map is a map defined on an open subset E of the tangent
bundle into M . Its restriction to to specific tangent spaces gives a diffeo-
morphism exp : Ep →M onto its image. To be precise, set

E := {V ∈ TM : γV is defined on an interval containing [0, 1]},
and define exp : E → M by V 7→ γV (1). Furthermore, for p ∈ M define
Ep := TpM ∩ E and expp : Ep →M the restriction of exp to Ep. Recall that
a subset X of a vector space is star-shaped with respect to x ∈ X if for all
y ∈ X the line segment connecting x to y lies entirely within X .

11.1. Proposition (Properties of the exponential map). For a Riemannian
manifold (M, g) we have that
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• E ⊂ TM is open, contains the zero section, and each Ep is star-
shaped with respect to 0;
• for each V ∈ TM the geodesic γV is given by γV (t) = exp(tV )

whenever either side is defined;
• the exponential map is smooth.

The proof of the above statement relies on

11.2. Lemma (Rescaling lemma). For any V ∈ TM and c, t ∈ R it holds
that

γcV (t) = γV (ct),

whenever either side is defined.

The exponential map is natural with respect to Riemannian isometries.
Normal neighborhood and normal coordinates [2, Section 5, pages 76-

81].

11.3. Lemma. For any p ∈ M there is a neighborhood V of 0 ∈ TpM and
a neighborhood U of p such that exp : U → V is a diffeomorphism.

11.4. Definition. A neighborhood U of p ∈ M is called a normal neigh-
borhood if U is the image of a star-shaped (with respect to 0) open set
V ⊂ TpM under expp. If expp is a diffeomorphism on the ball Bg(0, ε),
then expp(Bg(0, ε)) is a geodesic ball in M . If the closed ball Bg(0, ε)
is contained in an open set V on which expp is a diffeomorphism, then
expp(Bg(0, ε)) is called a closed geodesic ball and expp(∂Bg(0, ε)) is a
geodesic sphere.

Any orthonormal basis Ei of TpM gives a diffeomorphism E : Rn →
TpM by (xi) 7→

∑
i xiEi and so gives rise to a coordinate chart by consid-

ering E−1 ◦ exp−1
p : U → Rn. Such charts are called normal coordinates at

p and they are in 1-1 correspondence with with orthonormal bases of TpM .
In a normal coordinate chart at p we define the radial distance function

by

r(x) :=
(∑

x2
i

) 1
2
,

and the unit radial vector field by

∂

∂r
:=
∑
i

xi
r(x)

∂

∂xi
.

We emphasize that these objects depend on the normal coordinate chart at
hand.

11.5. Proposition. Let (U, (xi) be a normal coordinate chart at p.
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• for any V =
∑

i Vi
∂
∂xi

the geodesic γV starting at p is given in
coordinates by

γV (t) = (tV1, · · · , tVn),

as long as γV stays within U .
• the coordinates of p are (0, · · · , 0);
• the components of the metric at p are gij(p) = δij;
• any Euclidean ball {x : r(x) < ε} contained in U is a geodesic

ball;
• for any q ∈ U \ p the radial vector field ∂

∂r
gives the velocity vector

of the unit speed geodesic from p to q and thus has unit length with
respect to g;
• the first partial derivatives of gij and the Christoffel symbols vanish

at p.

An open set W ⊂ M is called a uniformly normal neighborhood of
p ∈ W if there exists δ > 0 such that for every q ∈ W the geodesic ball of
radius δ around q contains W .

11.6. Lemma. For any p ∈ M and any open neighborhood U of p there
exists a uniformly normal neighborhood W of p contained in U .

12. Week 12

12.1. Lecture 20, Tue 9-1-2018. Material discussed can be found in [2,
Chapter 6, pages 96-98 and 102-106].

12.1. Definition. A piecwise smooth curve γ : [a, b]→ M is minimizing if
for any curve γ̃ between p = γ(a) and q = γ(b) we have L(γ) ≤ L(γ̃).

If γ is minimizing it must hold that L(γ) = dg(p, q).

12.2. Definition. An admissible family of curves is a map Γ : (−ε, ε) ×
[a, b] → M for which there is a finite subdivision a = a0 < a1 < · · · <
ak = b such that Γ : (−ε, ε) × [ai−1, ai] → M is smooth and for all s ∈
(−ε, ε) Γs(t) := Γ(s, t) is an admissible curve.

The curves Γs are called the main curves. The transverse curves are
Γt(s) := Γ(s, t) for t fixed and are smooth.

A vector field along an admissible curve Γ is a map V : (−ε, ε)×[a, b]→
TM such that V(s,t) ∈ TΓ(s,t)M . Moreover there should a (possibly finer)
subdivision a = b0 < b1 < · · · < b` = b for which V(−ε,ε)×[bi−1,bi] is smooth.

The most important examples of such vector fields are

∂tΓ(s, t) :=
d

dt
Γs(t), ∂sΓ(s, t) :=

d

ds
Γt(s).



GLOBAL ANALYSIS I - WS 2017/2018 31

The vector field ∂sΓ is continuous, but ∂tΓ is in general not continuous at
the points ai. For a vector field V along Γ we denote by DtV the derivative
of V along Γs and by DsV the derivative of V along Γt.

12.3. Lemma (Symmetry Lemma). Let Γ : (−ε, ε) × [a, b] → M be an
admissible family of curves. On each rectangle (−ε, ε)× [ai−1, ai] where Γ
is smooth it holds that Ds∂tΓ = Dt∂sΓ.

12.4. Theorem (Gauss Lemma). Let (M, g) be a Riemannian manifold and
U be a geodesic ball centered at p ∈M . The unit radial vector field ∂

∂r
is g

-orthogonal to the geodesic spheres in U .

12.5. Corollary. Let (xi) be normal coordinates on a geodesic ball centered
at p and r(x) the radial distance function. Then gradr = ∂

∂r
on U \ p.

12.6. Proposition. Suppose that q is contained in a geodesic ball around p.
Then (up to reparametrization) the radial geodesic from p to q is the unique
minimizing curve from p to q.

12.7. Corollary. Within a geodesic ball around p we have r(x) = dg(p, x).

12.2. Lecture 21, Wed 10-1-2018. Material discussed can be found in [2,
Chapter 6, pages 107-111].

12.8. Definition. A piecewise smooth curve γ : I →M is locally minimiz-
ing if every t0 ∈ I has an open neighborhood U such that γ|U is minimizing
between each pair of points in γ(U).

12.9. Theorem. Every Riemannian geodesic is locally mimimizing.

12.10. Theorem. Every minimizing curve is a geodesic.

12.11. Definition. A Riemannian manifold (M, g) is geodesically complete
if every maximal geodesic is defined for all t ∈ R.

12.12. Example. An open ball in Rn is not geodesically complete.

Note that geodesic completeness implies that the exponential map is de-
fined on all of TpM for all p ∈M .

12.13. Theorem (Hopf-Rinow). A connected Riemannian manifold without
boundary is geodesically complete if and only if it is complete as a metric
space.

In fact our proof showed that if expp is defined on all of TpM for some
p ∈M , then M is complete.
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13. Week 13

13.1. Lecture 22, Tue 16-1-2018. [2, Chapter 7].

13.1. Definition. The curvature endomorphism of the Riemannian manifold
(M, g) is the map

R : X (M)×X (M)×X (M)→X (M),

defined by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

R is a (3, 1) tensor field and admits the local expression

R =
∑
i,j,k,`

R`
ijkdxi ⊗ dxj ⊗ dxk ⊗ ∂`.

13.2. Definition. The Riemann curvature tensor Rm is the covariant 4-
tensor field

Rm(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉g.

Locally this is written as

Rm =
∑
i,j,k,`

Rijk`dxi ⊗ dxj ⊗ dxk ⊗ dx`,

with
Rijk` =

∑
g`mR

m
ijk.

13.3. Lemma. The curvature endomorphism and Riemann tensor are local
isometry invariants of (M, g). That is if φ : M → M̃) is a local isometry
then

φ∗(R̃m) = Rm, R̃(φ∗X,φ∗Y )φ∗Z = φ∗(R(X, Y )Z).

13.4. Definition. A Riemannian manifold is flat if it is locally isometric to
Rn with its Euclidean metric.

It is clear that for flat manifolds,Rm = 0. The converse is true as well. In
order to prove this we need some facts about vector fields. A point p ∈ M
is a regular point of the vector field V if Vp 6= 0. The following canonical
form result is [1, Theorem 9.22].

13.5. Theorem. Let V be a smooth vector field on M and p a regular point
of V . There there exists a neighborhood of p and coordinates (xi) such that
V = ∂

∂x1
.
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13.6. Definition. Let D ⊂ M × R and θ : D → M be a smooth flow. We
say that the vector field W is invariant under θ if

(dθt)p(Wp) = Wθt(p),

for all (t, p) ∈ D.

We define the Lie derivative of W with respect to V as

(LVW )p : =
d

dt
|t=0d(θV−t)θVt (p)(WθVt (p))

= lim
t→0

d(θV−t)θVt (p)(WθVt (p))−Wp

t
.

Here θV denotes the flow of V .

13.7. Lemma. LV (W )p exists for all p ∈ M and defines a smooth vector
field.

13.8. Theorem. LV (W ) = [V,W ].

13.2. Lecture 23, Wed 17-1-2018.

13.9. Theorem. For vector fields V,W ∈ X (M) the following are equiv-
alent:

(1) [V,W ] = 0;
(2) V is invariant under the flow of W ;
(3) W is invariant under the flow of V .

Two flows θ and ψ are said to commute if whenever one of the expressions

θt ◦ ψs(p), ψs ◦ θt(p),

is defined then both are defined and they are equal.

13.10. Theorem. Two vector fields V,W commute if and only if their flows
commute.

We now provide a criterion for when a given frame can be regarded as a
coordinate frame.

13.11. Theorem. LetM be an n-dimensional manifold and (E1, · · · , En) a
local frame over an open set W such that [Ei, Ej] = 0 on W . Then for each
p ∈ W there exists a smooth chart (U, (xi)) around p such that Ei = ∂

∂xi
.

The above results are needed to proof the following characterization of
flat manifolds.

13.12. Theorem. A Riemannian manifold is flat if and only if Rm = 0.
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14. Week 14

14.1. Lecture 24, Tue 23-1-2018. We collect some symmetries of the Rie-
mann tensor Rm which can be found [2, Chapter 7].
14.1. Proposition. The identities

(1) Rm(W,X, Y, Z) = −Rm(X,W, Y, Z)
(2) Rm(W,X, Y, Z) = −Rm(W,X,Z, Y )
(3) Rm(W,X, Y, Z) = Rm(Y, Z,W,X)
(4) Rm(W,X, Y, Z) +Rm(X, Y,W,Z) +Rm(Y,W,X,Z) = 0

The last identity is known as the first Bianchi identity.

14.2. Proposition (Second Bianchi identity).
∇WRm(X, Y, Z, V ) +∇ZRm(X, Y, V,W ) +∇VRm(X, Y,W,Z) = 0.

We now consider some simpler tensors derived from the Riemann tensor.

14.3. Definition. The Ricci tensor is the covariant 2-tensor field

Rc : (X, Y ) 7→ Trg(Z 7→ R(Z, Y )X).

In coordinates

Rc =
∑
i,j

Rijdxi ⊗ dxj =
∑

i,j,k,`,m

gkmRkijmdxi ⊗ dxj.

The scalar curvature is the function S := TrgRc =
∑
gijRij , where the

last expression is a local one. The following result is [2, Lemma 8.7]
14.4. Proposition. Let (M, g) be a 2-dimensional manifold. Then

Rm(X, Y, Z,W ) =
1

2
S(〈X,W 〉〈Y, Z〉 − 〈X,Z〉〈Y,W 〉)

Rc(X, Y ) =
1

2
S〈X, Y 〉

S = 2
Rm(E1, E2, E2, E1)

|E1|2|E2|2 − 〈E1, E2〉2
,

where in the last expression, E1, E2 is any basis of TpM .

14.2. Lecture 25, Wed 24-1-2018. The discussion of the Gauss-Bonnet
theorem is to be found in [2, Chapter 9].

Suppose that γ : [a, b] → R2 is a smooth unit speed closed curve. The
tangent angle function is the map θ : [a, b] → R satisfying θ(a) ∈ (−π, π]
and γ′(t) = (cos θ(t), sin θ(t)). This map is smooth as it is the lift of γ to
the universal cover R of the unit circle.

14.5. Definition. If γ : [a, b] → R2 is a unit speed smooth closed curve
satisfying γ′(a) = γ′(b) we define its rotation angle to be Rot(γ) := θ(b)−
θ(a).
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It is clear that Rot(γ) = 2kπ for some integer k. We now extend the
definition of rotation angle to piecewise smooth closed curves. Let

a = a0 < a1 < · · · < ak = b,

be the subdivision for which γ|[ai−1,ai] is smooth. We call the points γ(ai)
vertices and the segments γ|[ai−1,ai] edges. Note that the limits

γ′(a+
i ) := lim

t↓ai
γ′(t), γ(a−i ) = lim

t↑ai
γ′(t),

both exist. We define the exterior angle εi between γ′(a+
i ) and γ′(a−i ) to

be chosen in [−π, π] with a positive sign if (γ′(a−i ), γ′(a+
i )) is an oriented

basis of R2 and a negative sign otherwise. If γ(a+
i ) = −γ(a−i ) there is no

way to choose between π and −π and we leave this case undefined.

14.6. Definition. A curved polygon in R2 is a simple closed piecewise
smooth unit speed curve γ : [a, b]→ R2 such that

• None of the exterior angles equals ±π;
• γ is the boundary of a bounded open set Ω ⊂ R2.

A curved polygon γ is positively oriented if γ′ is compatible with the Stokes
orientation of ∂Ω.

The tangent angle function can now be defined as follows: choose θ(a) ∈
(−π, π] and θ(t) as before for t ∈ (a, a1). Then set

θ(a1) := lim
t↑a1

θ(t) + ε1,

and proceed as before for t ∈ (a1, a2). Inductively we then set

θ(ai) := lim
t↑ai

θ(t) + εi.

We so obtain the tangent angle function θ : [a, b] → R2 and define the
rotation angle of the curved polygon γ as Rot(γ) = θ(b)− θ(a).

14.7. Theorem (Hopf). If γ is a positively oriented curved polygon in R2

then Rot(γ) = 2π.

14.8. Definition. Let (M, g) be a Riemannian 2-manifold. A curved poly-
gon in M is a piecewise smooth unit speed curve γ : [a, b]→ M that is the
boundary of an open set Ω with compact closure. Moreover we require that
γ is contained in a single chart (U,ϕ) such that ϕ ◦ γ is a curved polygon in
R2.

Becuase of the above definition, to define the tangent and exterior angles
of a curved polygon in a 2-manifold, it is enough to do so for curved poly-
gons contained in an open set of R2 with an arbitrary metric g. Using the
Stokes orientation we define the exterior angle εi ∈ [−π, π] at ai by

cos εi := 〈γ(a+
i ), γ(a−i )〉g.
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The tangent angle θ at smooth smooth points can be defined relative to ∂
∂x1

,
so this definition may depend on the chart chosen. As before we obtain
θ : [a, b]→ R and set Rotg(γ) := θ(b)− θ(a).

14.9. Lemma. If γ is a positively oriented polygon in M then Rotg(γ) =
2π.

We denote by N(t) the normal vector field to γ at smooth points that
makes (γ′(t), N(t)) into an oriented basis. The signed curvature at smooth
points is defined as

κN(t) := 〈Dtγ
′(t), N(t)〉g.

Since Dtγ
′(t) is orthogonal to γ′(t) we obtain that Dtγ

′(t) = κN(t)N(t).

14.10. Theorem. Let (M, g) be an oriented Riemannian 2-manifold and γ
a positively oriented curved polygon in M . Then

1

2

∫
M

SdVg +

∫
γ

κNds+
k∑
i=1

εi = 2π.

14.11. Definition. Let (M, g) be a Riemannian 2-manifold. A triangulation
of M is a finite collection T = {Ti} of curved triangles Ti such that

• Ti = ∂Ωi for precompact open sets Ωi;
•
⋃
i Ωi = M ;

• the intersections Ti∩Tj consist of at most a single vertex or a single
edge.

Every smooth compact surface admits a triangulation and if Nv is the num-
ber of vertices, Ne the number of edges and Nf the number of faces ( all
counted once, that is without multiplicities) in the triangulation the the Eu-
ler characteristic

χ(M,T ) = Nv −Ne +Nf

is independent of the triangulation and is in fact a topological invariant of
M .

14.12. Theorem (Gauss-Bonnet). Let (M, g) be a compact oriented Rie-
mannian 2-manifold. Then∫

M

SdVg = 4πχ(M).
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