GLOBAL ANALYSIS I - WS 2017/2018

DR. B. MESLAND AND S. ROOS (M.SC.)

Exercise sheet 1 - due 18-10-2018

1. Exercise. Let N = (0, ..., 0, 1) be the "north pole" and S = -N the "south pole" of the *n*-sphere

$$S^{n} := \{ x \in \mathbb{R}^{n+1} : \|x\| = 1 \}.$$

Define stereographic projection $\sigma: S^n \setminus \{N\} \to \mathbb{R}^n$ by

$$\sigma(x_1, ..., x_{n+1}) = \frac{(x_1, ..., x_n)}{1 - x_{n+1}}.$$

Let $\tau(x) := -\sigma(-x)$ for $x \in S^n \setminus \{S\}$.

(a) Show that σ is bijective, and $\sigma^{-1}(u_1, ..., u_n) = \frac{(2u_1, ..., 2u_n, |u|^2 - 1)}{|u|^2 + 1}$

(b) Compute the transition map $\tau \circ \sigma^{-1}$ and verify that the atlas consisting of the two charts $(S^n \setminus N, \sigma)$ and $(S^n \setminus S, \tau)$ defines a smooth structure on S^n . (The coordinates defined by σ and τ are called stereographic coordinates.)

(c) Show that this smooth structure is the same as the one defined in the lecture, using the charts

 $U_i^{\pm}: \{ (x_1, \cdots , x_{n+1}) : \pm x_i > 0 \}, \quad \phi_i^{\pm}(x) := (x_1, \cdots, \hat{x}_i, \cdots, x_{n+1}).$

2. Exercise. Show that an open cover $\{U_{\alpha}\}_{\alpha \in A}$ of precompact sets is locally finite if and only if every U_{α} has nonempty intersection with only finitely many U_{β} . Give a counterexample in case the cover is not consisting of open sets and in case the cover is not consisting of precompact sets.

3. Exercise. Write down a partition of unity subordinate to the cover $(S^n \setminus N, \sigma), (S^n \setminus S, \tau)$ of S^n .

4. Exercise. Recall the extension Lemma:

Let M be a smooth manifold, and suppose f is a smooth function defined on a closed subset $A \subset M$. For any open set U containing A, there exists a smooth function $\tilde{f} \in C^{\infty}(M)$ such that $\tilde{f}|_A = f$ and $\operatorname{supp} f \subset U$.

Show that the condition that A be closed is necessary by giving an example of a smooth function on a nonclosed subset of a manifold that admits no smooth extension to the whole manifold.