GLOBAL ANALYSIS I - WS 2017/2018

DR. B. MESLAND, T. KASTENHOLZ (M. SC.) AND S. ROOS (M.SC.)

Exercise sheet 10 - due Wednesday 10-1 -2018

Please hand in the exercises stapled or paperclipped together, with name AND Matrikelnr. If you work in groups, one sheet per group suffices (at most 3 people per group).

1. Exercise (Cf. Exercise 5.3 of Riemannian manifolds). Let $M \subset \mathbb{R}^{n}$ be an embedded submanifold with Riemannian metric g induced from the Euclidean metric on \mathbb{R}^{n}. Denote by π^{t} the orthogonal projection $T_{p} \mathbb{R}^{n} \rightarrow T_{p} M$ and by $\bar{\nabla}$ the Euclidean connection on \mathbb{R}^{n}. Show that the operator

$$
\nabla^{t}: \mathscr{X}(M) \times \mathscr{X}(M) \rightarrow \mathscr{X}(M)
$$

given by $\nabla_{X}^{t} Y:=\pi^{t} \bar{\nabla}_{X}(Y)$ is a connection that is compatible with g.
Hint: use that $[X, Y]$ is tangent to M whenever X and Y are tangent to M.
2. Exercise. Let $\left(U,\left(x_{i}\right)\right)$ be a normal coordinate chart centered at p.
(1) Prove that for $V=\sum_{i} V_{i} \frac{\partial}{\partial x_{i}} \in T_{p} M$ the geodesic γ_{V} through p with initial velocity V is given, in normal coordinates, by

$$
\gamma_{V}(t)=\left(t V_{1}, \cdots, t V_{n}\right)
$$

as long as γ_{V} stays within U.
(2) Prove that the first partial derivatives of $g_{i j}$ and the Christoffel symbols $\Gamma_{i j}^{k}$ vanish at p (in these coordinates).
3. Exercise (Cf. Exercise 5-5 of Riemannian manifolds). Let (M, g) be a Riemannian manifold and $f \in C^{\infty}(M)$. Show that if $\|\operatorname{grad} f\|_{g}=1$ then the inegral curves of $\operatorname{grad} f$ are geodesics.
4. Exercise (Cf. Exercise 5.7 of Riemannian manifolds). Let S_{R}^{2} be the sphere of radius R in \mathbb{R}^{3}. Define spherical coordinates (θ, φ) on the subset

$$
S_{R}^{2} \backslash\{(x, y, z): x \leq 0, y=0\}
$$

of the sphere by

$$
(x, y, z)=(R \sin \varphi \cos \theta, R \sin \varphi \sin \theta, R \cos \varphi), \quad \pi<\theta<\pi, \quad 0<\varphi<\pi
$$

(1) Show that the round metric of radius R is

$$
\stackrel{\circ}{g}_{R}=R^{2} d \varphi^{2}+R^{2} \sin ^{2} \varphi d \theta^{2}
$$

in spherical coordinates.
(2) Compute the Christoffel symbols of $\stackrel{\circ}{g}_{R}$.
(3) Using the geodesic equation in spherical coordinates, verify that each merid$\operatorname{ian}(\theta(t), \varphi(t))=\left(\theta_{0}, t\right)$ is a geodesic.

