GLOBAL ANALYSIS I - WS 2017/2018

DR. B. MESLAND, T. KASTENHOLZ (M. SC.) AND S. ROOS (M.SC.)

Exercise sheet 12 - due Wednesday 24-1-2018

Please hand in the exercises stapled or paperclipped together, with name AND Matrikelnr. If you work in groups, one sheet per group suffices (at most 3 people per group).

1. Exercise (Cf. Exercise $7-1$ of Riemannian manifolds). Let (M, g) be a Riemannian manifold.
(1) Compute the components of the Riemann curvature tensor in terms of the Christoffel symbols in coordinates.
(2) Suppose that $\left(x_{i}\right)$ are normal coordinates centered at p and

$$
R m=\sum_{i, j, k, \ell} R_{i j k \ell} d x_{i} \otimes d x_{j} \otimes d x_{k} \otimes d x_{\ell}
$$

the local expression of the Riemann tensor. Show that the following holds at p :

$$
2 R_{i j k \ell}=\frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{\ell}} g_{i k}+\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{k}} g_{j \ell}-\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{\ell}} g_{j k}-\frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{k}} g_{i \ell}
$$

2. Exercise. Let ∇ be the Riemannian connection and $\omega_{i j}$ the connection 1-forms with respect to a local frame E_{i}. Let ϕ_{i} denote the dual coframe and define $\Omega_{i j}$ the curvature 2 -forms by

$$
\Omega_{i j}=\frac{1}{2} R_{k l i}^{j} \phi_{k} \wedge \phi_{\ell},
$$

with $R_{k \ell i}^{j}$ the components of the curvature endomorphism. Show that they satisfy Cartan's second structure equation

$$
\Omega_{i j}=d \omega_{i j}-\sum_{k} \omega_{i k} \wedge \omega_{k j} .
$$

3. Exercise (Cf. Exercise 9-16 of Introduction to smooth manifolds). Give an example of smooth vector fields V, \tilde{V}, and W on \mathbb{R}^{2} such that $V=\tilde{V}=\frac{\partial}{\partial x}$ along the x-axis but $\mathscr{L}_{V} W \neq \mathscr{L}_{\tilde{V}} W$ at the origin. (Remark: this shows that it is really necessary to know the vector field V to compute $\left(\mathscr{L}_{V} W\right)_{p}$; it is not sufficient just to know the vector V_{p}, or even to know the values of V along an integral curve of V.)
