GLOBAL ANALYSIS I - WS 2017/2018

DR. B. MESLAND AND S. ROOS (M.SC.)

Exercise sheet 2 - due 25-10-2018

Please hand in the exercises stapled or paperclipped together, with name AND Matrikelnr.

1. Exercise. Let $F : M \to N$ and $G : N \to P$ be smooth maps between smooth manifolds M and N, and $p \in M$. Prove that:

a.) $(dF)_p: T_pM \to T_pN$ is linear; b.) $(dG)_{F(p)} \circ (dF)_p = (d(G \circ F))_p: T_pM \to T_{G \circ F(p)}P$; c.) $(dId_M)_p = Id_{T_p(M)}: T_pM \to T_p(M)$.

2. Exercise (Exercise 3.17 in *Introduction to smooth manifolds*). Let (x, y) be the standard coordinates on \mathbb{R}^2 . Verify that

$$\tilde{x} = x, \quad \tilde{y} = y + x^3,$$

are global smooth coordinates on \mathbb{R}^2 . Let p = (1,0) in standard coordinates and show that

$$\frac{\partial}{\partial x}|_p \neq \frac{\partial}{\partial \tilde{x}}|_p,$$

even though x and \tilde{x} are identically equal.

3. Exercise (Exercise 3-4. in *Introduction to smooth manifolds*). Let $S^1 \subset \mathbb{R}^2$ be the unit circle. Show that the tangent bundle TS^1 is diffeomorphic to the trivial bundle $S^1 \times \mathbb{R}$.

Hint: use that the tangent vectors to $(x, y) \in S^1$ *are perpendicular to* (x, y) *and consider the map* $S^1 \times \mathbb{R} \to TS^1$ *given by*

$$((x,y),t)\mapsto ((x,y), -ty\frac{\partial}{\partial x} + tx\frac{\partial}{\partial y}),$$

where $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ are the standard derivations on \mathbb{R}^2 .

4. Exercise (See Example 10.3 in *Introduction to smooth manifolds*). Define an equivalence relation on \mathbb{R}^2 by

$$(x,y) \sim (x',y') \Leftrightarrow \exists n \in \mathbb{Z} \quad (x',y') = (x+n,(-1)^n y).$$

Let $E := \mathbb{R}^2 / \sim$ be the quotient space and let

$$S^{1} = \{ e^{it} \in \mathbb{C} : t \in \mathbb{R} \} \subset \mathbb{C} \simeq \mathbb{R}^{2}$$

be the unit circle.

a.) Show that the map

$$\tilde{\pi} : \mathbb{R}^2 \to S^1, \quad (x, y) \mapsto e^{2\pi i x},$$

descends to a continuous map $\pi: E \to S^1$; b.) Show that $\pi: E \to S^1$ is a topological vector bundle of rank 1; c.) Show that E is not homeomorphic to the trivial bundle $S^1 \times \mathbb{R}$.