GLOBAL ANALYSIS I - WS 2017/2018

DR. B. MESLAND AND S. ROOS (M.SC.)

Exercise sheet 3 - due 8-11-2017

Please hand in the exercises stapled or paperclipped together, with name AND Matrikelnr. If you work in groups, one sheet per group suffices (at most 3 people per group).

1. Exercise (Exercise 11.10 in *Introduction to smooth manifolds*). Let $\pi: E \to M$ be a smooth vector bundle with transition functions given by the maps

$$\tau: U \to GL(k, \mathbb{R}).$$

Define the dual bundle E^* by setting

$$E^* := \bigsqcup_{p \in M} E_p^*,$$

where E_p^* is the vector space dual of E_p , with the obvious bundle projection. Show that $E^* \to M$ is a smooth vector bundle whose transition functions are given by

$$\tau^*(p):=(\tau(p)^{-1})^T\in GL(k,\mathbb{R}),$$

where A^T denotes the transpose matrix of A.

2. Exercise. For one forms $\omega_1, \dots, \omega_k$ and vector fields X_1, \dots, X_k prove that

$$\omega_1 \wedge \cdots \wedge \omega_k(X_1, \cdots, X_k) = \det((\omega_i(X_j))_{ij}).$$

- **3. Exercise** (Cf. Exercise 14-7 in *Introduction to smooth manifolds*). For each of the maps $F:M\to N$ and differential forms $\omega\in\Omega^*(N)$ compute $d\omega$, $F^*\omega$ and verify that $F^*d\omega=dF^*\omega$.
- a) $M = N = \mathbb{R}^2$; $F(s,t) = (st, e^t)$; $\omega = xdy$
- b) $M=\mathbb{R}^2$ and $N=\mathbb{R}^3$; $F(\theta,\phi)=((\cos(\phi)+2)\cos\theta,(\cos(\phi)+2)\sin\theta,\sin\phi);$ $\omega=ydz\wedge dx.$
- **4. Exercise.** Let $F:M\to N$ be a smooth map between smooth manifolds M and N and let $\omega\in\Omega^k(N),\eta\in\Omega^\ell(N)$. Prove the identities

$$F^*(\omega \wedge \eta) = F^*\omega \wedge F^*\eta, \quad F^*d\omega = dF^*\omega.$$