GLOBAL ANALYSIS I - WS 2017/2018

DR. B. MESLAND, T. KASTENHOLZ (M. SC.) AND S. ROOS (M.SC.)

Exercise sheet 4 - due 15-11-2017

Please hand in the exercises stapled or paperclipped together, with name AND Matrikelnr. If you work in groups, one sheet per group suffices (at most 3 people per group).

1. Exercise (Exercise 15.13 in *Introduction to smooth manifolds*). Let M and N be oriented smooth manifolds of positive dimension (with or without boundary), and $F: M \to N$ a local diffeomorphism. Show that the following are equivalent:

- (1) F is orientation preserving
- (2) with respect to any two oriented charts for M and N, the Jacobian matrix of F has positive determinant
- (3) for any positively oriented orientation form ω on N, the form $F^*\omega$ is a positively oriented orientation form on M.

2. Exercise. A manifold is *parallelizable* if it admits a smooth global frame or equivalently if TM is isomorphic to a trivial bundle.

- (1) Prove that every parallelizable manfiold is orientable
- (2) More generally, prove that an *n*-dimensional manifold M is orientable if and only if $\bigwedge^n TM$ and $\bigwedge^n T^*M$ are isomorphic to a trivial bundle.

3. Exercise (Cf. Exercise 15-3 of *Introduction to smooth manifolds*). Let $n \ge 1$ and let \mathbb{S}^n be the *n*-sphere. Then $\mathbb{S}^n = \partial \mathbb{B}^{n+1}$ is the boundary of the ball

$$\mathbb{B}^{n+1} := \{ x \in \mathbb{R}^{n+1} : \|x\| \le 1 \}.$$

- (1) Show that $N = \sum_{i=1}^{n+1} x_i \frac{\partial}{\partial x_i}$ is an outward pointing vector field and thus induces an orientation on $\mathbb{S}^n = \partial \mathbb{B}^{n+1}$.
- (2) Show that the *antipodal map*

$$\alpha: \mathbb{S}^n \to \mathbb{S}^n, \quad \alpha(x) := -x,$$

is orientation preserving if and only if n is odd.

4. Exercise (Cf. Exercise 16-1 of *Introduction to smooth manifolds*). Let v_1, \dots, v_n be linearly independent vectors in \mathbb{R}^n . The *n*-dimensional paralellepiped *P* spanned by the v_i is

$$P := \{\sum_{i=1}^{n} t_i v_i : 0 \le t_i \le 1\}.$$

Show that the volume Vol(P) of P satisfies $Vol(P) = |\det V|$, where $V := (v_1 \cdots v_n)$ is the $n \times n$ matrix whose columns are the vectors v_i .