GLOBAL ANALYSIS I - WS 2017/2018

DR. B. MESLAND, T. KASTENHOLZ (M. SC.) AND S. ROOS (M.SC.)

Exercise sheet 4 - due 15-11-2017

Please hand in the exercises stapled or paperclipped together, with name AND Matrikelnr. If you work in groups, one sheet per group suffices (at most 3 people per group).

1. Exercise (Exercise 15.13 in Introduction to smooth manifolds). Let M and N be oriented smooth manifolds of positive dimension (with or without boundary), and $F: M \rightarrow N$ a local diffeomorphism. Show that the following are equivalent:
(1) F is orientation preserving
(2) with respect to any two oriented charts for M and N, the Jacobian matrix of F has positive determinant
(3) for any positively oriented orientation form ω on N, the form $F^{*} \omega$ is a positively oriented orientation form on M.
2. Exercise. A manifold is parallelizable if it admits a smooth global frame or equivalently if $T M$ is isomorphic to a trivial bundle.
(1) Prove that every parallelizable manfiold is orientable
(2) More generally, prove that an n-dimensional manifold M is orientable if and only if $\bigwedge^{n} T M$ and $\bigwedge^{n} T^{*} M$ are isomorphic to a trivial bundle.
3. Exercise (Cf. Exercise 15-3 of Introduction to smooth manifolds). Let $n \geq 1$ and let \mathbb{S}^{n} be the n-sphere. Then $\mathbb{S}^{n}=\partial \mathbb{B}^{n+1}$ is the boundary of the ball

$$
\mathbb{B}^{n+1}:=\left\{x \in \mathbb{R}^{n+1}:\|x\| \leq 1\right\}
$$

(1) Show that $N=\sum_{i=1}^{n+1} x_{i} \frac{\partial}{\partial x_{i}}$ is an outward pointing vector field and thus induces an orientation on $\mathbb{S}^{n}=\partial \mathbb{B}^{n+1}$.
(2) Show that the antipodal map

$$
\alpha: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}, \quad \alpha(x):=-x
$$

is orientation preserving if and only if n is odd.
4. Exercise (Cf. Exercise 16-1 of Introduction to smooth manifolds). Let v_{1}, \cdots, v_{n} be linearly independent vectors in \mathbb{R}^{n}. The n-dimensional paralellepiped P spanned by the v_{i} is

$$
P:=\left\{\sum_{i=1}^{n} t_{i} v_{i}: 0 \leq t_{i} \leq 1\right\} .
$$

Show that the volume $\operatorname{Vol}(P)$ of P satisfies $\operatorname{Vol}(P)=|\operatorname{det} V|$, where $V:=$ $\left(v_{1} \cdots v_{n}\right)$ is the $n \times n$ matrix whose columns are the vectors v_{i}.

