GLOBAL ANALYSIS I - WS 2017/2018

DR. B. MESLAND, T. KASTENHOLZ (M. SC.) AND S. ROOS (M.SC.)

Exercise sheet 6-due 29-11-2017

Please hand in the exercises stapled or paperclipped together, with name AND Matrikelnr. If you work in groups, one sheet per group suffices (at most 3 people per group).

1. Exercise. Let (M, g) be a Riemannian manifold and $\gamma:[a, b] \rightarrow M$ be a smooth curve such that $\gamma^{\prime}(t) \neq 0$ for all $t \in[a, b]$. Prove that γ admits a reparametrization $\tilde{\gamma}:[c, d] \rightarrow M$ with $\left|\tilde{\gamma}^{\prime}(s)\right|_{g}=1$ for all $s \in[c, d]$. What can we say about the length of of γ ?
2. Exercise. Let $F: M \rightarrow N$ be a smooth map between manifolds and g a Riemannian metric on N. Define the pull back of the metric g to be the pairing
$F^{*} g: \mathscr{X}(M) \times \mathscr{X}(M) \rightarrow C^{\infty}(M), \quad F^{*} g(X, Y)(p):=g\left(d F_{p}\left(X_{p}\right), d F_{p}\left(Y_{p}\right)\right)$.
Show that $F^{*} g$ is a Riemannian metric if and only if F is a smooth immersion, that is, $d F_{p}: T_{p}(M) \rightarrow T_{F(p)}(N)$ is injective for all $p \in M$.
3. Exercise (Cf. Exercise 13.27 of Introduction to smooth manifolds). Let (M, g) and (\tilde{M}, \tilde{g}) be Riemannian manifolds with Riemannian distance function d_{g} and $d_{\tilde{g}}$ respectively. Let $F: M \rightarrow \tilde{M}$ be a Riemannian isometry, that is, F is a diffeomorphism and $F^{*} \tilde{g}=g$. Show that $d_{\tilde{g}}(F(p), F(q))=d_{g}(p, q)$.
4. Exercise (Upper half-space, Poincare ball and upper hyperboloid sheet). Consider the Riemannian manifolds:

- $\mathbb{H}^{n}:=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}: x_{n}>0\right\}, \quad g=\sum_{i=1}^{n} \frac{\left(d x_{i}\right)^{2}}{x_{n}^{2}}$,
- $\mathbb{B}^{n}:=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n+1}:\|x\|^{2}:=\sum_{i=1}^{n} x_{i}^{2}<1\right\}$,
$h=4 \sum_{i=1}^{n} \frac{\left(d x_{i}\right)^{2}}{\left(1-\|x\|^{2}\right)^{2}}$,
$\bullet \mathbb{U}^{n}:=\left\{\left(x_{1}, \cdots, x_{n}, \tau\right) \in \mathbb{R}^{n+!}: \tau>0, \tau^{2}-\|x\|^{2}=1\right\}$,
$k=\sum_{i=1}^{n}\left(d x_{i}\right)^{2}-(d \tau)^{2}$.
(1) The hyperbolic stereographic projection

$$
\pi: \mathbb{U}^{n} \rightarrow \mathbb{B}^{n}, \quad(x, \tau) \mapsto \frac{x}{1+\tau}
$$

is a diffeomorphism with inverse

$$
\pi^{-1}: \mathbb{B}^{n} \rightarrow \mathbb{U}^{n}, \quad x \mapsto\left(\frac{2 x}{1-\|x\|^{2}}, \frac{1+\|x\|^{2}}{1-\|x\|^{2}}\right)
$$

Prove that $\left(\pi^{-1}\right)^{*} k=h$ so that π and π^{-1} are isometries.
(2) Write $\left(x_{1}, \cdots, x_{n}\right)=\left(y, x_{n}\right)$. The generalized Cayley transform σ : $\mathbb{B}^{n} \rightarrow \mathbb{H}^{n}$

$$
\sigma:\left(y, x_{n}\right) \mapsto\left(\frac{2 y}{\|y\|^{2}+\left(x_{n}-1\right)^{2}}, \frac{1-\|y\|^{2}-x_{n}^{2}}{\|y\|^{2}+\left(x_{n}-1\right)^{2}}\right)
$$

is a diffeomorphism with inverse

$$
\sigma:(x, \tau) \mapsto\left(\frac{2 x}{\|x\|^{2}+(\tau+1)^{2}}, \frac{\|x\|^{2}+\tau^{2}-1}{\|x\|^{2}+(\tau+1)^{2}}\right)
$$

Show that $\sigma^{*} g=h$ and proving that σ and σ^{-1} are Riemannian isometries.
Hint: for both problems, consider the case $n=2$ first. In complex coordinates $z=y+i x_{2}$, the map σ in (2) takes the form $z \mapsto-i \frac{z+i}{z-i}$.

