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1. Exercise (Cf. Exercise 4.2 of Riemannian manifolds). Let ∇ be a linear con-
nection on M and consider the map

τ : X (M)×X (M)→X (M),

defined by
τ(X,Y ) := ∇X(Y )−∇Y (X)− [X,Y ].

(1) Show that τ is a (2, 1) tensor field. τ is called the torsion tensor of∇.
(2) We say that∇ is symmetric if τ ≡ 0. Show that∇ is symmetric if and only

if its Christoffel symbols Γk
ij with respect to any coordinate frame satisfy

Γk
ij = Γk

ji.

2. Exercise. Let f ∈ C∞(M) and ∇ a linear connection on M .
(1) Show that the covariant Hessian ∇2(f) = ∇(∇(f)) is given by

∇2(f)(X,Y ) = Y (Xf)− (∇YX)f, X, Y ∈X (M).

(2) Show that∇ is symmetric if and only if for any f ∈ C∞(M) the covariant
Hessian∇(∇(f)) is a symmetric 2-tensor field.

3. Exercise (Cf. Exercise 4.4 of Riemannian manifolds). Let ∇0 and ∇1 be linear
connections on M .

(1) Show that the difference tensor, defined on vector fields X and Y by

A(X,Y ) := ∇0
XY −∇1

XY,

is a (2, 1) tensor field (that is, show that A is C∞(M)-linear in Y ). Con-
clude that the set of all linear connections on M is equal to

{∇0 +A : A ∈ Γ∞(T 2
1M)}.

(2) Show that ∇0 and ∇1 determine the same geodesics if and only if their
difference tensor is antisymmetric, ie. A(X,Y ) = −A(Y,X).

(3) Show that ∇0,∇1 have the same torsion tensor if and only if their differ-
ence tensor is symmetric, that is A(X,Y ) = A(Y,X).
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