GLOBAL ANALYSIS I - WS 2017/2018

DR. B. MESLAND, T. KASTENHOLZ (M. SC.) AND S. ROOS (M.SC.)

Exercise sheet 8 - due Wednesday 13-12-2017

Please hand in the exercises stapled or paperclipped together, with name AND Matrikelnr. If you work in groups, one sheet per group suffices (at most 3 people per group).

1. Exercise (Cf. Exercise 4.5 of Riemannian manifolds). Let ∇ be a linear connection on M, E_{i} a local frame and ϕ_{i} its dual coframe.
(1) Show that there exists a uniquely determined matrix of 1 -forms $\omega_{i j}$ such that for all $X \in \mathscr{X}(M)$

$$
\nabla_{X}\left(E_{i}\right)=\sum_{j} \omega_{i j} E_{j} .
$$

The $\omega_{i j}$ are called the connection 1-forms for the frame E_{i}.
(2) Let τ be the torsion tensor and τ_{j} the torsion 2-forms defined by

$$
\tau(X, Y)=\sum_{j} \tau_{j}(X, Y) E_{j}
$$

Prove Cartan's first structure equation:

$$
d \phi_{j}=\tau_{j}+\sum_{i} \phi_{i} \wedge \omega_{i j} .
$$

2. Exercise (Cf. Exercise 5.1 of Riemannian manifolds). Let ∇ be a linear connection on a Riemannian manifold (M, g). Show that ∇ is compatible with g if and only if the connection 1-forms $\omega_{i j}$ with respect to a local frame E_{i} satisfy

$$
\sum_{k} g_{j k} \omega_{k i}+g_{i k} \omega_{k j}=d g_{i j},
$$

where $g_{i j}$ are the components of g with respect to the frame E_{i}. In particular the matrix $\omega_{i j}$ with respect to any local frame is skew symmetric.

