Deadline to hand in: 31 October 2013, 11.15u

- 1.) (a) Show that $\bar{x} = 0$ is an asymptotically stable solution of $\dot{x} = -x^3$ ($\in \mathbf{R}$). Use the definition! (see page 118 of the book).
 - (b) Is this also true for the *complex* equation $\dot{z} = -z^3$ (with $z \in \mathbb{C}$)? Use again the definition.

Hint: Write this complex equation as a 2-dimensional real system by introducing the real and imaginary parts of z, i.e. by setting z = x + iy and deriving equations for \dot{x} and \dot{y} . Make a sketch of the phase portrait. Note that *instability* is defined as *not* being stable (page 116 book).

2.) Consider the linear system,

$$\begin{cases} \dot{x} = Ax + B(t)x, \ x \in \mathbf{R}^n, n \ge 1, \\ x(0) = x_0, \end{cases}$$
(1)

with A a $n \times n$ matrix (with constant coefficients) and B(t) a $n \times n$ matrix with coefficients that depend continuously on time t; define $\phi(t; x_0)$ as the solution of (1). Moreover, it is given that there is a (positive) continuous function $C : \mathbf{R}^+ \to \mathbf{R}^+$ such that $\|B(t)x\| < C(t)\|x\|$ for all $x \in \mathbf{R}^n$ and $t \ge 0$.

(*Note*: For given B(t), functions C(t) like defined here always exist; the infimum over all possible C(t)'s defines the norm ||B(t)|| of the matrix B(t).)

(a) Explain why $\tilde{\phi}(t; x_0) = e^{At + \int_0^t B(s)ds} x_0$ is, in general, not a solution of (1).

Assume first that,

- (Ai) all eigenvalues λ_j of A satisfy $\operatorname{Re}\lambda_j < 0$;
- (Bi) $\lim_{t\to\infty} C(t) = 0.$
- (b) Show that it follows from assumptions (Ai) and (Bi) that lim_{t→∞} φ(t; x₀) → 0 for all x₀ ∈ **R**ⁿ and that the critical point x^{*} = 0 of (1) is asymptotically stable (use the definition!). *Hint.* Apply the arguments of the proof of Theorem 4.6 (in the book) with q(y)

Hint. Apply the arguments of the proof of Theorem 4.6 (in the book) with g(y) replaced by B(t)x.

Now assume that,

(Aii) all eigenvalues λ_j of A satisfy $\operatorname{Re}\lambda_j \leq 0$;

(Aiii) the eigenvalues λ_j of A with $\operatorname{Re}(\lambda_j) = 0$ do not coincide

- (i.e. these eigenvalues have algebraic and geometric multiplicity 1);
- (Bii) C(t) is integrable: $\int_0^\infty C(t) dt = D < \infty$.

In the subsequent exercises it may be used that for matrices A that satisfy assumptions (Aii) and (Aiii), there is a K > 0 such that $|e^{At}x_0| < K|x_0|$ for all $x_0 \in \mathbb{R}^n$ and $t \ge 0$.

- (c) Show that it follows from assumptions (Aii), (Aiii), and (Bii) that the critical point $x^* = 0$ of (1) is stable. Use the definition.
- (d) Assumption (*Bii*) is (only slightly) stronger than (*Bi*). Does the statement of (c) also hold if (*Bii*) replaced by (*Bi*)? If yes: give a proof; if no: give a counterexample.
- (e) Is additional assumption (Aiii) really necessary for the proof of (c)? Explain!
- 3.) Consider the n-dimensional system

$$\dot{X} = AX + F(X),\tag{2}$$

with A an $n \times n$ constant coefficients matrix and F(X) a nonlinear expression that satisfies $||F(X)|| \leq C||X||^2$ as $||X|| \to 0$, for some C > 0. Recall that we cannot draw any conclusions on the stability of the critical point $\bar{X} = 0$ of (2) if A has eigenvalues λ with $\operatorname{Re}(\lambda) = 0$. Take n = 2, $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, and write X as (x, y). Show that the critical point $\bar{X} = (\bar{x}, \bar{y}) = (0, 0)$ of (2) is

- (a) unstable for $F(X) \equiv 0$.
- (b) stable for $F(X) = F(x, y) = \begin{pmatrix} 0 \\ -x^3 \end{pmatrix}$.

Hint: Write (2) as equation in \ddot{x} and determine a first integral V(x, y) of this equation, i.e. a function V(x, y) such that $\frac{d}{dt}V(x, y) = 0$ for solutions of the equation. Use this V(x, y) as Lyapunov function.

(c) asymptotically stable for $F(X) = F(x, y) = \begin{pmatrix} -x^3 \\ -x^3 - y^3 \end{pmatrix}$. *Hint:* Use the Lyapunov function constructed in (b).

- (d) Keep *n* and *A* as above and consider $F(x, y) = \begin{pmatrix} 0 \\ \alpha x^{\ell} \end{pmatrix}$ for $\alpha \in \mathbf{R}$ and $\ell = 2, 3, 4, \dots$ What can you say about the stability of (0, 0) as function of α and ℓ ?
- (e) Now consider $F(x,y) = \begin{pmatrix} f(x) \\ g(x) \end{pmatrix}$ with nonlinearities $f, g: \mathbf{R} \to \mathbf{R}$ smooth an-

alytic functions of x such that the limits $\lim_{x\to 0} \frac{f(x)}{x^k}$ and $\lim_{x\to 0} \frac{g(x)}{x^\ell}$ both exist and are $\neq 0$ for some $k, \ell \geq 2$. Keep n and A still as above. Determine necessary and sufficient conditions on f and g so that (0,0) is stable/asymptotically stable.