
Assignment-set 1 Introduction to Dynamical Systems 2013

Deadline to hand in: 8 October 2014, 9:00u, in mailbox Corine

1.) (a) Consider g : [0,∞)→ R given by

g(t) =
cos t2

t+ 2
.

Show that limt→∞ g(t) exists, while limt→∞ ġ(t)(= dg
dt (t)) does not.

(b) Consider the autonomous ODE ẋ = f(x), x ∈ Rn, with initial condition x(0) =
x0 and f : Rn → Rn (at least) continuously differentiable. Let φ(t;x0) be a
solution such that

lim
t→∞

φ(t;x0) = a

for a certain a ∈ Rn. Prove that a must be a critical point of the system.
Warning: Be aware of functions that behave like g(t) in (a).

(c) Explain why the function g(t) that is given in (a) cannot be a solution of a
system as described in (b) (with n = 1).

2.) Consider the non-autonomous equation,

ẋ = t2 + [sin(x+ t)]x, with x(0) = x0, (1)

and its autonomous equivalent,{
ẋ = y2 + [sin(x+ y)]x,
ẏ = 1,

with (x(0), y(0)) = (x0, 0). (2)

Note that it is clear from the theory of chapter 3 in the book that equation (1)/system
(2) must have a uniquely defined solution on a certain time interval.

(a) Explain why we cannot conclude from Theorems 4.3 and 4.5 (in the book) that
equation (1)/system (2) defines a complete flow.

(b) Use (1) to prove that |x(t)| ≤ |x(0)|+ 1
3 t

3 +
∫ t
0 |x(s)|ds.

(c) Prove that, for some constant K > 0, |x(t)| ≤ Ket for all t ≥ 0.
Hint: Introduce z(t) ≥ 0 and α(t) ≥ 0 by |x| = z(t)− α(t) and substitute this
into the estimate of (b). Construct an explicit function α(t) in such a way that
Grönwall’s Lemma (Lemma 3.13 in the book) can be applied to z.

(d) Prove that equation (1)/system (2) defines a complete flow.

3.) Consider the two-dimensional system,{
du
dξ = v
dv
dξ = Av − u(1− u),

(3)

with parameter A > 0.



(a) Determine the critical points E1 and E2 of (3) and their character (as function
of A > 0). Sketch the local linearized phase portraits near the critical points
E1 and E2, depending on A.

The aim of this exercise is to establish the existence of a positive heteroclinic orbit
(uh(ξ), vh(ξ)) that connects the critical point E1 to E2, i.e. a solution (uh(ξ), vh(ξ))
of (3) that satisfies limξ→−∞(uh(ξ), vh(ξ)) = E1 and limξ→+∞(uh(ξ), vh(ξ)) = E2,
while uh(ξ), vh(ξ) > 0 for all ξ ∈ R.

(b) Explain that A ≥ 2 is a necessary condition for the existence of such an orbit
(uh(ξ), vh(ξ)). Is (uh(ξ), vh(ξ)) uniquely determined (if it exists)?

To construct (uh(ξ), vh(ξ)), we consider the ODE (3) in ‘backwards time’ ξ̃ = −ξ
and consider the well-defined orbit (us(ξ̃), vs(ξ̃)) (by the nature of E2) that sat-
isfies limξ̃→−∞(us(ξ̃), vs(ξ̃)) = E2. Within this framework, proving the existence
of the positive heteroclinic orbit (uh(ξ), vh(ξ)) is equivalent to establishing that
limξ̃→∞(us(ξ̃), vs(ξ̃)) = E1 (while us(ξ̃), vs(ξ̃) > 0 for all ξ̃ ∈ R).

(c) Formulate the equivalent of (3) in terms of ξ̃ = −ξ and show that for α > 1
4A ,

(us(ξ̃), vs(ξ̃)) can only leave the rectangular region with vertices (0, 0), (1, 0),
(1, α) and (0, α) through the edge between (0, 0) and (0, α).

(d) Prove the existence of a positive heteroclinic orbit (uh(ξ), vh(ξ)) for every A ≥ 2.
Hint: Show that there exists a k > 0 such that (us(ξ̃), vs(ξ̃)) cannot cross
through the (half)line {v = ku, u > 0} and apply exercise 1.

(e) A (positive) traveling wave solution to the PDE

∂U

∂t
=
∂2U

∂x2
+ U(1− U)

with U(x, t) : R × R+ → R, is a positive bounded solution of the PDE that
is stationary in a co-moving frame that travels with speed c ∈ R – the latter
implies that U(x, t) can be written as u(x − ct) for a certain c ∈ R. The
function U(x, t) = uh(ξ) defines such a traveling wave. Explain! What is the
relation between ξ and (x, t), and between A and c? Sketch the traveling wave
U(x, t) = uh(ξ) for several values of t and A or c.


