Assignment-set 1 Introduction to Dynamical Systems 2013

Deadline to hand in: 8 October 2014, 9:00u, in mailbox Corine

1.) (a) Consider g : [0,00) — R given by

cos t2

90 =17

Show that lim; . g(t) exists, while lim;_. §(t)(= %(t)) does not.

(b) Consider the autonomous ODE & = f(z), x € R", with initial condition z(0) =
xo and f : R™ — R" (at least) continuously differentiable. Let ¢(t;xz¢) be a
solution such that

lim ¢(t;x0) = a
t—o00
for a certain a € R™. Prove that a must be a critical point of the system.
Warning: Be aware of functions that behave like g(¢) in (a).
(c) Explain why the function g(¢) that is given in (a) cannot be a solution of a
system as described in (b) (with n = 1).
2.) Consider the non-autonomous equation,

& = t? + [sin(z + t)]z, with 2(0) = o, (1)

and its autonomous equivalent,

{j = VEEREE i 0),00) = (@0,0) @

Note that it is clear from the theory of chapter 3 in the book that equation (1)/system
(2) must have a uniquely defined solution on a certain time interval.

(a) Explain why we cannot conclude from Theorems 4.3 and 4.5 (in the book) that
equation (1)/system (2) defines a complete flow.

(b) Use (1) to prove that |z(t)| < |z(0)] + %t‘?’ + f(f |z(s)|ds.

(c) Prove that, for some constant K > 0, |z(t)| < Ke' for all ¢t > 0.
Hint: Introduce z(t) > 0 and «(t) > 0 by |z| = 2(t) — a(t) and substitute this

into the estimate of (b). Construct an explicit function «(t) in such a way that
Gronwall’s Lemma (Lemma 3.13 in the book) can be applied to z.

(d) Prove that equation (1)/system (2) defines a complete flow.

3.) Consider the two-dimensional system,

du —
{ gs Av —u(l — u), (3)

with parameter A > 0.



(a) Determine the critical points Ey and Es of (3) and their character (as function
of A > 0). Sketch the local linearized phase portraits near the critical points
E; and Es, depending on A.

The aim of this exercise is to establish the existence of a positive heteroclinic orbit
(up(§),vp(€)) that connects the critical point Ej to Es, i.e. a solution (up(§),vs(€))
of (3) that satisfies limgﬁ_m(uh(f),vh(f)) = F; and lim§_>+oo(uh(§),vh(§)) = Fo,
while up(€),v,(€) > 0 for all £ € R.

(b) Explain that A > 2 is a necessary condition for the existence of such an orbit
(up(§),vr(8)). Is (up(§),vn(§)) uniquely determined (if it exists)?

To construct (up(§),vn(§)), we consider the ODE (3) in ‘backwards time’ £=—¢
and consider the well-defined orbit (us(§),vs(§)) (by the nature of E») that sat-
isfies limg | (us(£),vs(§)) = Fa. Within this framework, proving the existence

of the positive heteroclinic orbit (ux(§),vn(€)) is equivalent to establishing that

limg  (us(§),vs(§)) = Er (while us(€), vs(€) > 0 for all £ € R).

(c) Formulate the equivalent of (3) in terms of £ = —¢ and show that for @ > e

(us(€),vs(€)) can only leave the rectangular region with vertices (0,0), (1,0),
(1, ) and (0, ) through the edge between (0,0) and (0, «v).

(d) Prove the existence of a positive heteroclinic orbit (up (), vr(§)) for every A > 2.
Hint: Show that there exists a k > 0 such that (us(§),vs(§)) cannot cross
through the (half)line {v = ku,u > 0} and apply exercise 1.

(e) A (positive) traveling wave solution to the PDE

ou  9*U

% a2 +U(1-0)
with U(z,t) : R x RT — R, is a positive bounded solution of the PDE that
is stationary in a co-moving frame that travels with speed ¢ € R — the latter
implies that U(z,t) can be written as u(z — ct) for a certain ¢ € R. The
function U(z,t) = up(§) defines such a traveling wave. Explain! What is the
relation between & and (z,t), and between A and ¢? Sketch the traveling wave
U(x,t) = up(§) for several values of ¢t and A or c.



