Assignment-set 1 Introduction to Dynamical Systems 2013

Deadline to hand in: 8 October 2014, 9:00u, in mailbox Corine

1.) (a) Consider $g:[0,\infty)\to \mathbf{R}$ given by

$$g(t) = \frac{\cos t^2}{t+2}.$$

Show that $\lim_{t\to\infty} g(t)$ exists, while $\lim_{t\to\infty} \dot{g}(t) (=\frac{dg}{dt}(t))$ does not.

(b) Consider the autonomous ODE $\dot{x} = f(x), x \in \mathbf{R}^n$, with initial condition $x(0) = x_0$ and $f: \mathbf{R}^n \to \mathbf{R}^n$ (at least) continuously differentiable. Let $\phi(t; x_0)$ be a solution such that

$$\lim_{t \to \infty} \phi(t; x_0) = a$$

for a certain $a \in \mathbf{R}^n$. Prove that a must be a critical point of the system. Warning: Be aware of functions that behave like g(t) in (a).

- (c) Explain why the function g(t) that is given in (a) cannot be a solution of a system as described in (b) (with n = 1).
- 2.) Consider the non-autonomous equation,

$$\dot{x} = t^2 + [\sin(x+t)]x$$
, with $x(0) = x_0$, (1)

and its autonomous equivalent,

$$\begin{cases} \dot{x} = y^2 + [\sin(x+y)]x, & \text{with } (x(0), y(0)) = (x_0, 0). \\ \dot{y} = 1, & \end{cases}$$
 (2)

Note that it is clear from the theory of chapter 3 in the book that equation (1)/system (2) must have a uniquely defined solution on a certain time interval.

- (a) Explain why we cannot conclude from Theorems 4.3 and 4.5 (in the book) that equation (1)/system (2) defines a complete flow.
- (b) Use (1) to prove that $|x(t)| \le |x(0)| + \frac{1}{3}t^3 + \int_0^t |x(s)| ds$.
- (c) Prove that, for some constant K > 0, $|x(t)| \le Ke^t$ for all $t \ge 0$. Hint: Introduce $z(t) \ge 0$ and $\alpha(t) \ge 0$ by $|x| = z(t) - \alpha(t)$ and substitute this into the estimate of (b). Construct an explicit function $\alpha(t)$ in such a way that Grönwall's Lemma (Lemma 3.13 in the book) can be applied to z.
- (d) Prove that equation (1)/system (2) defines a complete flow.
- 3.) Consider the two-dimensional system,

$$\begin{cases}
\frac{du}{d\xi} = v \\
\frac{dv}{d\xi} = Av - u(1-u),
\end{cases}$$
(3)

with parameter A > 0.

(a) Determine the critical points E_1 and E_2 of (3) and their character (as function of A > 0). Sketch the local linearized phase portraits near the critical points E_1 and E_2 , depending on A.

The aim of this exercise is to establish the existence of a positive heteroclinic orbit $(u_h(\xi), v_h(\xi))$ that connects the critical point E_1 to E_2 , i.e. a solution $(u_h(\xi), v_h(\xi))$ of (3) that satisfies $\lim_{\xi \to -\infty} (u_h(\xi), v_h(\xi)) = E_1$ and $\lim_{\xi \to +\infty} (u_h(\xi), v_h(\xi)) = E_2$, while $u_h(\xi), v_h(\xi) > 0$ for all $\xi \in \mathbf{R}$.

(b) Explain that $A \geq 2$ is a necessary condition for the existence of such an orbit $(u_h(\xi), v_h(\xi))$. Is $(u_h(\xi), v_h(\xi))$ uniquely determined (if it exists)?

To construct $(u_h(\xi), v_h(\xi))$, we consider the ODE (3) in 'backwards time' $\tilde{\xi} = -\xi$ and consider the well-defined orbit $(u_s(\tilde{\xi}), v_s(\tilde{\xi}))$ (by the nature of E_2) that satisfies $\lim_{\tilde{\xi} \to -\infty} (u_s(\tilde{\xi}), v_s(\tilde{\xi})) = E_2$. Within this framework, proving the existence of the positive heteroclinic orbit $(u_h(\xi), v_h(\xi))$ is equivalent to establishing that $\lim_{\tilde{\xi} \to \infty} (u_s(\tilde{\xi}), v_s(\tilde{\xi})) = E_1$ (while $u_s(\tilde{\xi}), v_s(\tilde{\xi}) > 0$ for all $\tilde{\xi} \in \mathbf{R}$).

- (c) Formulate the equivalent of (3) in terms of $\tilde{\xi} = -\xi$ and show that for $\alpha > \frac{1}{4A}$, $(u_s(\tilde{\xi}), v_s(\tilde{\xi}))$ can only leave the rectangular region with vertices (0,0), (1,0), $(1,\alpha)$ and $(0,\alpha)$ through the edge between (0,0) and $(0,\alpha)$.
- (d) Prove the existence of a positive heteroclinic orbit $(u_h(\xi), v_h(\xi))$ for every $A \geq 2$. Hint: Show that there exists a k > 0 such that $(u_s(\tilde{\xi}), v_s(\tilde{\xi}))$ cannot cross through the (half)line $\{v = ku, u > 0\}$ and apply exercise 1.
- (e) A (positive) traveling wave solution to the PDE

$$\frac{\partial U}{\partial t} = \frac{\partial^2 U}{\partial x^2} + U(1 - U)$$

with $U(x,t): \mathbf{R} \times \mathbf{R}^+ \to \mathbf{R}$, is a positive bounded solution of the PDE that is stationary in a co-moving frame that travels with speed $c \in \mathbf{R}$ – the latter implies that U(x,t) can be written as u(x-ct) for a certain $c \in \mathbf{R}$. The function $U(x,t) = u_h(\xi)$ defines such a traveling wave. Explain! What is the relation between ξ and (x,t), and between A and C? Sketch the traveling wave $U(x,t) = u_h(\xi)$ for several values of t and A or C.