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IMPERFECT BIFURCATION WITH A SLOWLY-VARYING CONTROL 
PARAMETER* 

THOMAS ERNEUXt AND PAUL MANDELt 

Abstract. We consider a general class of imperfect bifurcation problems described by the following 
first order nonlinear differential equation: 

yt = kyP +A (t)y + 8, 

where k = 1 or -1 and p = 2 or 3 are fixed quantities. The solution depends on the values of the "imperfection" 
parameter 8(0< 8<< 1) and the time-dependent control parameter A(t) = AO+ Et (AO<0 and 0<E<< 1). If 
8 = E = 0, this equation admits at A = 0 a bifurcation from the basic state y = 0 to nonzero steady states. In 
the first part of the paper, we analyze the perturbation of the bifurcation solutions produced both by the 
small imperfection (8 0 0) and the slow variation of A (E ? 0). We show that A = 0 does not correspond to 
the transition between the two branches of slowly-varying steady states. This transition appears at a larger 
value of A = A1. Provided that 8 is sufficiently small compared to E, A1 is an 0(1) quantity which only depends 
on AO, i.e., the initial position of A(t). 

Our analysis is motivated by problems appearing in laser physics. In the second part of the paper, we 
show how the semiclassical equations for the simple laser and the laser with a saturable absorber can be 
reduced to this simple first-order nonlinear equation. We then discuss the practical interests of our results. 

1. Introduction. Bifurcation problems with slowly-varying parameters appear in 
several areas of practical interest. On one hand, parameters are naturally changing 
and may lead to an undesirable response of the system. For example, the performance 
of chemical reactors depends on the efficiency of catalytic agents. As a result of their 
slow decline, a sudden increase of temperature is possible, causing damage to the plant 
[1]. On the other hand, the experimeter may decide to investigate the bifurcation 
diagram by continuously increasing or decreasing a key control parameter. This is the 
case for most experiments with lasers or other nonlinear optical devices [2]-[6]. Recent 
numerical studies on the laser with a saturable absorber [7] indicate that the actual 
(i.e., dynamic) response of the laser may be quite different from the static response. 
This motivates a systematic study of the effects of slowly-varying bifurcation parameters. 

The typical effect of a time-dependent parameter is shown in Fig. 1. If the control 
parameter A is constant, the system admits a simple bifurcation from the basic state 
y=0 to a new branch of stable steady states y,(A). If now A(t)=A0+Et, where A0<0 
and 0< E << 1 the system will follow the basic state until it jumps to the branch 
y(t)-ys(A(t)). However, the static or steady critical point (y,A)=(0,0) is not the 
point where the jump occurs. The transition appears after a delay corresponding to 
A = Al [1], [8], [13]. If this delay becomes important, the dynamic response diagram 
will differ considerably from the static bifurcation diagram. The principal purpose of 
this paper is to investigate the effect of small imperfections on this delay. These 
imperfections, corresponding to impurities, noise, or other inhomogeneities, are always 
present in experiments and are known to perturb the bifurcation states when A is 
constant [9]. As we shall demonstrate, they also have a considerable effect on the 
dynamic response diagram when A is slowly varying in time. 
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FIG. 1. The solution y(t) of y,=-y2+Ay, where A Ao+ et is represented as a function of r= A(t). 
y(O) = 0.5, Ao = -1, and E = 0.1. In the same figure, we represent y = A, the branch of steady bifurcation states 
when e = 0. A = A, corresponds to the jump transition between the two branches of slowly-varying steady states: 
y=O and y=A. 

To analyze the perturbation of the slowly-varying steady branches produced by 
the imperfections, we shall consider the following nonlinear problem: 

(1.1) yt= kyP+A(t)y+8, y(O)=yi 

where A is the control parameter given by 

(1.2) A(t) = Ao+ Et (Ao< 0, 0 < <<1) 

and k = ? 1, p = 2 or 3. The additional parameter 8 > 0 characterizes the magnitude of 
the imperfections. Similar equations with a different constant coefficient for yP or -8 
instead of +8 can be reduced to (1.1) by redefining t and y. In most experimental 
situations, the system is initially at a stable steady state. Thus we assume that y, 
corresponds to a stable equilibrium solution of (1.1) with E = 0. The possible bifurcation 
diagrams of the steady states of (1.1) with E = 0 are presented in Fig. 2. In ?? 2 and 
3, we then consider ? # 0 and analyze the delayed bifurcation or jump transition. Since 
this delay critically depends on the ratio 8/r, we study this question in detail. Other 
initial conditions may, however, lead to different long-time behaviors. In ? 5, we assume 
that the stable steady state is initially perturbed and analyze the response of the system 
in the phase plane (y, t). 

Equations (1.1) and (1.2) could be obtained by investigating the solutions of the 
more complicated nonlinear problem 

(1.3) F(u, A', 8') = o 

in the vicinity of a steady bifurcation point A' = A'. In (1.3), u represents a vector of 
the dependent variables, A'= A'(E't) (0< E'<< 1) is the control parameter, and 8' 
measures the size of the imperfections. Then, the quantities A0, E and 8 in (1.1) and 
(1.2) are determined by inner products of the derivatives of F with the critical mode, 
and the initial value yi is obtained from a projection of the initial data for (1.3) onto 
the critical mode. Section 4 provides two examples in laser physics leading to an 
amplitude equation of the form (1.1). The nonlinear problem (1.3) could also be studied 
by the method of matched asymptotic expansions as 8'> 0 [9]. We then expect that 
the solution of the perturbed problem approaches the slowly-varying bifurcation 
branches except in the vicinity of a singular point. The direct application of this method 
presents two difficulties. First, as noticed by Haberman [8], the singular point of the 
slowly-varying solution does not always correspond to the bifurcation point of the 
steady states. Second, numerical studies of a laser model [7] suggest that different 
behaviors for the slowly-varying solution are possible if the ratio 8'/ 8' is small or large. 
As we shall demonstrate in ?? 2 and 3, these two difficulties already appear for the 
simple equation (1.1). 



IMPERFECT BIFURCATION PROBLEMS 3 

(a) Y k=-l, 6= / y k=1,6=o 

(b) Y k=-1, 6 0/ Y " kl6=o 

Y k=-l, 6>0 Y k1, 6>o 

FIG. 2. Bifurcation diagrams of the steady state solutions of (1.1). Figs. 2(a) and 2(b) correspond to the 
cases p = 2 and 3, respectively. Th1e full and broken lines represent the branches of stable and unstable steady 
states, respectively. 

The imperfect bifurcation problem described by (1.1) with p = 2 is also associated 
with the following bifurcation problem 

( 1.4) d-=x (x - A ' t) ) (x - aAk'( t)), 

where A'(t) = A'+ st and a <l. This equation dsescribes the exchange of stabilities 
between x = aAk' and x = Ak',, i.e.,, two states which both depend on the control parameter 
A'. By defining y-x - ak', (1.4) reduces to 

(1.5) dY = _Y2+Y(j - a)Ak'- aE'j 

dt~~~~~~~~~~~~~~~~~I 

which corresponds to (I.-1) with ky1, A-(I - a)A' and k = -aE 
In ? 2 we analyze the behavior of the solution y(t) of (1.1) when p = 2, i.e., when 

the nonlinearity is quadratic. In particular, we shall investigate the behavior of the 
solution when E is fixed and 8 approaches zero. Section 3 is devoted to the analysis 
of equation (1.1) with p = 3 (cubic nonlinearity). The analysis of ? 3 is motivated by 
transition problems in laser physics which are described in ? 4. Section 5 considers 
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the role of the initial condition and ? 6 discusses practical interests of slowly-varying 
control parameters. 

2. Quadratic nonlinearities. We first analyze equation (1.1) with p = 2. Introducing 
the slow time variable r A0 + Et, this equation may be rewritten as 

(2.1) EYTk =ky +,ry +Y8, y(Ao) = yi > 0 

where E > 0, 8 > 0, A0 < 0, k = ? 1, and r ' Ao. We intend to solve this equation by 
seeking asymptotic expansions as ? - 0 of the solution y(i, E, 8). Since the additional 
limit 8 - 0 leads to interesting conclusions, we shall benefit from the fact that (2.1) is 
an exactly solvable Riccati equation. Its general solution is given by 

(2.)arD' (E 112 r)+Dt (-E-12 T)1 (2.2) Y( ) 2k k-- CtD(1/2)+ /_l2T 2k k LaD,,(E r1)+D~,(-E1/r)J 

where De(f) is the parabolic cylinder function with P=k8/r [10] and ' denotes 
differentiation with respect to r. The coefficient a is determined by the initial conditions. 
Both for k = 1 and k = -1, our study will consist of three parts: first we obtain an 
expansion of y(r, e, 8) that is valid as ? -0 and 8 = 0(1). Then, we investigate the 
singular behavior of this expansion as 8 -0. Finally, we analyze the transition from 
8= 0(1) to 8= 0. 

2.1. k = -1. When E = 0, there exists a unique branch of stable and positive steady 
states y = y,(A0, 8): 

(2.3) YSk(Ak0 8) = 2[Ako+ (Ak2 + 48) 1/2]. 

When E << 1, and since yi > 0, we expect that y(r, E, 8) rapidly changes (r = Ao+ 0(E)) 
until the branch of slowly-varying steady states y v Ys(r, 8) is reached. Therefore, we 
seek an asymptotic expansion as ? -> 0 of this solution in the form 

(2.4) y(r, , 8) = Yo(T, 8) + SYJ(, ) + 

The coefficients yo, yl, * , are determined by inserting (2.4) into (2.1) and equating 
to zero the resulting coefficients of each power of ?. This leads to the following result: 

(2.5) y(, ?, 6) = ys(T, 8)[1 -2+48 

Thus, y(, r, 8) corresponds in first approximation to the branch of slowly-varying 
steady states ys(r, 6). From (2.5), we observe that this expansion becomes singular if 

(2.6) 8 = 0(?) 

and 

(2.7) -r = O(E 1/2) (r < 0). 

We also note from (2.5) that y = 0(8l/2) in the critical regime defined by (2.6)-(2.7). 
Assuming an expansion of 8(r) of the form 

(2.8) 8(r) = r(80+ 81E S*) 

the method of matched asymptotic expansion then implies that the inner solution is 
given by 

(2.9) y = 12 ( Yo(s) + rY1(s) ... 
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where s, defined by 

(2.10) s -1IT 

is still a slow time variable on the time scale t, since s =- E/2A_+Er12t. To leading 
order, we find the following equation for Y0: 

(2.11) Yos =-Y+ sY0+o 

which corresponds to the original equation (2.1) with r = s and 8 = 60. As for the 
solution of (2.1), the general solution of (2.11) can be expressed in terms of the 
parabolic cylinder functions: 

(2.12) Y;( s aD,(s)+f3D'(-s) 
2 aDj(s)+f8Dj(-s)' 

where - =-8o and ' denotes differentiation with respect to s. The coefficients a and 
,3 must be determined from the matching condition. From (2.5), we find that 

(2.13) Y0*- o, as se->-. 
S 

Using the asymptotics of the parabolic cylinder functions, we find that (2.13) can be 
satisfied only if a = 0. Thus, Y0 is given by 

(2.14) s D (- s) 
2 D,(-s)' 

From (2.14), we observe that 

(2.15) Yo(s)-*s, as s->oo 

and therefore, Y0(s) reconnects the outer solution (2.5), since y(,rE,E,o80) r as 
TE-1/2 -* 1. 

In summary, if 8 =0(1), y(r, E, 8) follows the branch of slowly-varying steady 
states, i.e., y ys(r, 8). However, if 8 = 0(?), then y y, except near r = 0. Indeed, 
as |rf = 0(E1/2), y slightly deviates from ys (see Fig. 3b). This deviation can be analyzed 
by comparing the expressions (2.3) and (2.9) for ys and y, respectively. For example, 
at r = 0 and So = 1, we find that 

(2.16) y(0, eS ?)=?/ f, yM(O e)~ 1 /2 

We now analyze the behavior of y(r, E, 8) as -* 0. As for 8 = O(E), we observe 
from (2.5) that the outer expansion of y(r, E, 8) becomes singular if (2.7) is satisfied. 
Thus, as 8 - 0, 

(2.17) y(r, E, 8) = [ T (86 2)](1 + 0(?)) 

provided that |0(-_r)f> Q(E1/2) and T < 0. On the other hand, the deviation y(AT ?, 8) - 

ys(T, 8)1 may become much more important than in the case 8 = O(E) as T approaches 
zero and becomes positive. This can be seen from a study of the exact solution of (2.1) 
given by (2.2) with k= -1. For example, at i-=0, we find that for E fixed, as 8-*0: 

(2.18) y(0, , 8) 2/- I1/2<< YS( 8) 8 1/2- 
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Moreover, when 8 = 0, problem (2.1) reduces to a Bernoulli equation and its solution 
is given by 

(2.19) y(r, E, 0) = e r2/2E +_ e-72/26 f eS2/2E ds] 

where the coefficient ,3 is determined by the initial condition at r = Ao < 0. Evaluating 
Dawson's integral for small E, we clearly note four different stages for y(i, E, 0) (see 
Fig. 1): 

1. the initial layer at r = AO+ O(E) where y changes from yi to almost zero values; 
2. the slowly-varying solution y - exp (r 2 _ AO)/2E << 1 during the interval AO < r < 

-Ao; 
3. the transition layer located at r = -AO+ O(E) where y jumps from zero to 

y - -Ao; 
4. the slowly-varying solution y r. 

Thus, we observe a considerable delay for the transition to the new branch of slowly- 
varying solutions. Furthermore, we note that the position of the jump only depends 
on the initial value of A(Et) (i.e., Ao), but not on its rate of change (i.e., (<< 1). We 
conclude that the primary result of decreasing 8/ E is to progressively increase the 
deviation ly( r, ?, 8) - ys( r, 8)1 leading to a delay for the transition to the new branch 
of solutions. In Figs. 3a to 3c, y(r, E, 8) and Ys(r, 8) are represented for different values 
of 8. 

This large delayed transition is typical when the system is initially near the basic 
(zero) solution and r progressively increases. By contrast, if the system is initially near 
the bifurcated state (i.e., Ao > 0, y(O) = y1 > 0) and r slowly decreases (i.e., r = Ao - at), 
we only observe a small deviation near r =0. Indeed, under these conditions, the exact 

Y 6=0 t(1) 

1 

(a) 
O. 
-1 0 1 

Y 6 ? E 

(b) 

-1 0 1 

Y 6<E: 

(C) 
-1 0 1 T 

FIG. 3. The solution y(t) of yt = -y2+ ry+ 8, where r= AO+ et is represented as a function of r(t) for 
three different values of 8. We also represent the steady state solutions when e = 0. (a) 8 = 1, E = 10-1, y(O) = 1.5, 
AO = -1; (b) 8 = E = 10-1, y(O) = 0.5, AO = -1; (c) 8 = 10-3, e = 10-1, y(O) = 0.5, AO =-1. 
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solution of (2.1) with 8=0 is given by: 

(2.20) y(r, ?, 0) = [p er /2-- eT/2F { eS-2/22 ds] 

where ,3 is now related to the initial conditions at T = A0> 0. The integral in (2.20) 
corresponds to the error function and a study of (2.20) when -> 0 leads to the following 
conclusions. We again observe four distinct stages for y(r, 8, 0) as T decreases: 

1. the initial layer at = A0+ 0(8), where y changes from yi to y - Ao; 
2. the slowly-varying solution y - T+ O(E); 
3. the transition near r =0, where y = O(W1/2); 
4. the slowly-varying solution y -l/2 e 2/2e X 1 as r -> -00. 

We conclude that the maximum deviation jy(T, -,0) - y(T, 0)I occurs near T =0 and 
in an o(E1/2) quantity. 

2.2. k =1. When s =0, we find two distinct branches of positive steady states 
given by 

(2.21 ) y_(A,o 8) = [-Ao i (Ao -48) 1/2], AO < 0. 

y_ and y? correspond to stable and unstable solutions, respectively. Moreover, they 
exist only if 

(2.22) A0 c A-k-281/2 

and (y, AO) = (81/2, Ak) correspond to the coordinates of a limit point. When 0 < e 1 
but 8 = 0(1), we again seek an expansion of a slowly-varying solution in the form 
(2.4). Then, similarly to (2.5), we find that 

(2.23) y(,r, ?6) = y(,)[1- 4+ O(e )]- 

As r-> r-281/2, (2.23) becomes singular if (r - ) = o(E2/3). Moreover, in this 
critical regime (2.23) indicates that y 81/2 = o(81/3). Then, a new expansion of the 
slowly-varying solutions near the limit point reveals that the transition to a rapid jump 
solution occurs at (see [1], [8] for a detailed study): 

(2.24) T-rc E ? 2/38/ (-so), 

where so -2.3381 is the first zero of the Airy function. Thus, in the vicinity of the 
limit point, the deviation ly(T, 8, 8) - y(T, 8)1 increases from 8 to r1/3 and the jump 
appears at an 0(?2/3) distance from the limit point. 

We now investigate the behavior of y(r, 8, 8) as E - 0 and 8 - 0. From (2.24), we 
note that the distance between the jump solution and the static limit point increases 
as 8 -> 0. This motivates a systematic study of this limit. We first examine the singular 
behavior of (2.23) as 8 -> 0. As in the previous case, the nonuniformity appears when 
(2.6) and (2.7) are satisfied. A similar analysis leads to the following results for the 
inner solution. First, we assume the expansion (2.8) for 8 and seek a solution of the 
form (2.9). Then, we find that the inner equation for YO satisfies 

(2.25) YoS= Y o+sY0+80 

where s is defined by (2.10). Using the matching condition (2.13), the solution of (2.25) 
is given by 

(2.26) Y?( s D (-s) 2 D"(-s) 
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where z' 8S and ' denotes differentiation with respect to s. Since the parabolic cylinder 
function D,(-s) is an oscillatory function of s if v > 0, Iyo(s)I -- o at a finite value of 
s = sO. From the fact that D,(-s) = (-1)'He (s) when t' = n = 0, 1, 2, . - -, where Hen(s) 
is a Hermite polynomial of degree n, it can be shown that so ?0 if 0 < v _ 1; -1 so < 0 
if 1 < v 2; -3-' so < -1 if 2 < v 3; etc. In summary, the analysis of the case 8= O() 
reveals that the transition from the slowly-varying solution to the rapid jump solution 
appears at a finite value of r = ro E2so. ro is a negative (positive) quantity if v-So > 1 
(80 < 1). Therefore, we expect that the distance between the position of the jump and 
the limit point will further increase as 8 = 8 decreases. 

We now examine the case 8=0. Equation (2.1) reduces to a Bernoulli equation 
and its solution is similar to (2.19). From an asymptotic study of this solution as ? - 0, 
we observe three distinct stages for y(r, ?, 0): 

1. the initial layer located at r = Ao+ O(?) where y changes from yi < -Ao to y - 0; 
2. the slowly-varying solution y 0; 
3. the transition to the jump solution (y -* x) located at r = -AO+ 0(E). 

Thus, the distance between the jump and the bifurcation point is an 0(1) quantity 
equal to |AOI where AO is the initial position of T. 

In Fig. 4, we represent y(r, E, 8) for different values of 8. As predicted by our 
analysis, we observe that the deviation between the jump and the limit point starts 
increasing when 8= O(r) and is maximum when 8 = 0. 

Y 6=0 (1) 

(a) 
o . 
-3 -2 -1 0 I 

Y 6= E 
0.5 

O (b) 
-2 -1 0 1 1 

(c) 
-2 -1 0 1 T 

FIG. 4. The solution y( t) of y, = y2 + ry +3, where r A0 + Et is represented as a function of r( t) for three 
different values of 8. We also represent the steady state solutions when ? = 0. (a) 8 = 1, E = 10-', y(O) = 1.5, 
AO = -3; (b) 3 = E = 10', y(O) = 0.5, AO = -2; (c) 8 = 10-3, E = 10-1, y(O) = 0.5, AO =-2. 

3. Cubic nonlinearities. We now consider (1.1) with p =3. Introducing the new 
time variable - Ao + Et, this equation is given by 

(3.1) ryT = ky3+ ry + 8, y(AO) = yi > 0 

where ?>0, 8>0, AO<0, k=?1, and T?AO. In contrast to problem (2.1), the Abel 
equation (3.1) cannot be solved exactly. However, our previous analysis of equation 
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(2.1) suggests the following strategy to find the approximate behavior of y(ic, ?8). 
First, we seek an expansion as E - 0 and 8= 0(1) of the slowly-varying solution. Then, 
we analyze the validity of this expansion as 8 -* 0. Finally, we explore numerically and 
analytically (for 8 = 0) the behavior of y(r, E, 8) as 8 -*0 and when ? is fixed. As for 
? 2, we investigate separately the cases k = -1 and k= 1. 

3.1. k = -1. When ? = 0, (3.1) admits a unique positive and stable branch of 
steady state solutions yJ(A0, 8) given by 

(3.2) A0 =--+ y, Y > O. 
Ys 

If 0< E << 1 and when r >>Ao, we expect that y(r, E, 8) approaches a slowly-varying 
regime of the form y y,(r, 8). In order to find this slowly-varying solution, we seek 
as E -*0 a solution of the form (2.4). Introducing (2.4) into (3.1), the perturbation 
analysis then leads to the following results: 

(333.3 Or 5(= T, Or,86 ) = Ys (E T 1[8+2y3(T) ] (?)] 
[+2y(,r, 8)] 

Thus, provided that 8= 0(1), we find that ys(, 8) = 0(1) and therefore y(, ?, 8) 
corresponds to the slowly-varying steady-state solution. On the other hand, if 8 -* 0, 
the expansion (3.3) may become nonuniform. We find that this singularity appears if 

(3.4) 8 = 0(? 3/) 

and 

(3.5) r= 0( 1/2), r < 0, 

or equivalently if ys = 0(e 1/4). Assuming the expansion of 8 of the form 

(3.6) 8(e)-=3/4(80+ e81 + .) 

we investigate the critical regime defined by (3.4)-(3.5) by seeking an inner expansion 
of the solution y(, E, 8) of the form: 

(3.7) y = s1/4( YO(s)+ YJ(s)+ * 

where s is now defined by 
-1/2 (3.8) s-s E- ,r. 

To leading order, we then find the following inner equation for Y0 

(3.9) YO- Yo+ sYo0+ 8 

which corresponds to the original equation (3.1) with r = s and 8 = 8. This equation 
must be solved with the matching condition obtained from (3.3): 

(3.10) Y0>- ?- as s--oo. 

The analytical solution of (3.9)-(3.10) is still unknown and numerical investigations 
of this equation are required in order to analyze the behavior of YO. Figure 5 presents 
the numerical solution of (3.1) when 8 = 0(1), 8 = 0(?3/4), and 8<< E3/4. 
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y2 6=0 (1) 

(a) 

-1 0 1 1 

y2 6 3/4 

(b) 

0 1 1 

y 2 6 < ?: 3/4 

(c) 

FIG. 5. We represent y2 as a function of r = AO+ Et. y(t) satisfies the equation yt =-y3 + ry + 8, where 
=AO+ Et. We also represent the branch of steady state solutions when E =0. (a) 8 = 1, E = 0.1, y(O) = 0.5, 

AO = -1; (b) 8 = (0.1)3/4', E = 0.1, y(O) = 0.5, AO = -1; (c) 8 = 10-3, E = 10-1, y(O) = 0.5, AO = -1. 

3.2. k = 1. In this case, we observe two distinct branches of positive steady states 
connected by a limit point given by 

(3.11) (y, A) ((8)1/3 (8)2 ) 

When E $ 0, the analysis of the slowly-varying solution when 8 = 0(1), as 8 -* and 
when 8 = 0, is similar to our previous studies. So that we summarize the principal results: 

(i) As E -* and when 8 = 0(1), the asymptotic analysis proposed by Haberman 
[8] and Kapila [1] can be used and leads to the same conclusions as in ? 2, namely 
that the jump appears at an O(E2/3) distance from the limit point. 

(ii) As 8 -* , the expansion of the slowly-varying solution is singular when (3.4) 
and (3.5) are satisfied. Thus, as for the case k = -1, we must explore numerically the 
behavior of the solution as 8 progressively decreases. 

(iii) The case 8 = 0 can be solved exactly. We find that the rapid jump from y - 0 
appears at r -A0 (as in ?? 2 and 3.1). 

4. Laser equations. In this section, we briefly analyze the semiclassical laser 
equations and show how the amplitude equation (1.1) can be obtained. We shall 
consider the case of a simple laser as well as the laser with a saturable absorber. 

4.1. The laser with injected signal. The laser problem is described by the following 
equations [ 14]: 

E= -E+Av+e, 

(4.1) vE = d(- v(+0EF), 

Ft =dll(-F + 1- Ev); 

(4.2) E (O) = Eo, v(O) = F(O) -1 = 0, 
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where e > 0 and E are the normalized incident and emitted field amplitudes; v and F 
are the normalized atomic polarization and population difference, respectively The 
parameters d and dl correspond to the transverse and longitudinal atomic decay rates 
normalized by the cavity damping constant. The control parameter A is proportional 
to the population inversion per atom created by the pump. If e =0, Equations (4.1) 
and (4.2) describe the evolution of the simple laser. If e $ 0 but is small, the laser is 
perturbed by a small imperfection. To analyze the effect of this imperfection, we first 
seek as e 0 an expansion of the solution of the form [9]: 

l E(t,e) \ 0 Ej(t) 
(4.3) v(t, e) = 2 e| vj( t). 

F(t, e)-l jO Fj(t) 

To leading order, we obtain the unperturbed laser equations (e =0) which admit a 
bifurcation from the zero-intensity solution to nonzero intensity steady states. The 
bifurcation point is defined by 

(4.4) E=v=F-1=0 and A=1. 

The study of the higher order corrections, however, indicates that (4.3) is singular if 

(4.5) IA- 1I = O(e2/3). 

Therefore, we must analyze the solution of (4.1), (4.2) in the vicinity of the bifurcation 
point (4.4). To this end, we first assume an expansion of A and Eo of the form 

00 00 

(4.6) A(e1j3) 1=2E e'13A FO(e 1 )= e'3Eo0 
2 1 

Then, we seek as e -* a solution of (4.1), (4.2) of the form 

/ E(t, r, e 13) 00 (Ej(t, r)\ 
(4.7) |v(t, X, e113) =, e'13 v3(t, r) 

\F(t, r, e 1/3)- Fj ( t, r) 

where r e23t. 
This expansion is suggested by the behavior of (4.3) when (4.5) is satisfied. After 

introducing (4.6) and (4.7) into (4.1), (4.2), we obtain a sequence of linear problems 
for E1, vl, F1; E2, v2, F2; * . . . We find the following results as t -* oo: 

(4.8) (iv) e1/3aQ(r) (I)+0(e2/3) 

where the amplitude a satisfies a solvability condition which is given by 

(4.9) aT= 1 +A2a-a3, a(0) = Eol 

where r'r/(1 + d1). 
We now consider the bifurcation problem with a time-dependent control para- 

meter. Specifically, we assume that A is a function of the slow time r and is given by 

(4.10) A(r, e1/3) - 1 = e2/3(AO + yr) + 0(e) 

where AO and y are 0(1) quantities. Then from a similar perturbation analysis, we 
find that the asymptotic solution of (4.1), (4.2) is given by (4.8), where a now satisfies 
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(4.9) with 

(4.11) A2(r') = Ao+ y(1 +d)' 

In conclusion, the bifurcation analysis of the laser equations (4.1), (4.2) leads to the 
amplitude equation (4.9) with (4.11), which is of the form (1.1) with p = 3 and k 

= -1. 

4.2. The laser with a saturable absorber and injected signal. The laser with a 
saturable absorber (LSA) presents several advantages compared to the usual laser and 
has recently been the subject of active experimental and theoretical investigations 
[2]-[5], [7], [12]. The semiclassical LSA equations for a particular class of solutions 
and with the injected signal are given by 

Et= -E +Av+Av+ e, 

vt = d(-v + FE), 

(4.12) Vt= d(-ve+.FE), 

Ft = di1(-F+ 1- vE), 

Ft = Jl(-F+ 1- avE); 

(4.13) E(O) =E0, v(O) = v(O) = F(O) -1 = F(0) -1 = 0. 

The constant e >0 and E correspond to the normalized incident and emitted field 
amplitudes; v(v) and F(F) represent the normalized atomic polarization and popula- 
tion difference of the emitting (absorbing) atoms, respectively. The solution of the 
LSA equations (4.12), (4.13) depends on the values of the fixed parameters d, d, dll, 
di,, a and the two control parameters A and A. d(d), d11(d1l) correspond to the 
normalized transverse and longitudinal atomic decay rates of the emitting (absorbing) 
atoms. a represents the ratio of the saturation intensity of the absorbing to the 
amplifying atoms. A and A are the pump parameters for the amplifying and absorbing 
atoms, respectively. 

Our purpose is to analyze the solution of the LSA equations near the steady 
bifurcation point of the zero-intensity solution. This bifurcation point is defined by 

(4.14) E=v=v=F-1=F-1=0 and A=1-A. 

Furthermore, the linear stability analysis of the zero-intensity solution indicates that if 

(4.15) d(d+> ), 

(4.14) also corresponds to the first bifurcation point. 
Our purpose is to analyze the solution of the LSA equations in the vicinity of 

(4.14). The analysis is similar to the case of a simple laser with injected signal; therefore, 
we summarize the principal results. First, we assume the following expansion of the 
bifurcation parameter A and the initial conditions: 

A - (1 - A) = e213A2(r) + O(e), 
(4.16) E(0) = Eo = e1/3E0 + O( e2/3) 

where A2(r) AO+ yr is an 0(1) quantity and r3 e2/3t is a slow time variable. Then, 
we seek an asymptotic solution of (4.12), (4.13) as e -+ 0 of the form (4.7). The 
perturbation analysis leads to the following conclusions. As t e oo, the solution is given 
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by 

(4.17) ( v)e/3a(T) 1 +O(e'13 

where the amplitude a satisfies 

(di )(A - Aj ar I + A2(7w)a-a 3[1+A(a-1l)], 
(4.18) 

a(0) = E0j1[1 +(1 -A)/d +A/d]. 

From (4.15), we find that the coefficient of aT is always positive. By redefining the 
time and amplitude variables, equation (4.18) can be reduced to an equation of the 
form (1.1) with p-=3 and k= 1 or -1 if 1+A(a-1)<0 or >0. Thus, we have shown 
that equation (1.1) may also be obtained for the more complex LSA equations. 

5. Role of the initial condition. In ?? 2 and 3, we have analyzed equation (1.1) 
when the system is initially at a stable state. However, if the steady state is initially 
perturbed, it is possible to observe a different long-time behavior. We investigate this 
problem by studying the possible solution of equation (1.1) with p =2 in the phase 
plane (y, r). Figures 6 and 7 correspond to the cases k =-1 and k= 1, respectively. 

Y (a) s 

1s 

0 L 1 

-1 - - X 

y b 

1 S 

Y (c) 

-1 -/ S s____ ':______ 

FIG. 6. Different solutions of y, = -y2+ v-+8, where T- Ao+ Et and a =0.1 are represented as functions 
of T(t) for (a) 8 = 1, (b) 8 = 10-3, and (c) 8 =0. The curves denoted by S represent the branches of steady 
states when a = 0. The curve denoted by L corresponds to the separatrix curve between the initial points leading 
to a bounded or an unbounded solution as T - OC). 
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y S, 
? 1 a 

-1 : r ~-; 0| 
0.1 ,Si(b 

I0.1 L _ L__ __ 

1 r "> ~~~~~~~~~~~(c) 

FIG. 7. We represent different solutions of yt = y2 + vy + 8, where r = Ao + Et and ? = 10-3, as functions of 
r(t). (a), (b), and (c) correspond to 8 = 0.5, 10-3, and 0, respectively. The branches of steady states when ? = 0 
are denoted by S. The curve denoted by L represents the separatrix curve between the initial points leading to 
two different long-time behaviors. 

If k = -1 and 8 = 0(1), the branch of unstable steady states represents in first approxi- 
mation the separatrix curve (L) between the trajectories leading to a bounded or an 
unbounded behavior (Fig. 6a). However, if the ratio 8/e decreases, the separatrix L 
deviates from the branch of unstable steady states (Fig. 6b) and if 8 = 0, it corresponds 
exactly to the r axis (Fig. 6c). Consequently, if yi <0 and 8/ e is sufficiently small, a 
perturbation of the stable steady state may lead to an unexpected jump transition. The 
separatrix curve can be found as the solution of (1.1) which approaches the unstable 
steady states as r -> x0: 

(5.1) y(,r) -- as r->ao. 
-r 

When k = 1 a similar behavior is possible. The system may escape from the slowly- 
varying jump transition (Fig. 7a) if yi <0 and 8/e is sufficiently small (Fig. 7b). A 
trajectory starting below the separatrix L will approach as r -> 00 the branch of stable 
steady states: y(r) -> -r. The separatrix is also defined as the solution of (1.1) which 
satisfies the condition (5.1). If 8 = 0, the separatrix curve becomes the r axis (Fig. 7c). 

Similar conclusions have been obtained for the case p = 3. 

6. Discussion. The principal conclusion of our study of the imperfect bifurcation 
problem (1.1) is that the transition from the basic state to the slowly-varying bifurcation 
states may appear at an 0(1) distance from the bifurcation point A = 0. This is only 
possible if the size of the imperfections (i.e., 8) is sufficiently small compared to the 
rate of change of A (i.e., E). Then, the switch between the two branches of solutions 
occurs at a critical value A = A, > 0 which depends on the initial position of A = Ao < 0. 
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From the practical point of view, the shift of the critical point may lead to two 
important applications. First, since the position of the switch can be controlled by the 
initial value of A, a time-dependent bifurcation parameter represents a control mechan- 
ism to delay the instability. Second, the slowly-varying evolution near the basic state 
is generally followed by a rapid jump to the slowly-varying bifurcation states. This 
contrasts with the usually smooth transitions observed near bifurcation points. Thus, 
the rapid jump transition provides a fast switching mechanism for the system. 

If the basic steady state is initially perturbed, the system may escape from its 
normal slowly-varying behavior and presents a different evolution as t -> xo. We have 
shown that this response due to the initial perturbation is particularly successful if the 
ratio S/ E is small. 

The detailed study of equation (1.1) is motivated by laser problems described in 
? 4. Although equation (1.1) has been obtained by a local analysis of the more complex 
laser equations, we have found good qualitative agreements between our analytical 
results and our previous numerical studies [7]. However, different behaviors may be 
observed if the control parameter starts to increase far from the bifurcation point. In 
reference [11], we solve exactly the linearized equations for a simple laser. The general 
solution exhibits the delayed instability of the basic state but also admits two distinct 
regimes corresponding to a turning point of the original equation. 
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