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SLOW PASSAGE THROUGH A PITCHFORK BIFURCATION* 
G. J. M. MAREEt 

Abstract. This paper deals with a class of second-order differential equations with a slowly 
varying bifurcation parameter. The parameter slowly varies through a critical value corresponding to 
a transition from a stable equilibrium to one of the two stable branches of an intersecting parabolic 
curve. The local transition behaviour is described by the second Painleve transcendent. In this 
study we predict which branch will be followed after passage of the bifurcation point given the initial 
state. For that purpose, use is made of averaging methods and of asymptotic matching techniques 
connecting local solutions valid before, during, and after the transition. 

Key words. slowly varying parameter, pitchfork bifurcation, nonlinear oscillator, averaging, 
matched asymptotic expansions, second Painleve transcendent 
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1. Introduction. We consider a second-order nonlinear differential equation de- 
pending on a parameter F: 

d2X dx 
(1.1) )dt2 dt ( F) 

The damping is assumed to be fixed and small, k = ie, while the parameter F slowly 
varies in time. We have chosen a damping of order O(e), because the effect of the 
damping is then of order 0(1) on a time-scale 0(1/e). In the literature the effect of 
the dissipation is also often O(e). The matched asymptotic results of this study can 
be extended to a damping of order O(e'), a > 1/3. In this study we analyse a class 
of bifurcation problems represented by the prototype system 

d2x dx 
(1.2a) +t2 k-d =x(F-2x2), 

d dt 

(1.2b) dF 

The initial value F(0) is chosen smaller than a certain critical value FC for which 
the system exhibits a bifurcation. An example of a mechanical system that corre- 
sponds qualitatively with system (1.2) is the analogue of an elastic column, sketched 
in Figure 1 (see also Stoker (1950)). 

If a slender straight elastic rod is subjected at its ends to compressive forces along 
the axis of the rod, the unbended equilibrium position is stable if the compressive 
forces are kept under a certain critical value. Beyond this value the column bends 
or buckles. We simplify the problem by considering an elastic system with only one 
degree of freedom. Two rods are connected by a hinge at point C and are both free 
to slide along a vertical line at their other ends A and B. The hinge C is assumed 
to carry a particle of mass m. At the ends A and B forces P act along the vertical 
line through A and B. At point C springs are placed, producing a sideways restoring 
force f(x) depending upon the displacement x. Moreover, a restoring moment M acts 
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FIG. 1. Analogue of an elastic column. 

upon the hinge. This moment is proportional to the angle 20 between the two rods 
(see Figure 1(b)). In this way the bending stiffness of the continuous elastic column is 
simulated. Neglecting the damping and the mass of the rod, we obtain the following 
equations: 

equilibrium of forces in the vertical direction: 

(1.3a) P = V. 

equation of moments about point B: 

M Fl 
(1.3b) - - + Vlsin - - cosO = 0. 

2 2 

equation of motion of the mass m: 

(1.3c) md2X = F-f(x). 

For the lateral spring force we take f(x) = ax + fx3, with a and d both positive 
constants, while for the restoring moment M we have M = 2K19, with K1 a constant. 
Assuming that the sideways displacement x is sufficiently small so that terms with 
powers of x/l higher than three can be ignored, we arrive at the following equation: 

d 2x 2K1 2P 4K, P 3 
* dt2 V 12 I J12 314 13J 

One solution is given by x = 0. The question is whether this solution is stable 
when P is increased. If P is smaller than the critical value Pcrit, a disturbance of the 
equilibrium position results in a small oscillation. We aim to predict the side to which 
the column will bend after P has become larger than Pcrit while the oscillation is not 
yet damped. 

For F fixed smaller than Fc, the system (1.2) has one stable equilibrium. On 
a large time-scale the system shows a damped oscillation until F has reached Fc. 
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The parameter F slowly passes FC corresponding to a transition from a simple sta- 
ble equilibrium to one of the stable equilibria positioned on a parabolic curve: for 
F fixed larger than Fc, the system has three equilibria, two of which are stable and 
one of which is unstable. Because F is slowly increasing, the two stable equilibria 
are slowly varying in time. The solution in the neighbourhood of the stable slowly 
varying equilibria is approximated by a harmonic oscillation. For F outside a certain 
c-neighbourhood of FC asymptotic approximations are obtained with the aid of averag- 
ing methods. In order to describe the bifurcation, a local approximation, being a tran- 
sition layer, has to be made. Local scaling analysis yields as an approximating differ- 
ential equation the second Painleve transcendent. In order to connect local solutions 
that are valid before, during, and after the transition, asymptotic matching techniques 
have to be used and an extension theorem formulated by Eckhaus (1979) has to be 
applied. 

It is remarked that existence and uniqueness of solutions of (1.2) is guaranteed 
for t E [-M/e, M/e], with M an arbitrary large positive number independent of E. 
Such a proof of existence and uniqueness can be based on the energy integral of the 
system; see also Chillingworth (1976, pp. 187-188). In Lemma 5.1 we will use the 
same method to prove the validity of the approximation near the bifurcation point. 

Haberman (1979) also studied this type of nonlinear differential equations. He 
studied systems without damping and used the method of eliminating secular terms. 
In a similar way we apply averaging to eliminate secular terms and, in contrast to 
Haberman, we study systems with damping. There are obvious discrepancies in the 
computed values of coefficients of some asymptotic series. More relevant is that we 
prove the validity of the matched asymptotic approximations and predict the state 
of the system after passing the bifurcation point from the initial state. This result 
almost looks like prediction of the outcome of flipping a coin. Neishtadt (1987, 1988) 
and Baer, Erneux, and Rinzel (1989) concentrate on the slow passage through a 
Hopf bifurcation from a stable steady state to a stable time-periodic solution and 
demonstrate that this case is quite different from a steady bifurcation or limit point. 
The transition from an oscillatory solution to steady state has been investigated by 
Holden and Erneux (1993). The case of second-order jump phenomena with damping 
has been studied by Maree (1993). 

In this study the potential takes the form of a double-well potential after bifur- 
cation. We assume that the trajectory is close to the equilibrium before bifurcation. 
Therefore, it has directly been captured in either well after bifurcation. This means 
that the unperturbed separatrix that appears after passing the bifurcation point will 
not be crossed. The problem of the crossing of a separatrix by nonlinear oscilla- 
tions that correspond to a slowly varying potential which remains double-welled has 
been analysed by Bourland and Haberman (1990, 1994), Neishtadt (1986, 1993), and 
Henrard (1993). In the asymptotic limit (e -* 0) the capture problem becomes prob- 
abilistic and predictions become pointless in view of the extreme sensitivity to initial 
data. The work of Bourland, Haberman, and Kath (1991) contains formal averaging 
formulas similar to those of this study. These are only valid away from the bifurcation 
point. Denier and Grimshaw (1988) also study nonlinear differential equations with 
a slowly varying parameter. They find that, depending on the initial amplitudes, 
the solutions of the transition equations either are asymptotically equivalent to the 
bifurcated solutions or develop algebraic singularities at some positive time. 

In ? 2 we consider the different equilibrium states of the system when the param- 
eter F is fixed. In ? 3 the solution is approximated by averaging for an interval in 
which the solution is sufficiently bounded away below the bifurcation point, whereas 
in ? 4 we obtain an asymptotic approximation for the solution beyond the critical 
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point. Moreover, it is shown that these approximations remain valid outside an 62/3_ 

neighbourhood of the critical point F = F,. In ? 5 we analyse the transition layer 
equation and obtain matching conditions for this local asymptotic solution. Further- 
more, it is proven that the transition layer solution is a local approximation of the 
exact solution. This local solution has an overlap with the other (outer) approx- 
imations. In ? 6 we formulate an important result which connects the integration 
constants in the averaged asymptotic solution below criticality with those in the one 
above criticality. In this way we obtain a remarkable result: one can find asymptotic 
approximations for predicting the behaviour of solutions after passing the bifurcation 
point at the basis of the initial values. In ? 7 we consider the general class of bifurca- 
tion problems, of which the present problem is a special case. Finally, in ? 8, we make 
some concluding remarks. 

2. The reduced system with fixed parameter. Substitution of e = 0 in 
(1.2) yields the reduced system 

d2XX) 0 
(2. la) dt2 -x(F-2 

(2. lb) dF 
_ 

dt-0 

For F fixed and smaller than the critical value 

(2.2) FC = ?, 

the reduced system (2.2) has one equilibrium (for which dx/dt = 0): 

(2.3) xO = 0. 

Linearization at (xO,0) yields a system with an equilibrium being a centre point. 
Using the lemma of Morse (see Verhulst (1990)) it is clear that for the nonlinear 
system (2.1a) this point is also a centre point. When F = Fc, the unique equilibrium 
x = x, is still stable. For F > FC it becomes an unstable point of saddle-point type. 
Moreover the system then exhibits two "supercritical" stable equilibria (for which 
y = 0): 

(2.4) x_1 = - -, x1= 2 

Haberman (1979) calls the transition from a stable line to a parabolic arc, as F 
passes Fc, a "parabolic bifurcation." In literature this phenomenon has commonly 
been called a pitchfork bifurcation. This pitchfork bifurcation is illustrated in Figures 
2 and 3. For e = 0 the energy integral of the system (1.2) equals 

(2.5) E Y - 2 Fx2 +2 

3. Asymptotic expansion valid before passage of the bifurcation point. 
We construct an asymptotic solution to the initial value problem (1.2) valid outside 
a certain E-neighbourhood of F = 0, corresponding to initial conditions close to the 
outer equilibrium solution x = xo = 0. We consider perturbations of the equilibrium 
of the form 

(3.1) x(t) = /Iu(t). 
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FIG. 2. The graph of the function f (x) = x(F - 2x2) in three cases of fixed F and the corre- 
sponding phase portrait of (2.1a) for different values of F. From left to right, F < F,, F F,, and 
F> F,. 

x stable 

.................. ..... Funstable 

stable 

FIG. 3. The branches of the limit solution as a function of F. 

Furthermore, we take as initial values 

(3.2a) x(O) = -?a, 

(3.2b) dx (?) = vb 

(3.2c) F(O) = Fo < Fc = 0. 

Substitution in (1.2a) yields 

d2U 2 du 3 
(3.3) -- + w2(F)u = - 

t - 2Eu3 

with 

(3.4) w 2(F) = -F. 

The solution remains for a certain time in a V/E-neighbourhood of xo = 0. Using the 
transformations 

(3.5a) u =- e-2etw = rlw, 

(3.5b) w = w- 2 (F)y, 
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(3.6a) dy (F)v, 

(3.6b) ~~~~~dv_ 1 d 2y e dw 
dt W(F) dt2 W(F)dFV; 

introducing polar coordinates 

(3.7a) y= rsin p, v = rcosp 

with initial values 

(3.7b) y(O) = rosin 0, u(O) = rocoso0; 

transforming the time-scale 

(3.8a) T JF (F)dF 

or 

(3.8b) F = (-F)2 _ T 

eliminating F; and setting 

(3.9) = - , 
we finally arrive at the following initial value problem: 

dr1 -KE ( 3 3e'V 
(3.1Oa) drr1 wr,e) Fo)2 - ), ri( 2 

dr E (-2r2r3 sin3(?b + r) cos(7$ + r) 

d- W3 Qr, 6) 

+ ? 12rw(-re) sin(V + r) cos(7 + T) 

(3. l Ob) 
+ 1 (rw)2(2rsin (V + T) cos (? + /) 

+ 
I 

- (y)-d 
2 

r sin(? + r) cos(p + ? ), 

d4' _ e (222 44(+ + r) 2( E) sin2( +op 
dt - -w3%mre) 2r1r sin 4KEw(r 

E i 
7- )) 

(3. 1Oc) + 2(r,E) (_) (-sin2(, + r)) 

11 d2 w 
-W (T, ?) 2sin2(+ + T ). 

From (3.8b) we conclude that w(r, e) = 0 for T = -ro with 

(3.11) =o = 2 
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With the aid of the lemma of Gronwall we will prove an approximation theorem for 
T E [0, ro - 61()] and thus for F E [Fo, -(3E6-1(E)/2)2/3] with 6(e) = o(1) an 
asymptotic order function. 

LEMMA 3.1 (Gronwall). Suppose, for to < t < to + a, that 
t 

(3.12) (p(t) < 62(t - to) + 61 J f(s) ds + 63 

with ,o(t) continuous and p(t) ? 0 for to < t < to + a, where 61, 62, and 63 are 
constants with 61 > 0, 62 > 0, and 63 > 0. Then for to ? t < to + a 

(62 61(t to) _ 62 
(3.13) y0(t) < (- + 63 e 61_ 

A proof of this lemma is given by Sanders and Verhulst (1985). 
We now state an approximation theorem 
THEOREM 3.2. Consider the initial value problem 

dr, -iKE 3 
(3.14a) d - 2w( rl; w(T,e) = ((-Fo) - r ri(0) = 1, 

dr _ _ ___ 

dT = 3 (gi(ri, r'O) dr SW (T, e) 

(3.14b) + ?w(r, e)hi(r, O, T)) + W2(T, e) + (d) ml(r,b, Tr) 

+ lr 
d 2 1 i(r, 4 -t), r(O)=ro, 

w (T, e) dTr2 

dr ,2) E 
)(92 (rl, r, 0, -r) + w (-r, E) h2(r,O -r)) dT-r w3 (T, e) 

(3.14c) + 22(T, e) 2( 0, ) 

+ ? d12(r 12 -r), Ob(0) = (o, 
Lo(T, e) dTr2 

for 0 < T < To. 
Suppose that 
a) the vector functions g, h,m, 1, Vg, and Vh are continuous in r and in x 

(ri, r, V))t or y = (r, )t and bounded by a constant M independent of 6; 
b) m and I are Lipschitz continuous in y = (r, )t with Lipschitz constant L; 
c) g and h are T-periodic in r with averages go and ho. 
Let (rl,r,4') be the solution of this system. Moreover, let (rla,ra, 4a) be the 

solution of the r-averaged system 

dnla _ -K,E 
(3.15a) d-r n2(T,F) rla(O) =1 

dra _ 

(3.15b) dT - 3(T ) (g9 (rl a ra, O/'a) + ew (T, E) ho (ra, VOa)) ) ra(O) ro 

(3. 1 5c) dIa = 9) ?)( (31c dT w(,~ g(Ia ra, i/'a) + ew (T, E) ho(ra, V-a)) i V'Oa(0)= o 
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Let 6(e) be an asymptotic order function satisfying 6(e) = o(1) as well as ?- 
0(6(e)). Then for T E [O, T-r 1()] 

(3.16) rl(T) = ria(T), r(T) = ra(T) + o(1), V)((T) = V)a(T) + o(l). 

Remark 1. For a vector function f E Rn with components fi, i = 1,... , n, we 
will use the norm 

n 

Ilfil =ZE Ifil. 
i=l1 

Remark 2. The time-scale of rO, which has been determined as a zero of w, is of 
order 0(1/E). 6(e) is such that ro - 61(e) > 0. 

Proof. We immediately obtain 

(3.17) ria(r) = ri(r) = exp{ ((-Fo) - 7 + -Fo}, 

so 

(3.18) ? < ria(T) < 1 for O < r < r0. 
Furthermore, for T C [O, Tro -_ (6) , 

/3 
(-Fo) 2 < g17 < 2 t-? () 

(3.19) _ 2 
- (Fo)- < | < E 3^1() 

We define 

(3.20) x = (rl ,r, )t = (X 1, X2)t with x1 = r1 and x2 = (r, 4))t 

and introduce 

(3.21) ul(x, r) = j[g(x, s) - g(x) + ew(s, E)(h(X2, S)- ho(x2))] ds. 

This integral is bounded: ju1(x,T)I < 4MT. Now a "near-identity" transformation 
is applied: 

(3.22) X2(T) = Z2(T) + w3(T u (z(r),T) 

This is a "near identity" because 
e 

w3(T,e) 0(6(e)) for TE [0,ro _o-31( )] 

Differentiating (3.22) we obtain with (3.15) and with the aid of (3.21) 

(3[23) [E + 6 
a, e) z J dZ2 'w () ?(z) + ew(T, e)h?(z)) + R, 
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with R a vector function of z, T, and E. This remainder term R is estimated as follows: 

(3.24) R = 0(62(6)) 

The matrix E in (3.23) is the unity matrix. Since both O91u/0z2 and u1 are bounded. 
we can invert 

E+w3(Tr, )02 -u(z (T), Tr) 
(3.25) 2 

=E- ( )0u (z (r), -r) + 0 (6 - F - 6-r E)_ __U_6( ,E 

So from (3.23), we obtain the following equation for Z2: 

(3.26a) dz2 = 6 1(6)(g0(z) + 6w(T, )h (z2)) + 62(E) 

with 

(3.26b) 61(E) = ?w3(f,?) = 0(6(6)) and 62(E) = 0(62(6)) 0 o(61(6)). 

The solution of the averaged system 

(3.27) dX2a e6(g'(xa) + 6w(rT 6)h0(X2a)), X2a(O) Z2(0), 
dT-r w3(r,6E) 

approximates the solution of (3.26) for r E [0, To - 6-1()] in the following way: 

(3.28) Z2(T) X2a(T) + o(1) 

for 

11Z2(r) - X2a(T)l1 = [|1 - fX dX2d| 

(3.29) < 61() j(9?(Z) 9?(Xa) 

+ 6W(T, 6)(h0(Z2)-h0(X2a))) 6T + 626T 

< 2L6(6)Tjjz - XaII + 626 (Z1 Xla). 

Application of the lemma of Gronwall now completes the proof: 

II Z 1z2) - X2a(T)II < 2 e2L lT = 0(6(6)) (3.30) 2L61 
=o(1) for T E [0, ro -61 ()] 0 

This yields an asymptotic expansion of the solution of (1.2) in the neighbourhood 
of xo for F < 0 and 62/3 = o(F). 

COROLLARY 3.3. For Fo < F < 0 and E2/3 = o(F) the solution of (1.2) has the 
following expansion: 

(3.31) x(t) = VE-rarlaW2 (F) sin(T + 4a) + o(Ew- 2 (F)), 
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with (rla,rl,4'a) the solution of the system 

dria _ E 
(3.32a) drna, nria(O) =1 

dTr 2w (r, e) 

(3.32b) dr o ra(0) = ro, 

(3.32c) d-/a = 3(r ()4rl2ara _ 812 / (6)6) a(0) = 0, 

with w(r, E) as defined in (3.14a). 
Proof. Problems arise when the angular velocity w(F) tends to zero which is tied 

up with boundary layer behaviour in the neighbourhood of F = 0. An approximation 
for the bifurcation time is therefore to = -FOE-1. Because (3.10) is a special case of 
the initial value problem stated in Theorem 3.2, the averaged system (3.32) is an o(1)- 
approximation of the complete system (3.10) for r E [O.-ro - -1(6)] with 6(e) = o(1) 
and 6(e) = O(E). The result is summarized as follows: (3.32), being an approximation 
of the solution of (1.2), is valid when Fo < F < 0 and 63 = o(F). 

4. Asymptotic expansion valid after passage of the bifurcation point. 
We analyse the solution to the initial value problem (1.2) for F > F, + b(F, = 0) 
close to one of the two stable outer equilibrium solutions x = x?+. Because of the 
symmetry of the problem it is sufficient to consider the perturbation of one of the 
equilibria of the reduced system: we choose x = xi = V(F/2). To analyse a "slowly 
varying equilibrium solution" x1l (F) we rewrite (1.2): 

(4.1) ~~~~d2 x _2d 2x= 2dx 
dt2 dF2 F+g(x,F) 

with 

(4.2) g(x, F) = x(F - 2x2). 

Assuming that the derivatives in (4.1) are small, we obtain a "slowly varying equilib- 
rium solution" for F > F, = 0 by perturbing the dependent variable x at x1 (F) = 
,\(F/2). Because g(xi, F) = 0, we can use the Taylor series of g(x, F) at x = xi(F). 
This changes (4.1) to 

62d 2x 2dx Og (X-_X1)2 02g (X-_X1)3 03g (4.3) CdF2 =-KE dF +(X-x) Ox + 2 OX2 
? 6 O 3 

X 1 X jX1 

In this way we obtain an asymptotic expansion for the "slowly varying equilibrium 
solution" of (4.1): 

(4.4) Xlsv(F) - - 1F Z 2 + 6 2 + 2 16 ~2}64k\2J 

From Theorem 9.1 formulated by Verhulst (1990) it follows that this is the asymptotic 
expansion of the solution. For a solution that holds in a \/E-neighbourhood of this 
slowly varying solution we write 

(4.5) x(t) = xiv(F) + a/?u(t). 
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Furthermore, we assume that the solution takes the following values for t = t = 

-FoE-1 + ME1 with M an e-independent positive constant. 

(4.6a) x(ti) = xi(Fl) + VEal, 

(4.6b) dx dx1 dt dt 

(4.6c) F(ti) = F1 = Et, 

so the solution is at t = ti "far away" from the bifurcation time t = -Foe-1. Substi- 
tution in (1.2) yields 

d2u 22 du 3 (4.7a) (F)u -6 u2sv(F) - c- 2Eu dt-2 + 
w 

=() -6dt - 

t dt~d 
(4.7b) dF = 

dt- 

with 

(4.8) w (F) = 6x2sv - F. 

In the same way as in ? 3 we now carry out the transformations 

(4.9a) u e- wetW = rtw, 

(4.9b) w = Wi 2 (F)y, 

(4.9c) dy (F)v, 

dv _ 1 d2 y E dw, (4.9d) dt = (F) dt2 - (F) dFv 

and introduce polar coordinates 

(4. lOa) y = r* cos *, v = -r* sin p* 

with values at t1 

(4.10b) y(ti) rO*cospn,p u(ti) = -rO*sin op. 

Next, we make the transformation 

(4.11) _ IF wi(F)dF 

and set 

(4.12) V, = * +r, 
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so we finally arrive at the following system: 

(4.13a) ~~~drt _ ___ 

(4.13a) dr 2G;l(F) 1) rt(ti) =e- 

dF _-E 

(4.13b) dF w F(ti) = F1, 

dr* (6,, (F)r r* cos2(V* + r) sin (Q,* + r)xi8 (F)) 

-2Ew73(F)rl*r* cos3(4,* + r) sin(4,* + r) 

(4.13c) - e2 (1 c2w2(F)r* cos(2* + r) sin(4 + ) 

+6 4 - (F)r* cos(V* + r) sin( V)* + r-) dF) 

+ 2 w1 3 (F)r* cos(4,* + 'r) sin(4,* + r) dF2 )' r* (ti ) = r 

d4, 
=-(S (F)rt*r* cos3(4,* + 'r)xi8s (F)) 

- 2Ewi13(F)rl*r* cos4(4'* + 'r) 
(4.13d) -E2 (-42W-2(F) c05('V + r) + 34 4+) 

-WT F)r*cos()* +r) sn(w7 (Fr)co(*+') 

+ 2wi3(F) cos2C(V* +r) js)i p* (tl ) = * o . 

We will consider 

(4.14a) 0 < 61(e) < F < F1 = 0(1) 

with 

(4.14b) 3= 0(61()). 

We now obtain the following approximations: 

(4. 15a) x18v(F) = + O(2FA2), 

(4.215b) w (F) = C /S2 ( 1 + O(94F3) ), 

(4.15c) wTa(F) = (2F) a (1 + (F3)), a 
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so 

(4.15e) ? ) < 'r < ? with 61(e) = o(1) and 6(e) = 0(e). 

System (4.13) then transforms into 

drt _ K_ 

(4.16a) - rl + (3F- ), di- 2 V/_ 

(4.16b) dF = +0(6F- 2 

dr* _ i2 -, (6rtr*2 Cos2(4* + r) sin(4* + r)) di-r F* 

(4.16c) -( (2rr* cos3(r*+ r) sin(4,* + r)) 
(2F) 2 

- El (-!ii2 r cos(V* + r) sin(V + r)) + O(e F), 

dr/* =-v (6r2r4 cos3(/* + T)) - ? r2r2 cos4 + r)) 

(4.16d) di- F (2F)3 
- 2__ ( 2 cos2(V* + r)) + O(2 F 3). 

It follows from 

(4.17) r= exp{t ie/2t} that 0 < r* < 1 for t E [-Foe-',ti]. 

With the aid of the lemma of Gronwall we will now prove a "second-order" ap- 
proximation theorem; we will obtain an estimate of O(eF-3/2) taking into account 
both the O(61/2F-3/4) terms and the O(eF-3/2) terms of (4.16). Note the differ- 
ence with Theorem 3.2, due to the fact that we are now near a nontrivial equilibrium 
branch. 

THEOREM 4.1. Consider the initial value problems 

(4.18) -5-dx Vf(x, r)f(rj) + F f(x2r)gj(rj) 

+ Fh(x, r)hl(ri) + 0(62F-3), x(ro) -xo 

and 

dXa = 
LflO0(Xa,r) f,(r1) + C 

'X,r)l(i 

(4.19) dr= F32 F32 

C 2 + -h?(xa,,r)hj(ri), Xa (To) = xo 
F 

with f,g,h: JR2 x 2 - I 2, G [6 1(E),6* 1(?)] with 6r(e) = o(1) and 6*(e) 0(?) 
so that F E [61(6),62(6)] with C2/3 = 0(61(E)), 62(e) = 0(1), and ? E (0, co] 
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Furthermore, 

(4.20) f 1 (x,'r) = Vf(x, r)ul (x, r)f1 (ri) 

and 
/bT 1 r~~ro+T rb 

(4.21) u1 (x,r) = f(x, s) ds - - f(x,s)dsdr. 

Suppose that 
a) f has a Lipschitz-continuous first derivative in x and the vector functions fi, 

gi, hi, g, F1/2h, Vg, VF1/2h, Vf, and V2f are continuous in the variables and 
bounded by a constant M, independent of ?, for r E [65 1, 62 1 

b) f, g, and h are T-periodic in r, averages f?, g9, and h? (f1 has average f ). 
Moreover f? = 0. 
Then x(T) = Xa(T) + o(1) for r E [6E1(e), 6* 1(E)] or F E [61(e), 62(e)]. 

Remark. The 0(e1/2F-3/4)-term did not appear in ? 3. Since f? = 0, we now 
have to apply second-order averaging (see also Sanders and Verhulst (1985)). 

Proof. Define y('r) by 

(4.22) x('r) = y(r) + E2F-4u1 (y(r), r)fi (ri) 

with 

(4.23) u (y('r), r) = j f(y, s) ds - j j f(y, s) ds dr. 

(f, g, and h are T-periodic in r.) Substitution in the differential equation (4.18) 
produces for y 

(4.24) 

dY- F= ('Rf ,( ) (Vf(y, r)ul (y, r)f1 (r1) + g(y, r)gl (ri) + eF2 h(y,r)hi(ri)) 

+ O(eF-4). 

We make the following estimate: 

(4.25) IIX(T) - Xa(T)II < IIX(T) - Y(Q)II + IIY(r) - Xa(T)ll. 

For r e [6E 1(e),621(e)],u1(y(r),) is bounded so that 

(4.26) IIx(r) - y(r) 1 = 0(? 2 F-3) = o(1). 

We estimate IIY(r) - Xa(r)II in the same way as 1IZ2(rT)- X2a(r)II in Theorem 3.2 and 
obtain for r E [6* ) ( 

(4.27) IIY(r) -Xa(r) II = 0(2F-4) = o(1). 

This completes the proof of the theorem. 
COROLLARY 4.2. For 0 < 61(e) < F < F1 with ?2/3 = O(61(e)) and F1 = 0(1) 

and thus for 63(e) < w, (F) < 64(e) with ?1/3 = 0(63(e)) and 64(e) = 0(1) (see 
(4.15b)) -the solution of (1.2) has the following expansion: 

(4.28) x(t) = + /Er*e 2 w 2 (F) cos(ir + V)) + o(VEw) V(F)) 
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with (r, wV) the solution of the system 

(4.29a) dr_ 01 ra(tl) = 

(4.29b) da- =- 16F + 4(2F) 4 (F)1 ) V)a(t1)=(o. 

Proof. Because (4.13c), (4.13d) is a special case of the initial value problem 
stated in Theorem 4.1, the averaged system (4.29) is an o(1)-approximation of the 
complete system (4.13c), (4.13d) for r E [6a1(e),6 1(e)] with 61(E) = o(1) and 
R5(E) = O(E). It follows that for the solution of (1.2) approximation (4.28) holds 
when 0 < 61(e) < F < F1 with E2/3 = o(81(6)) and F1 0(1). In fact, from (4.13b) 
it follows that 

(4.30) = F) + -(2Fi)3) 71. 

On account of the symmetry of the problem we can also obtain a "slowly varying 
equilibrium solution" x_18v(F) for F > Fc by perturbing the dependent variable x 
at x-1(F) = -V(F/2). By reflecting (4.28) with respect to the z-axis an asymptotic 
expansion of the solution of (1.2) in the neighbourhood of x-18,(F) is obtained valid 
for t E [tc +61(E)tct+66-1(E)] with tc = -Fo-1 65(E) = o(E1/3), and 66(E) = 0(e). 
For F = Fc = 0 the stable reduced solutions x?i(F) and the unstable one, xo(F), 
coalesce. Then approximation (4.28) does not hold anymore. It is remarked that then 
the angular velocity wl(F) tends to zero. 

Finally, we remark that in the case without damping (, = 0), (4.7a) is a Hamilto- 
nian system. Bosley and Kevorkian (1992) consider transient resonance in very slowly 
varying oscillatory Hamiltonian systems for which the leading-order frequency of the 
reduced system makes a continuous slow passage through zero. After the transforma- 
tions v r cos o, dv/dt =-w1 (F)r sin p, and p = r2w, (F) we obtain from (4.7) 

dp 3_ 
4- =f/(12p2wL 2 (et)X1,8(et) CoS2 p sin ~p) 

(4.31a) + E (4p2 2 (Et) cos3 l sin ,o-2pwl 1(Et) d4 t) sin2 p + pw1 t 

= w1(et) + 1psinl 2pw)i(Etj c s3 p 

(4.31b)+ e(2pw2(et) cos41P - w(et) d(t) coSd sind) t 

which is a Hamiltonian system with a HIamiltonian of the following form: 

H = w1 (et)p + VE(3p4Lo 1 2 (et)x8l2 (et) COS X + p( 2t C (oet)Xs3(t) cos 3o) 

(4.32) + + w c + 1 ) cos 
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5. The transition layer equation and matching conditions. In order to 
obtain matching conditions for the local asymptotic solution describing the pitchfork 
bifurcation we determine the asymptotic development of x when F is in the neigh- 
bourhood of FC = 0. Near F = 0 the reduced solutions xo(F) and x?l(F) are close 
to zero. Setting 

(5.1a,b) t Fo + -1z or F=evz 

we obtain the following approximations for the F-dependent terms in the asymptotic 
expansions (3.31) and (4.28): 

(5.2a) ri = ri = e + 

(5.2b) w2(F) =-Z?V 

(5.2c) xS(F) = (2) ?2V +-(- e2-2v + . . 
+ 

(5.2d) w2(F) = 2zev + 3 (Z) ?2-2v +.*-, 

(5.2e.f) 
2 

= 
2 

(5.2g) 'pa = 2 (_z) 3 ? 2-U 1 + 2r-et 2(ln(-z) +vln?) + fo + 

3 4~~~~~ 

(5.2hF)e 
Z 22v(ln(z) + vlne) + + 

where 'Vo is a constant determined by the initial conditions. Consequently, near the 
bifurcation point the outer solutions (3.31) and (4.28) behave asymptotically as 

x = rre (=Z) r- r rV 

(5.3a) x sin {-(_Z) 2 E 1 + 4roe (ln(-z) + vln) + V)o + }+ 

if z -)-oc, 

3 4 
0 ~2 

X=()2 +f-(- 3 22 +V_ 3 .2 k +--F?-o+ 

(5.3b) + rOeK2 (2zev+ + (-) ?2-2v +)e4 

(5.2hXCS X() 2 ? 2 - 1- ro e6E (ln(z) + v Inc?) + V)* +*- }+*-- 

cOa 3 X,(z) 2 

where V)oif z -ostn deemndboheiiilcnitos osqenl,na,h 
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with the dots standing for higher-order e-terms or terms that are o(lzl-1/4). It is 
remarked that, in contrast with Haberman (1979), the terms -3r 2r2w-3(-F) and 
-15r 2r*2x2svwT3(F) in the integral of (4.13d) are equally important as wi(F) O. 
As we will see, both terms contribute to the matching condition for the pitchfork 
bifurcation, because both terms contribute to the logarithmic terms in (5.3b). 

From the expansion (5.3) it is seen that the outer expansion breaks down if 
v = 2/3. It implies that the transition layer (inner) equation follows from the scaling 

(5.4) x = E3y(z). 

Another way to obtain this equation is based on the analysis of significant degenera- 
tions of the differential equation. We then put 

(5.5) F = xvz, x = Y(Z) 

There is a significant degeneration for ,u = 1/3, v = 2/3 of the following form: 

(5.6) ~~~~~~d 2y3 (5.6) dz2 =yz - 2y3. 

This equation, a nonlinear extension of the Airy equation, also occurs in a number of 
problems of quantum field theory and in the theory of nonlinear evolution equations. 
It is the second Painleve equation, being one of the six canonical Painleve equations 
of the form 

(5.7) d2 Y=R(z,y,dz 

where R is rational in y and dy/dz and analytic in z. The first integral of these 
Painleve equations has no nonstationary critical points (the Painleve property) (see 
Painleve (1900)) and cannot be reduced to linear equations by local transformations 
(i.e., their first integral cannot be expressed in terms of known special functions; see 
also Levi and Winternitz (1991)). 

The correct scaling for the transition layer equation also follows from the time 
region, where according to Theorems 3.2 and 4.1 the outer solutions (3.31) and (4.28) 
are not valid. In ?? 3 and 4 we have seen that the averaging procedures cannot be 
applied anymore if F = 0(E2/3) (or t = -Fo0-1 + Q(6-1/3)). In this region a new 
local approximation, satisfying the significant degeneration (5.6), is constructed, and 
its validity is proved. Its validity domain may be extended backward and forward, 
overlapping the other (outer) approximations, so that integration constants follow 
from matching with these approximations. 

We will first prove that the transition layer solution is a local approximation of the 
solution of the complete equation. For that purpose we will first prove the following 
lemma. 

LEMMA 5.1. The initial value problem 

(5.8) d 2 = ypz-2 WI yp(-M) = a, dz _M) = by 

with M > 0 arbitrarily large, has a bounded real solution for -M < z < M for any 
M > 0. 
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Proof. From (5.8) it follows that 

dyp 2 (5.9) (d) = ZY2 _ Y2 + CI Y4 

with C0 a constant. Certainly, (dyp/dz)2 < MyP + C2, with C2 a positive constant. 
Thus, 

(5.10) dyp My + 2. 
dz 

So f(y + 03)1/2dyp < C4 with C3 > 0 and C4 > 0. Finally, we obtain 

(5.11) log IyP + C3+_< C4. 

Thus, yp and dyp/dz are bounded. [1 
In fact, it is known (see, e.g., Levi and Winternitz (1991)) that the only singular- 

ities that any solution of Painleve II can have for finite z are poles. However, poles 
cannot occur, as a behaviour of the type yp(z) - c(z - zo)', c E R, n E Z, is excluded 
in (5.6) because of the sign of the nonlinear term. We can now prove the following 
approximation theorem. 

THEOREM 5.2. Consider the system 

dx 

(5.12) (ydz) = + 
(az2 + bz 

) 
+ CZ) +e(dz) 

dz 
or 

(5.13) du = fo(z, u) + e3R(z, u, e), 

with u(-M) = r, z E [-M, M], 0 <e < eo, and u a two-dimensional vector function. 
Assume that 

a) R(z, u, e) is continuous in z, u, and e and Lipschitz-continuous in u. 
b) fo(z, u) is continuous in z and u and continuously differentiable in z. 

Let up = (xp, yp) be the solution of 

(5.14) duP - fO(z,up), up(-M) = r 
dz 

Then IIu(z) - up(z)JI < ke1/3, k a constant, for IzI < M. 
Proof. From (5.13) and (5.14) it follows that 

rz 

U(Z) -up(z) = J [fo(7, u(T)) - fo(T, up(r))] dr+?3 
(5.15) -M 

x J R(r, u(T), e) dT. 
-M 

We have 

(5.16) II(|R(T, u(T), eII < IIR(T, u(T),e) - R(T, up(T), e)II + IIR(T, up(T), e)II 
< L1 . 11u(T) - up(T)|| + M1, 
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because of the Lipschitz-continuity of R, the boundedness of up (see Lemma 5.1), and 
z E [-M, M]. Using the Lipschitz-continuity of fo we now obtain from (5.15) and 
(5.16) 

rz 
llu(z) - up(z)I ? JZ L. Ilu(r) - up(r)II dr 

(5. 17) 1 
+ 3 J [LM IIu(T) - Up(T)II + Mf] dT. 

Application of the lemma of Gronwall yields the inequality 

(5.18) IIu(z) - up(z)II < ? 
- 

L 
__?3 _M1 

L+elLi L+6 Li 

So it follows that u(z) - up(z) = 0(e1/3) on the time-scale 1. From this it follows 
that we are allowed to say 

(5.19) u(z) = up(z) + A3p(Z, ). 

By using the same techniques, integral equations, and the lemma of Gronwall, we can 
also show that substitution of 

(5.20) u* (z) = up(z) + ? 3U1(Z) + e2U2(Z) + ?U3(Z) 

yields an O(e4/3)-approximation for the solution of (5.13) for lzl < M. 
From Theorem 5.2 this corollary immediately follows. 
COROLLARY 5.3. The solution of the significant degeneration (5.6) is an 0(?3 

approximation of the solution (1.2) for t E [-FO?-1 - M?-1/3, -FO?1 + M?-1/3] or 
F E [-Me2!3, M62!3] with M an arbitrary positive constant. 

The extension theorem (Eckhaus, 1979) states that (when ? gets smaller) we may 
extend the interval during which the approximations are valid, possibly at the cost of 
accuracy. We now give the precise formulation of this theorem. 

THEOREM 5.4 (extension theorem). Let, for -M < z < M with M arbitrary but 
fixed and 6-independent, 

(5.21) IYl(Z,e) - Y2(Z,e)1 = o(1). 

Then order functions 6e (6), 61e () = o(1) exist such that 

(5.22) IYl(Z, )- Y2(Z, ?)1 = O(61e) 

for -6b1(e) < Z < be1(6) 
For a discussion and proof of the extension theorem we refer to Eckhaus (1979). 

From the approximation theorem 5.2 and the extension theorem it follows that the 
domain of validity of the local Painleve approximation can be extended forward and 
backward to F E [-e2/36-1(6),e2/136-1(6)] with Me(?) = o(1). Thus overlap with 
the domains, where outer approximations are valid, is ensured and the integration 
constants can be matched. 

At the time that a pitchfork bifurcation is expected, (5.6) holds. Its solution must 
match the outer solution as given by (5.3b) with v = 2/3: 

(5.23) .+(Z) + aoe 2z(2z)-l os (2z)3 - 
*2 e,FOln( + 

+ O(Z-4) as z -+o, 
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with 4* depending on the initial conditions and ln(e). This is the parabolic matching 
condition after passage of the bifurcation point when the solution remains near the 
stable outer solution x = x1. When the solution remains near the other stable outer 
equilibrium solution x = x1 this matching condition is obtained by reflecting (5.23) 
with respect to the z-axis. The asymptotic condition is automatically fullfilled by 
(5.6). 

5.1. Two special solutions of the second Painleve transcendent. When 
r* = 0 we obtain a specific solution of the Painleve transcendent: the one that matches 

(5.3b) with r* = 0 and that reflects the asymptotic behaviour of the slowly varying 
equilibrium solution xl,,(F) when the transition layer is approached. It is noted that 
(5.3b) is then independent of e (and 0*). For z > 1, this solution has an asymptotic 
series of the form 

?0 / 23(n-1) 
(5.24) y(z) C 

with cn satisfying a recurrence relation: 

(5.25a) c1 = 1, c2 = 

and for n > 3 

4Cn 72-3n) (2-3n) 

(5.25b) (2cn+l1- 6cicj -2c(n+3)/3, n O(mod3), 
i>l,j>l,i+2j=n+3 

n| i 2+- E 6cicj, n I O(mod3). 
i>1,j>1,i+2j=n+3 

This solution is illustrated in Figure 4. 
In the same way, the solution of (5.6) must match the outer solution as given by 

(5.3a) with v = 2/3: 

(5.26) 8y - roe 2 (-z)-4 sin { (-Z)2 + reroeKFO ln(-z) + (O 

+ o((-z) 4 as z -*-o. 

Again, the asymptotic condition is automatically fulfilled. by_(5.6). In fact, the equa- 
tion is satisfied by a series, which has the form (5.26) for z -oo -c: 

00 

y(z) = E a2n-1,2n-l sin((2n - 1)(b + bo)) 
n=1 

n-1 

(5.27) + E [b2m-1,2n_1 sin((2m - 1)(Q7 + VIo)) 
m=1 

+ C2m-1,2n-1 cos((2m - 1) (Q + bo)) 4 

with 

(5.28) =2_z32 + -al ', ln(-z) . 
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5 

y 

-50 50 

FIG. 4. Numerical approximation of the solutions of (5.6) that match (5.3b) with rO = 0 or 
match the reflection of (5.3b) with respect to the z-axis with rO = 0. 

The two arbitrary parameters are ai,l and f0; the other parameters can be obtained 
from a1,, by a recurrent relation. In Figure 5 we illustrate the various analytical 
approximations of ?? 3, 4, and 5 with their domain of validity. As we have shown, 
the inner and outer approximations overlap. In the next section we will show the 
connection between the parameters (roe-8FO/2, (0) and (r e-,Fo/2, (0*). 

6. The prediction of the behaviour of solutions after passing the bi- 
furcation point at the basis of the initial values. If the state of a mechanical 
system at a certain moment is known, we wish to predict its future behaviour. As 
we have illustrated in Figure 6, most solutions of (1.2) will grow polynomially after 
passing the pitchfork bifurcation point. From the initial values of the original system 
(1.2) with F(O) = Fo < FC = 0, it will be deduced which of the two stable branches 
will be followed after passage of the bifurcation point. 

In ? 5 we derived the following asymptotic behaviour of y(z) satisfying d2y/dz2 - 
yz - 2y3 for z < -1: 

(6.1a) y(z)4=y(-Z)- sin {-(z) 2+ 2 ln(-z) + (o}+ 

where 

(6.1b) y=roe 2 

(6.1c) Fo < Fc = 0, wo(F) = yC7T, 

/wo For =(0) ( F d() 2 

(6.l1d) ro= + d 

e wo (Fo) 
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0.6 

xnnsly,;' = x,,,,, I (3.45) Xannlylk&l= Xevz?t (4.32) 
Fo < F < F 1(c) > 0 0 < 62(F) < P < P 
o(61(E)) = O(&2(E)) = 

A A .. 1000 

o nnmnnnm-.-n ^~~~~~~~xndYCM X -n t 

X3n.iytica1V ilw = 

F - 0(E23) 

FIG. 5. The composite analytical solution: Xanalytical - Xouter + tinner -Xmatch for (1.2) 
with x(O) = 0.04, x'(0) = 0,F(O) =-1,k = 0.005, and E = 0.0016. 

(6.1e) (o = - (-Fo)2 - -ro InjFoj+2a2l/ ns+4ce E ro2 e Iln IFIdF - oo+7r, 

and for z > 1 

(6.2a) y(z) = + -+ ? (2z)- cos { - -0 ln(z) + (3fl2/ 

where 

(6.2b) /=roe 2 

(6.2c) F1 > Fe = 0, wl(F) -v'2I for ?3 = o(F), 
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x 

X .. 1""iuiliulliflAiAAAAA 

-0.6L 

FIG. 6. Solutions of (1.2) for various sets of initial values with F(O) = -1 < 0, e = 0.0025, 
and k = 0. 

(6.2d) +o = \ E (Fl) 

-2V2 3)3/ 3f2KF (6.2e) = )3/2 + 2 l2e--Fln(Fi) _ -2ln _32 e-fF ln lFIdF + W* 
?E 2 F1 

The properties of the real solutions of (5.6) follow from the properties of the general 
pure imaginary solutions of 

d2u (6.3) su - 2u3 =0. 

In Its, Fokas, and Kapaev (1994) an important result concerning this differential 
equation is stated: there is a connection between the behaviour of solutions for s 
-oo with the behaviour for s --* Cc. Moreover, they discuss the connection between a 
method of Deift and Zhou (1993), who obtain a rigorous derivation of the connection 
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problem for the second Painleve equation, and an approach which was proposed by 
Kitaev (1989). We now give the formulation of the result. 

THEOREM 6.1. Let u(s) be an arbitrary solution of (6.3). Then the following 
assertions hold for u(s): 

a) u(s) is smooth for every s e R and has the following asymptotics as s -x* -c: 

(6.4) u(s) = ia(-s)- sin {3 (s) 4 ? In(-s) + +o((-s) ?), 

where the numbers ca > 0 and 0 < o < 2ir may be arbitrary and are parameters of the 
solution u(s). 

b) If the parameters ca and V of the solution u(s) are connected by the relation 

(6.5) -a In 2o2 - E - argr i. 2' ) +7r (mod 27r), E = 0,1, 2 42 

then as s -+x oo the solution u(s) decreases exponentially: 

(6.6) u(s)= 2VWs5 4e (2s (1+ o(1)), 

where a2 - exp(ira2)-1 and sgna-= 2(1 -). 
c) If (6.5) fails to hold (general position), then as s --+0 oo the solution u(s) grows 

polynomially: 

1 2 -Vs2 3 3 2 0 ? s (6.7) u(s) = 2 i: z (2s) 4pCos {3 52- P Ins+? +o(s 4 

d) In the asymptotics (6.7) all values of p > 0 and 0 < 0 < 2ir are possible; these 
quantities characterize the solution u(s) uniquely. The parameters p, 0, and the choice 
of the sign in (6.7) are explicitly determined from the parameters ca and p: 

2 1 1 +1p21 
(6.8a) p =-ln P ir 2-IImpl' 

(6.8b) 0 37- 
7 
p2ln2 + argr(ip2) + arg(1+ p2) 

where 

(6.8c) p= (e 'ra -1) 2 exp {i-a 2 In 2- i7r-iargrt 2 )-iS 

and the upper sign in (6.7) is taken if Imp < 0. 
For a proof of this theorem we refer to Its, Fokas, and Kapaev (1994). This result 

is important for the analysis of the large class of physical problems. It confirms the 
asymptotic results we obtained for the real solutions of (5.6). Moreover, it connects 
the integration constants in the asymptotic solution for z -* -oo with those in the 
one for z -* +oo. Furthermore, "separating" solutions, which follow the unstable 
branch beyond the bifurcation point, are singled out. A proof of the completeness of 
the asymptotic description of the solution of the differential equation is given in Its, 
Fokas, and Kapaev (1994). In order to prove this theorem, the method of isomon- 
odromy deformations as formulated by Flaschka and Newell (1980) has been used. 
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This method, as well as Laplace's method in the linear theory, allows us to comnpute 
explicitly connection formulas for Painleve equations. The essence of the isomon- 
odromy method is that a Stokes multiplier of an associated system is the first integral 
of the nonlinear Painleve equation (see also Its and Novokshenov (1986)). 

With the aid of Theorem 6.1 and (6.1) we can describe all solutions of (1.2) 
depending on the initial values and the value of E; we can predict the branch that is 
followed after passing the bifurcation point as well as the type of behaviour the solution 
exhibits. In terms of our system we have obtained in (6.5) an "angle-amplitude 
relation" for a solution of (1.2) that separates the solutions following the stable upper 
branch from the ones that take the stable lower branch after passage of the bifurcation 
point. The quantity 'p, stated in (6.5), is discontinuous in a = 0. However, this is 
the case when we will always stay on the equilibrium solution x = 0 of (1.2) that 
becomes unstable for t > 0. For a small, the quantity 'p tends to 7r/4 + E7r, E = 0, 1. 

In the case of a system with damping (k : 0), the amplitude of the oscillation around 
zero is small. In that case, solutions will follow the stable upper branch when the 
phase (o (see (6.la)) is approximately in the interval (7r/4 + 2n7r, 5ir/4 + 2n7r),n E N. 
In Figure 7 the separating solution has been sketched in the -y, (o-plane. Numerical 
experiments confirm these results. Furthermore, in Figure 8, we have illustrated in 
the phase plane of the original system (1.2) which branch solutions will follow after 
passing the bifurcation point for fixed E and Fo, depending on the initial values. 

7. The general case of second-order pitchfork bifurcations with damp- 
ing. We consider the class of mechanical problems that can be described by the 
second-order nonlinear differential equation 

(7.1) dt2 k-dx = G(x,F) 

from which the parameter F slowly varies in time: F = F(Et). The damping is 
assumed to be small: k rEC. Solution curves of (7.1) are defined on the time-scale 

50 + 

4 

3- 

2- 

0~~~~~~~~ 

0 0.5 1 1.5 2 2.5 3 

y 

FIG. 7. The branch followed after passage of the bifurcation point depending on y and ?o. 
+ denotes the stable upper branch, and - the stable lower branch. In the separating case that 
is represented by the solid lines, solutions of (1.2) will approach the unstable branch beyond the 
bifurcation point. 
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0.1 . __...........___ 

0.08- 

0.04 
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-0.02 

-0.04 

-0 .1 ....... 

FiG. 8. The branch that will be approached sketched in the x'(0), x(O)-plane of (1.2) for e = 
0.0025, FO = -1, and k = 0. The solid lines reflect approximations of the initial values for which 
the unstable branch will be approached after bifurcation. + denotes that the stable upper branch will 
be followed after bifurcation, and - denotes the stable lower branch. 

0(1/E) if the following condition is satisfied: 

M 

(7.2) j G(x, Et) dt < M1x2 + M2 with 
M 

M, M1, M2 c-independent positive constants. 

For fixed F the linear stability of an equilibrium solution XE(F) is determined by the 
linearization of (7.1). A critical value Fc of F occurs if 

(7.3) a (XE(Fc), Fc) = 0. 
ax 

While 02G/OxOF $7 0, this value separates stable from unstable solutions. In this 
study we also have that at the critical value 

(7.4) F (XE (Fc), Fc) = 0. 

In the neighbourhood of x = XE(Fc), F = Fc we assume G to have the following form: 

G(x, F) = a3O((X-XE(Fc)) -31(F-Fc) +*) 

x ((x- XE(Fc))2 -_ 2(F - Fc) + 

(7.5) = a,,(X XE(Fc))(F- Fc) + aO2(F Fc)2 +-3o(XXE(Fc))3 

+ c2l (x - XE(Fc))2(F - Fc) + a1i2(X - XE(Fc))(F -Fc)2 
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where anm = n!mn! (9/4X)n(a/OF)mG(XE(Fc), Fc). 
This phenomenon has been called a pitchfork bifurcation. This case is character- 

ized by a20 = 0. Note that a30 < 0 (so that G(x, F) < 0 for x sufficiently large) and 
all > 0 (so that a parabolic curve exists for F > FC). In this study a21 =-1a30 
and a11 = -a2a30 > 0. The moment of pitchfork bifurcation is approximated by tc 
satisfying 

(7.6) F(Etc) = Fc. 

In the same way as in ?? 3 and 4 we can obtain an asymptotic expansion for 
a slowly varying equilibrium solution of (7.1) and consider \/-perturbations of this 
solution. We obtain a slowly varying oscillator approaching a turning point as the 
frequency w(F) tends to zero for F -+ Fc. We will see that two different cases must be 
analysed: the transition from the parabolic arc to the straight line curve as F decreases 
through FC and the opposite case, which occurs as F is increased through Fc. With 
the aid of averaging techniques we obtain asymptotic expansions of the solutions in 
the neighbourhood of the slowly varying equilibria. The expansions break down when 
et = 0(e2/3). Matching implies that the local inner equation follows from the scaling 

(7.7) x = xE(Fc) + 6e (Z), F = Fc + 63 

Making these scale changes we find that (7.1) transforms into 

(7.8) d2=alyFlzy + a3Oy + 0(d), dz2 

with 

dF 
(7.9) FC = d(et).(eta) 

This equation must be solved with the matching conditions following from the asymp- 
totic expansions for the outer solutions. We obtain the following asymptotic condi- 
tions: for FT Fc, 

(7.10a) w2(F) -+ a2a3O(F - FC)Fc, 

( ) (-2a3oFI')-po(-z)4 sin { (a+Fc) + n(-z) +(Oo} 

as z -oo, 

and for F J Fc, 

(7.1 a) w2 (F) -2U2 a3O(F -Fc)Fc, 

(_ Fz) + (-2r2 a3o Fc) 
- 

4po Z 4 

(7. 11(b) -a11F 3 + 2} 
xCos (a,,Fc) 22 0 ln(z) +oo, 1 3~~~~~~F 
as z -+ +00, 
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with po, p*, , and f0 depending on the initial values, on the parameter E, and on 
tc, the bifurcation moment. 

In the region in which F = O(e2/3) a new local approximation is constructed, 
obeying the significant degeneration 

(7.12) d2 -a,,FCzy+a30 

and its validity is proven in the same way as in ? 5. Again, the validity domain can 
be extended forward and backward using the extension theorem of Eckhaus (1979). 
Overlap with the outer approximations is ensured so that integration constants follow 
from matching with these approximations. With the result of Its, Fokas, and Kapaev 
(1994) the parameters (a, p) = ((2a2F )1/2pO, o) and (p, 0) = ((2 ",)p*, O*) are 
connected. In fact, using the transformations 

(7.13) y = i (2) (lF')w,z = Fe' 3 
a3O 

we obtain 

d2W3 (7.14) ds2 = sw + 2w3. 

In this way the asymptotic validity of formal expansions of (7.1) is proven. Moreover, 
if the initial values and the small parameter E are known, we can predict the branch 
approached and the behaviour of the solution after bifurcation. We emphasize that, 
in contrast with Haberman (1979), the terms 

1p2w2 (F) 03| Ox3sve 

and 

ip 2w-3(F)(J ) 
12 ( aX2 I ~xsve) 

which appear after averaging over the phase, are of the same order as F j F, beyond 
the bifurcation point. Before the bifurcation, we have 15w-2(F)(02U1/X2txsve)2j <K 

j303G/0x3jXSV j for F T F,. This is the reason why we have to apply second-order 
averaging to approximate the solution beyond the bifurcation point, whereas first- 
order averaging is satisfactory for approximation of the solution before this point. 

8. Conclusions. In this paper we have analysed a second-order bifurcation sys- 
tem with a slowly varying parameter. We considered the case of a pitchfork bifur- 
cation for which the leading-order transition layer equation is the second Painleve 
transcendent. Solutions of this equation either exponentially decay, corresponding 
to the transition to the unstable slowly varying equilibrium beyond the bifurcation 
point, or algebraically grow, corresponding to the transition from the equilibrium that 
turned unstable to one or the other of the two stable branches of the parabolic curve. 
The transitions are illustrated in Figure 9. 

The solution of the problem we formulated is approximated asymptotically using 
perturbation techniques. The use of both averaging and boundary layer methods 
turned out to be necessary. The aim of this study was to predict which branch 
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(a) (b-' I /F f I 0 X f ~~~~~~(b)/ 

I I 

FIG. 9. For a second-order pitchfork bifurcation the second Painleve transcendent provides the 
transition between two stable slowly varying equilibria (a) or the rare transition to the unstable state 
(b). 

would be followed after passage of the bifurcation point, given the initial state of the 
system. With the aid of averaging methods the dynamics on the large time-scale are 
described. Afterward, the validity of the asymptotic approximation is investigated. 
It is proved that the different local solutions overlap. An analytical study of the 
transition layer equation produces the required information on the matching of the 
different locally valid asymptotic approximations. Its and Kapaev (1994) show that 
there is a connection between the constants of the slowly oscillating solutions that 
are valid before and after passage of the bifurcation point. Using this result we can 
predict which stable branch of the parabolic equilibrium curve will be followed by 
the solution after passage of the bifurcation point, given the initial values "far away" 
from the bifurcation moment. Moreover, the behaviour of the solution beyond the 
bifurcation point can again be described by averaging methods. The bifurcation takes 
place on a relatively small time-scale of length Et = O(e2/3). In this study the slow 
increase of the parameter depends only on time. The influence of the state variable 
on the change of the slowly varying parameter will be a goal for further research. 
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