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Abstract
Co-limitation of marine phytoplankton growth by light and nutrient, both of
which are essential for phytoplankton, leads to complex dynamic behaviour
and a wide array of coherent patterns. The building blocks of this array can
be considered to be deep chlorophyll maxima, or DCMs, which are structures
localized in a finite depth interior to the water column. From an ecological
point of view, DCMs are evocative of a balance between the inflow of light
from the water surface and of nutrients from the sediment. From a (linear)
bifurcational point of view, they appear through a transcritical bifurcation in
which the trivial, no-plankton steady state is destabilized. This paper is devoted
to the analytic investigation of the weakly nonlinear dynamics of these DCM
patterns, and it has two overarching themes. The first of these concerns the fate
of the destabilizing stationary DCM mode beyond the centre manifold regime.
Exploiting the natural singularly perturbed nature of the model, we derive an
explicit reduced model of asymptotically high dimension which fully captures
these dynamics. Our subsequent and fully detailed study of this model—which
involves a subtle asymptotic analysis necessarily transgressing the boundaries
of a local centre manifold reduction—establishes that a stable DCM pattern
indeed appears from a transcritical bifurcation. However, we also deduce that
asymptotically close to the original destabilization, the DCM loses its stability
in a secondary bifurcation of Hopf type. This is in agreement with indications
from numerical simulations available in the literature. Employing the same
methods, we also identify a much larger DCM pattern. The development of
the method underpinning this work—which, we expect, shall prove useful for
a larger class of models—forms the second theme of this paper.
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1. Introduction

Phytoplanktonic photosynthesis provides the major biological component of the transport
mechanism carrying atmospheric carbon dioxide into the deep ocean. Concurrently, plankton
forms the basis of the aquatic food chain. As a consequence, phytoplankton growth and
decay play a crucial role in understanding climate dynamics [10] and form an integral
part of oceanographic research. Conversely, climate changes—such as global temperature
variations—have a direct impact on the aquatic ecosystem and thus also on phytoplankton
[3, 22]: there is a subtle and under-explored interplay between the dynamics of phytoplankton
concentrations and climate variability. At the same time, phytoplankton concentrations exhibit
surprisingly rich spatio-temporal dynamics. The character of those dynamics is determined in
an intricate fashion by (changes in) the external conditions, see [15] and references therein.
The building blocks for the observed complex patterns are deep chlorophyll maxima (DCMs)
or phytoplankton blooms, in which the phytoplankton concentration exhibits a maximum at a
certain, well-defined depth of the basin. These patterns are the manifestation of a fundamental
balance between the supply of light from the surface and of nutrients from the depths of
the basin. For the simplest models, in which spatio-temporal fluctuations in the nutrient
concentration are omitted (eutrophic environment), it has been shown that there can only be a
stationary global attractor [17]. In particular, if the trivial state (no phytoplankton) is unstable,
then there can only be a stationary globally attracting phytoplankton bloom with its maximum
either at the surface (a surface layer), at the bottom (a benthic layer, BL), or in between (a
DCM) [9, 12, 13, 17]. This is no longer the case in coupled phytoplankton–nutrient systems
(oligotrophic environment), although DCMs do tend to appear in those systems, also, for
certain parameter combinations [6, 7, 11, 13, 16, 18]. The detailed numerical studies reported
in [15], however, show that the appearance of a DCM only triggers a complex sequence of
bifurcations: as parameters vary, a DCM may be time-periodic, undergo a sequence of period-
doubling bifurcations, and eventually behave chaotically.

In this paper, we focus on the effect that varying environmental conditions, and in particular
nutrient levels at the ocean bed, have on the dynamics generated by the one-dimensional model
for phytoplankton (W )–nutrient (N ) interactions originally introduced in [15],{

Wt = D Wzz − V Wz + [µ P(L, N) − l] W,

Nt = D Nzz − Y−1 µ P(L, N) W.
(1.1)

In this model, the vertical coordinate z measures the depth in a water column spanned by [0, zB],
while W(z, t) and N(z, t) are the phytoplankton and nutrient concentrations, respectively, at
depth z and time t . As in [15, 25], the system is assumed to be in the turbulent mixing
regime [9, 13], so that the diffusion coefficient D is identically the same for phytoplankton and
nutrient. The phytoplankton is characterized by its sinking speed V , its (species-specific) loss
rate l, its maximum specific production rate µ, and its yield Y on light and nutrient. The model
is equipped with natural no-flux boundary conditions at the surface for both phytoplankton
and nutrients; the bottom is a source of nutrients but impenetrable for phytoplankton,

D Wz − V W |z=0,zB
= 0, Nz|z=0 = 0 and N |z=zB

= NB. (1.2)

The constant nutrient concentration NB will act as the primary bifurcation parameter in this
work. The nonlinear expression P(L, N) models phytoplankton growth due to light and
nutrient:

P(L, N) = LN

(L + LH)(N + NH)
, (1.3)

in which LH and NH are the half-saturation constants of light and nutrient, respectively.
(See [25] for a short discussion on the nature and specificity of P(L, N).) The light intensity
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L at depth z and time t is determined by the total amount of planktonic and non-planktonic
components in the column [0, z]:

L(z, t) = LI e−Kbgz−R
∫ z

0 W(s,t) ds . (1.4)

Hence, the system is non-local—a typical feature of most realistic phytoplankton models. The
light intensity term introduces three extra parameters: LI , the intensity of the incident light
at the water surface; Kbg, the light absorption coefficient due to non-planktonic, background
components and hence a measure of turbidity; and R, the light absorption coefficient due to
plankton (self-shading). The first two of these parameters, together with zB , D, Y and NB ,
quantify the effect that the environment has on the planktonic population. It is by varying these
parameters that we examine the effect of changing environmental conditions on plankton.

It is shown in [25] that system (1.1) has a natural singularly perturbed nature. This
can be seen by rescaling time and space via τ = µ t and x = z/zB and the phytoplankton
concentration W , nutrient concentration N and light intensity L via

ω+(x, τ ) = lz2
B

DYNB

W(z, t), η(x, τ ) = 1 − N(z, t)

NB

and j (x, τ ) = L(z, t)

LI

.

Substitution into (1.1) then yields

ω+
τ = εω+

xx − 2
√

εv ω+
x + (p(ω+, η, x) − �) ω+,

ητ = ε
(
ηxx + �−1p(ω+, η, x) ω+

)
,

(1.5)

with boundary conditions,

(ω+
x − 2

√
v/ε ω+)(0) = (ω+

x − 2
√

v/ε ω+)(1) = 0 and ηx(0) = η(1) = 0. (1.6)

For realistic choices of the original parameters of (1.1),

ε = D

µz2
B

≈ 10−5,

cf [15, 25]. Effectively, ε1/4 characterizes the extent of the zone where DCMs appear relative
to the depth of the ocean. In this paper, we follow [25] and treat the parameter ε as an
asymptotically small parameter, i.e. we assume that 0 < ε � 1 so that (1.5) has, indeed, a
singularly perturbed character. The nonlinearity p in (1.5) is given by

p(ω+, η, x) = 1 − η

(ηH + 1 − η) (1 + jH/j (ω+, x))
, (1.7)

with rescaled light intensity

j (x, τ ) = exp

(
−κx − r

∫ x

0
ω+(s, τ ) ds

)
. (1.8)

The remaining six rescaled parameters of (1.5),

v = V 2

4µD
, � = l

µ
, jH = LH

LI

, ηH = NH

NB

, κ = KbgzB and r = RDYNB

lzB

,

(1.9)

are all considered to be O(1) with respect to ε in the forthcoming analysis (cf [25]).
Our attempt to comprehend the mechanism underpinning the appearance of phytoplankton

patterns, as well as the character of such patterns, begins with the determination of the spectral
stability of the trivial steady state u+ = (0, 0)T. At that state, and in terms of the original
system (1.1), there is no phytoplankton—W(z, t) ≡ 0—and the nutrient concentration remains
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constant throughout the column—N(z, t) ≡ NB , the value at the bottom of the basin (1.2).
System (1.5) may be written compactly in the form

u+
τ = T +(u+) =

(
ε ω+

xx − 2
√

εv ω+
x + (p(ω+, η, x) − �) ω+

ε ηxx + ε �−1 p(ω+, η, x) ω+

)
, (1.10)

where

u+ =
(

ω+

η

)
.

Here, the nonlinear operator T + is densely defined in L2(0, 1) × L2(0, 1). The associated
spectral problem has been investigated in full asymptotic detail in [25], where we worked with
the linearization of (1.10) around u+ = (0, 0)T,

DT + =
(

ε ∂xx − 2
√

εv ∂x + f − � 0
ε �−1 f ε ∂xx

)
, (1.11)

in which

f (x) = ν

1 + jH eκx
and ν = 1

1 + ηH

∈ (0, 1). (1.12)

The spectrum σ(DT +) = {νn}n�0 ∪ {λn}n�0 of the operator DT + consists of two distinct,
real parts associated with the two diagonal blocks of DT +, cf (1.11). Here, the eigenvalues
νn = −ε (n + 1/2)2 π2 are negative, independent of all parameters, and associated with the
lower block. These eigenvalues, together with the corresponding sinusoidal eigenfunctions
(0, cos((n + 1/2)πx))T, describe nutrient diffusion in the complete absence of phytoplankton.
It follows that the spectral stability of the trivial state is governed solely by {λn}n�0, the set
of eigenvalues associated with the upper block. In [25], we identified two different linear
destabilization mechanisms. In the regime v < f (0) − f (1), corresponding to reduced
oceanic diffusivity or increased turbidity (cf (1.9) and (1.12)), the planktonic component
ω+

0 of the eigenfunction w+
0 associated with the critical eigenvalue λ0 has the character of

a DCM: ω+
0 is localized in an O(ε1/4) region centred around a certain depth x∗ at which

it attains its maximal value, see figure 1. This depth can be determined explicitly: to
leading order, f (x∗) = f (0) − v [25]. Hence, x∗ increases monotonically from x∗ = 0
to x∗ = 1 as v increases from v = 0 to the transitional value v = f (0) − f (1). In the
complementary case v > f (0) − f (1), corresponding to increased oceanic diffusivity or
decreased turbidity, the planktonic component of the critical eigenfunction destabilizing the
trivial state has the character of a BL: that is, it increases monotonically with depth and
essentially all phytoplankton is concentrated in an O(ε1/2) region over the bottom, see again
figure 1.

In this paper, we focus exclusively on the regime in which DCMs may appear, i.e. we
assume throughout the paper that v < f (0) − f (1). In that regime, we investigate the nature
of the bifurcation associated with the destabilization mechanism of DCM type. We know
from [25] that, in this case,

λn = λ∗ − ε1/3σ
2/3
0 |An+1| + O(ε1/2), (1.13)

with

λ∗ = f (0) − � − v = ν

1 + jH

− � − v (1.14)

and where

σ0 = F ′(0) = −f ′(0) = κ ν jH

(1 + jH )2
, with F(x) = f (0) − f (x). (1.15)
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0
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0
0x

*
x x

ω+ ω+

Figure 1. Left: a DCM profile for the planktonic component of (1.5)–(1.6). Essentially all plankton
is concentrated in an O(ε1/4) region around a finite depth x∗. Right: a BL profile for the planktonic
component of (1.5)–(1.6). Here, essentially all plankton is concentrated in an O(ε1/2) region over
the depth of the basin.

Here, An < 0 is the nth root of Ai, the Airy function of the first kind. The bifurcation occurs as
λ0 crosses zero, yielding the bifurcation diagram in the left panel of figure 2. More specifically,
we focus on the (weakly nonlinear) dynamics generated by (1.10) for parameter choices such
that

λ0 = ν

1 + jH

− � − v − ε1/3σ
2/3
0 |A1| + O(ε1/2) = ερ
0, (1.16)

where ρ > 0 is fixed and 
0 is allowed to be at most logarithmically large with respect to ε.
Note that one can tune the appearance of a destabilization of DCM type (i.e. of the simplest
phytoplankton pattern) by choosing appropriately the parameters in (1.10); also, note that λ0

depends on all parameters with the exception of r , the rescaled self-shading coefficient which
is absent from the spectral problem for DT + (cf(1.11)), see the definitions of f and σ0 in (1.12)
and (1.15). We remark, further, that the parameter v depends on the diffusion coefficient D (cf
(1.9)), the main parameter varied in [15] and the one that most strongly depends on varying
external conditions such as global temperature [22]. Finally, 
0 is an increasing function of
our bifurcation parameter NB through its dependence on ν, see (1.13)–(1.14) together with the
definitions of ν in (1.12) and of ηH in (1.9). Based on this final observation, we will often treat

0 as our bifurcation parameter.

The first step in analysing the dynamics generated by a linear destabilization mechanism
is to perform a centre manifold analysis to determine the local character of the bifurcation
associated with the destabilization (see, for instance, [1, 4]). This is a well-established
procedure. In the setting of (1.16), this amounts to assuming that λ0 is (asymptotically)
smaller than all other eigenvalues, and it corresponds to the case ρ > 1 and 
0 = O(1).
In this regime, the remaining eigenvalues {νn}n�0 ∪ {λn}n�1 are negative and asymptotically
larger than λ0, so that the local flow near the trivial pattern (0, 0)T is determined by the flow
on the one-dimensional centre manifold. The tangent space of this manifold at the trivial
steady state is spanned by the critical eigenfunction w+

0 associated with λ0. Hence, this flow
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λ
0
 > 0λ

0
 < 0

F(1)

νν
DCM

ν
BL

λ
0
 > 0λ

0
 < 0
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DCM

ν
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Ω
0
*

Λ
0
* Λ

0

Figure 2. Left: the bifurcation diagram for the trivial steady state of (1.5) in the regime
v < f (0)−f (1) = F(1). The trivial steady state is stable in the region λ0 < 0 and unstable in the
region λ0 > 0. Here, νDCM = �(1 + jH ) and νBL = �(1 + eκ jH ). Right: the bifurcation diagram
for the small-amplitude DCM reported in (1.17) and (1.19). The origin marks the transcritical
bifurcation through which the trivial steady state is destabilized and the small-amplitude DCM
pattern emerges. The value 
∗

0 marks the (first) Hopf bifurcation where this small-amplitude DCM
is destabilized and a time-periodic DCM pattern is generated.

can be determined by expanding u+ as u+(x, τ ) = ερ−1/6 �0(τ ) w+
0 (x) + R(x, t), with �0

being an unknown, time-dependent amplitude and the higher order remainder R encapsulating
the component of u+ along directions associated with the stable eigenvalues—the additional
1/6 in the exponent of ε follows from the projection analysis by which the equation for �0

is determined (see below and section 3). An ordinary differential equation (ODE) for the
unknown amplitude �0 is obtained through a projection procedure which is straightforward
but can nevertheless be highly technical, especially in a partial differential equation (PDE)
setting. In the case at hand, this equation reads

�̇0 = 
0 �0 − a000(0) �2
0, (1.17)

to leading order. Thus, the procedure reveals the existence of a non-trivial fixed point which
is stabilized through a standard, co-dimension one transcritical bifurcation. This fixed point
corresponds to an asymptotically small DCM pattern, the amplitude of which grows linearly
with 
0:

ω+(x) ∼ ερ−1/6 �∗
0 ω+

0 (x), with �∗
0 = 
0

a000(0)
. (1.18)

In general, one cannot expect to be able to compute the coefficient a000(0) explicitly. Here, we
exploit the singularly perturbed nature of (1.10) and the localized character of the eigenfunction
w+

0 to do exactly that; in particular, it follows from the analysis to be presented in this paper
that

a000(0) = (1 − ν)(1 − x∗)
σ

1/3
0 f (0) exp(|A1|3/2)(

|f ′(x∗)|
∫∞
A1

Ai2(s) ds
)1/2 > 0, (1.19)

see section 3. In addition to yielding an explicit, leading order formula for the amplitude of
the emerging (stable) DCM, this first result also implies that this DCM is ecologically relevant
since the planktonic component of the primary eigenfunction is positive, ω+

0 > 0, and hence
also ω+ > 0 by (1.18)–(1.19).
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The main aim of this paper is to develop an analytic approach through which one can go
beyond the direct, finite-dimensional centre manifold reduction outlined above. The original
ideas underlying this approach—namely, the method of weakly nonlinear stability analysis—
qualify as classical [23]. However, this particular method does not always provide more
insight than the rigorously established centre manifold reduction method: for instance, it also
reduces the flow to a one-dimensional ODE of the form (1.17). The situation is strikingly
different here, as we can exploit the singularly perturbed nature of (1.10), in conjunction
with the asymptotic information on the eigenfunctions of DT + obtained in [25], to study in
full analytic detail the case λ0 = O(ε)—see section 4—and even extend our analysis to the
regime λ0 = O(ε log2 ε)—see section 4.5. This way, we can analytically trace the fate of
the bifurcating DCM pattern well into the regime where the pattern undergoes secondary and,
possibly, even tertiary bifurcations.

For clarity of presentation, we divide the rest of the material in this section into two parts.
The first one focuses on the bifurcations undergone by the DCM patterns and on the ecological
interpretation of our findings, while the second one focuses on the specifics of the asymptotic
method developed in this work.

1.1. The bifurcations of the DCM patterns

The outcome of our asymptotic analysis is summarized in the right panel of figure 2. The
localized DCM that bifurcates as λ0 crosses zero is a stable attractor of the flow generated
by (1.1), for all ρ > 1 and 
0 = O(1) with respect to ε, cf (1.16). As we remarked above,
the amplitude �∗

0 of this localized DCM, and thus also the biomass associated with it, grows
linearly with 
0 in that regime, cf (1.18)–(1.19). Quite remarkably, from the point of view of
our weakly nonlinear stability analysis, �∗

0 continues growing linearly with 
0 also beyond
the region where the centre manifold reduction is valid. In particular, (1.18)–(1.19) remain
valid in the regime ρ = 1 and 
0 = O(1), see (4.9). The corresponding biomass turns
out to be ∫ 1

0
ω+(x) dx = ε

(1 + jH )

(1 − ν) ν (1 − x∗)

0 = (1 + jH ) ν − � − v

(1 − ν) (1 − x∗) (� + v)
, (1.20)

to leading order. This second result establishes that, in the λ0 = O(ε) regime, the DCM pattern
grows with ν and hence also with NB , the primary parameter measuring nutrient availability in
the water column (see (1.9) and (1.12)). This fact certainly reinforces our ecological intuition.

The stability properties of the DCM mode corresponding to �∗
0, on the other hand, undergo

a drastic change in that same regime. Our rather involved stability analysis of this emergent
non-trivial steady state reveals that it becomes unstable, in this same λ0 = O(ε) regime already,
as 
0 continues to grow and through a standard Hopf bifurcation; this is our third result. The
appearance of this secondary bifurcation can be determined explicitly by our methods and,
as we demonstrate, its onset occurs for values of 
0 which increase unboundedly as x∗ ↓ 0
(equivalently, as v ↓ 0). It is natural, then, to attempt an extension of our analysis into a region
where 
0 � 1. In that regime, we establish the existence of a second localized DCM-type
pattern: the associated reduced system has two critical points. Using our methods, we trace
this second localized structure back to O(1) values of 
0 and find that it corresponds to an
O(ε1/2) biomass depending nonlinearly on 
0. This is our fourth result. The stability type of
this pattern can also be determined explicitly, although we do not undertake this task in this
work.

Hence, our analysis yields that the stationary, stable, localized DCM pattern emerging
at the transcritical bifurcation through which the trivial state becomes unstable persists only
in an asymptotically small, O(ε) region in parameter space before it yields to an oscillatory
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pattern emerging through a Hopf bifurcation. This fact reinforces our mathematical intuition
that the appearance of this stationary DCM is the first step in a cascade of bifurcations leading
to the chaotic dynamics reported in [15]—see also our discussion in [25]. In light of this, our
analytical findings seem to agree qualitatively with these numerical results. In the same vein,
our findings here suggest that the chaotic dynamics can be traced back to the small-amplitude
patterns emerging from the destabilization of the trivial steady state. (Of course, one must
always exercise caution in interpreting numerical observations from an asymptotic point of
view, especially when these simulations concern an unscaled system as is the case here: the
authors of [15] have simulated the original system (1.1) and not the scaled system (1.5).)
Additionally, the fact that the onset of the Hopf bifurcation for v ↓ 0 occurs in the regime

0 � 1—where certain higher order terms in our analysis become leading order and hence
the analysis must be necessarily extended—possibly explains the absence of oscillatory and
chaotic dynamics for small values of v, see [25, figure 3.3].

Naturally, the questions on the fate of the oscillatory pattern generated through the Hopf
bifurcation and on the nature of the larger DCM pattern are intriguing. At present, this is the
subject of ongoing research. We do not pursue these questions further in this paper, apart from
a short discussion in its concluding section.

1.2. The asymptotic method

Parallel to understanding the character and fate of the linear destabilization mechanism
established in [25], this paper has a second—and from a mathematical point of view at least
equally important—theme. Here, we have developed a powerful approach by which we can
study the weakly nonlinear dynamics generated by (1.5) in full asymptotic detail and far from
the region covered by more standard techniques (such as the centre manifold reduction method).
Indeed, one cannot hope in general to extend the analysis beyond the one-dimensional centre
manifold reduction discussed above and into the regime where λ0 is not asymptotically closer
to zero than all other eigenvalues. In other words, the sole analytical insight into the dynamics
of the flow near the destabilization that one can generically obtain is the confirmation that
DCMs indeed appear through a transcritical bifurcation. Let us look into this last point in
more detail and for our specific model (1.5)–(1.6). For λ0 = O(ε)—equivalently, for ρ = 1
in (1.16)—one can no longer ‘project away’ the directions corresponding to the eigenvalues
νn = −ε (n + 1/2)2 π2 associated with the operator DT +. Indeed, these are O(ε) for O(1)

values of n, and hence of the same asymptotic magnitude as λ0. As a result, the centre manifold
reduction approach yields a leading order system in at least asymptotically many dimensions.
In general, such a system cannot be studied analytically, and one has to abandon the idea of
performing an asymptotically accurate analysis.

The crucial ingredient in our approach is our ability to explicitly determine, to leading
order, all relevant coefficients in the reduced, asymptotically high-dimensional system that
extends the leading order, one-dimensional centre manifold reduction. All of these coefficients
are defined in a relatively standard manner in terms of projections based on the linear spectral
analysis, see (2.21) in section 2. We report the outcome of this part of our work in (4.1).
These leading order formulae clearly reveal a certain structure in these coefficients, which in
turn reflects on the system of ODEs for the Fourier modes. It is this structure that allows
us to extend our stability and bifurcation analysis. The sometimes remarkably subtle and
laborious analysis by which these coefficients are computed provides the foundation for the
strength and success of our programme. Therefore, this analysis is a central component of
our approach and lies at the core of the forthcoming presentation, see especially sections 3
and 5–7.
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An understanding of the conditions under which a similar structure may be expected to
appear is apposite to deciphering the fundamental mechanisms underpinning the success of our
method and to determining a more general setting where this method is applicable. Naturally,
what enables us to estimate these coefficients, and thus also determine how they are related,
is the accurate asymptotic control over the eigenfunctions that we establish. It is neither
clear, a priori, that the structure present in the reduced system is a necessary consequence of
that control, nor how much of that control is necessary to establish the presence of sufficient
structure. These issues are the subject of current research undertaken by the authors. Below
we offer a brief sketch of the ideas behind this work in progress, as it also encapsulates the
essentials of the method developed in this work.

To avoid the computational complexities associated with the weakly nonlinear analysis,
we consider a much simpler, autonomous, coupled, reaction–diffusion system,

Ut = Uxx + µ U + F(U, V ; ε),

Vt = ε (Vxx + ν V + G(U ; V, ε)) .
(1.21)

Here, U and V are defined in [0, 1] × R
+ and obey certain boundary conditions, e.g. of

homogeneous Neumann or Dirichlet type. The nonlinearities F(U, V ) and G(U, V ) are
assumed to be smooth and at least quadratic in U and V ; finally, 0 < ε � 1 is an asymptotically
small parameter. The spectral problem associated with the trivial state (U, V ) ≡ (0, 0)

decouples into two scalar problems of harmonic oscillator type. It immediately follows that, for
ν below a certain critical value ν∗, this trivial state loses stability when µ crosses a threshold µ∗.
Moreover, the eigenvalues {λU

n }n�0 associated with the U -component (and hence also with
µ) are O(1)-apart, while the eigenvalues {λV

n }n�0 associated with the V -component (and also
with ν) are O(ε)-apart. Both sets of eigenvalues are naturally paired with simple trigonometric
eigenfunctions. A straightforward centre manifold reduction suffices to determine the nature
of the bifurcation as µ crosses µ∗ and in the regime µ − µ∗ � ε. This situation corresponds
directly to our—technically more involved—centre manifold problem (1.17)–(1.19) briefly
discussed earlier. Note that, here, the leading order analogue of the DCM pattern identified in
that discussion is a sinusoidal function.

As long as µ − µ∗ � ε, the modes associated with the eigenvalues {λV
n }n remain slaved

to the critical λU
0 -mode, exactly as in our phytoplankton–nutrient model. However, this is

no longer the case when µ − µ∗ = O(ε); in that regime, asymptotically many λV
n -modes

are nonlinearly triggered by that critical mode. Nevertheless, the remaining λU
n -modes stay

slaved, so that one obtains a reduced system of asymptotically high dimension. Here also, the
coefficients of the leading nonlinearities can all be expressed in terms of projections along the
eigenmodes, albeit they correspond to much simpler integrals. This process should enable us to
study the conditions under which one is able to infer relations between these coefficients similar
to those reported in (4.1). This, in turn, should lead to conditions under which the reduced
system has sufficient structure to allow a secondary bifurcation analysis—and perhaps even
the identification of a cascade of subsequent bifurcations—of the non-trivial state bifurcating
at µ = µ∗. An additional benefit of working in a simple setting of this sort is its amenability
to rigorous analysis, which is beyond the scope of this paper.

A natural question to ask at this point is whether the model problem (1.21) shares enough
structure with (1.5) to enjoy similarly complex yet tractable dynamics. Note, in particular,
the absence of non-local and non-autonomous terms from (1.21). Mathematically speaking,
we expect these aspects to be insignificant for the type of dynamics that the model exhibits
close to bifurcation. (The situation is very different from the ecological point of view,
naturally.) In the setting of (1.5), the non-locality only complicates our analysis and thus
clouds our understanding of the secondary and subsequent bifurcations beyond the centre
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manifold reduction. Indeed, one expects the self-shading effect that a small DCM pattern
has on itself to be much smaller than the shading due to the water column above it. This
is most evident in sections 3 and 6, where self-shading (quantified by the parameter r) is
finally shown to contribute higher order terms only. Similarly, the sole role of the non-
autonomous features of (1.1) is seemingly to introduce two spectra, {νn}n and {λn}n, with
different asymptotic properties. In our model problem (1.21), this is achieved instead by
choosing disparate diffusivities for the two model components.

Finally, it should be noted that our work resembles, but is certainly not identical to, Lange’s
work in [19, 20]. Lange has devised a potent asymptotic method applicable to problems with
closely spaced branch points which allows one to track the evolution of solution branches
well into the regime where centre manifold reduction breaks down. In our work also, the
spectrum is asymptotically closely spaced, as are also then the branch points. Nevertheless,
the differences between our work and the work in [19] are substantial. Most prominently,
Lange essentially defines branch points as points in parameter space where the linearization
around the steady state admits a zero eigenvalue, see the derivation of [19, (3.10)] in particular.
In our work, instead, the secondary bifurcation is induced by the parameter-independent
negative spectrum related to pure diffusion and occurs before any eigenvalues other than λ0

have bifurcated. As such, these branch points are not captured by Lange’s method. In fact, this
secondary bifurcation—and, we expect, part of the cascade towards chaotic dynamics—occurs
in a region of parameter space which is asymptotically small compared with the magnitude
of the next critical eigenvalue λ1. Viewed from this perspective, then, the existence of the
rich dynamics reported here for the regime λ0 = O(ε) acts as a paradigmatic manifestation
of nonlinear interactions. The linearly stable modes manage to have a decisive impact on the
dynamics solely through nonlinear couplings although a strictly linear point of view dictates
that these modes should be utterly irrelevant.

2. Evolution of the Fourier coefficients

Our aim in this section is to write the PDE system (1.10) as an infinite-dimensional system
of nonlinear ODEs and subsequently reduce it by relaxing the fast stable directions. To
achieve this, we need explicit formulae for the (point) spectrum σ(DT +), as well as for the
corresponding eigenbasis and its dual. The spectrum and the eigenbasis have been determined
in [25]; we summarize the relevant formulae in section 2.1 below. We then obtain the dual
basis in section 2.2 by solving the eigenproblem for the adjoint operator (DT +)∗. Finally, in
section 2.3, we derive the desired ODEs for the Fourier coefficients close to the bifurcation
point.

2.1. The spectrum and the corresponding eigenbasis of DT +

For completeness, we let Hω+ and Hη be the subspaces of L2(0, 1) associated with the boundary
conditions (1.6), Hω be associated with the boundary conditions

(∂xω −
√

v/ε ω)(0) = (∂xω −
√

v/ε ω)(1) = 0, (2.1)

and we write H+ = Hω+ × Hη and H = Hω × Hη. Both product spaces can be equipped with
the inner product

〈u+
1, u

+
2〉 =

〈(
ω+

1

η1

)
,

(
ω+

2

η2

)〉
=
∫ 1

0

(
ω+

1 (x) ω+
2 (x) + η1(x) η2(x)

)
dx.
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Subsequently, we define the function E(x) = exp(
√

v/ε x) and the operator E : H → H+

corresponding to an application of the Liouville transform,

Eu =
(

E ω

η

)
=
(

ω+

η

)
= u+ with inverse u =

(
ω

η

)
=
(

ω+/E

η

)
= E−1u+. (2.2)

(It is straightforward to check that the boundary conditions (1.6) for u+ yield the boundary
conditions (2.1) for u.) Both E and E−1 are self-adjoint and bounded and

DT = E−1DT +E =
(

ε∂xx + f − � − v 0
ε�−1f E ε∂xx

)
, (2.3)

with DT densely defined and having self-adjoint diagonal blocks.
As mentioned in section 1, the eigenvalues νn associated with DT + correspond to the pure

diffusion problem for the nutrient in the absence of plankton. In particular, they are solutions
to the eigenvalue problem

ε∂xxζn = νnζn, with ∂xζn(0) = ζn(1) = 0,

and may be calculated explicitly,

νn = −εNn, where Nn = (π/2 + nπ)2 for n � 0. (2.4)

The corresponding eigenfunctions have a zero ω+-component, and they are

vn =
(

0
ζn

)
, where ζn(x) =

√
2 cos(

√
Nn x). (2.5)

These are normalized so that ||ζn||2 = 1.
The eigenvalues λn, on the other hand, correspond to the eigenvectors

w+
n =

(
ω+

n

ηn

)
.

Here, the functions ω+
n and ηn are solutions to

ε ∂xxω
+
n − 2

√
εv ∂xω

+
n + (f (x) − � − λn) ω+

n = 0,

(∂xω
+
n − 2

√
v/ε ω+

n)(0) = (∂xω
+
n − 2

√
v/ε ω+

n)(1) = 0,

cf (1.11), together with the self-adjoint, inhomogeneous, boundary-value problem for the
component ηn,

ε ∂xxηn − λn ηn = −ε�−1f ω+
n, where ∂xηn(0) = ηn(1) = 0. (2.6)

Equivalently, they are solutions to the self-adjoint, Sturm–Liouville problem

ε ∂xxωn + (f (x) − � − v − λn) ωn = 0,

(∂xωn −
√

v/ε ωn)(0) = (∂xωn −
√

v/ε ωn)(1) = 0,
(2.7)

cf (2.2)–(2.3). As already stated, in [25] we derived the asymptotic expressions

λn = λ∗ − ε1/3σ
2/3
0 |An+1| + O(ε1/2), with n � 0,

cf (1.13). Here, λ∗ = f (0) − � − v, σ0 = F ′(0) = −f ′(0), and An < 0 is the nth root of the
Airy function Ai, cf (1.15). A formula for the nth eigenfunction ωn can also be derived using
the WKB method, cf [25]. The corresponding eigenfunctions for DT + are w+

n = (ω+
n, ηn)

T,
where ω+

n = E ωn—cf (2.2). As we will see in the next section, it is natural to impose the
normalization condition ||ωn||2 = 1.
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2.2. The dual eigenbasis of DT +

To carry out the weakly nonlinear stability analysis of the bifurcating DCM profile, we also
need to obtain the dual eigenbasis {ŵ+

n}n�0 ∪ {v̂n}n�0 uniquely determined by the conditions

〈w+
n, ŵ+

m〉 = 〈vn, v̂m〉 = δnm and 〈w+
n, v̂m〉 = 〈vn, ŵ

+
m〉 = 0,

for all n, m � 0. In this section, we show that

ŵ+
n =

(
ω−

n

0

)
and v̂n =

(
ψ−

n

ζn

)
. (2.8)

Here, ω−
n ≡ ωn/E, where ωn solves the eigenvalue problem (2.7) and satisfies the

normalization condition ||ωn||2 = 1. Further, expressions for the functions {ζn}n were reported
in (2.5), while the functions {ψ−

n }n may be found by solving the inhomogeneous problem

ε ∂xxψ
−
n + 2

√
εv ∂xψ

−
n + (f (x) − � − νn) ψ−

n = −ε�−1f ζn,

∂xψ
−
n (0) = ∂xψ

−
n (1) = 0.

(2.9)

Alternatively, ψ−
n = ψn/E, where ψn solves the self-adjoint inhomogeneous problem

ε ∂xxψn + (f (x) − � − v − νn) ψn = −ε�−1f E ζn,

(∂xψn −
√

v/ε ψn)(0) = (∂xψn −
√

v/ε ψn)(1) = 0.
(2.10)

To verify the above, we start from the observation that the dual basis may be obtained by
solving the corresponding eigenvalue problem for (DT +)∗, the adjoint of the operator DT +.
To calculate (DT +)∗, we write v− = E−1v, recall (2.3), and note that

〈DT +u+, v−〉 = 〈DT +Eu, v−〉 = 〈EDT u, v−〉 = 〈DT u, Ev−〉 = 〈DT u, v〉 = 〈u, DT ∗v〉.
This implies, further, that

〈DT +u+, v−〉 = 〈u, DT ∗v〉 = 〈E−1 u+, DT ∗Ev−〉 = 〈u+, E−1DT ∗Ev−〉,
whence (DT +)∗ = E−1DT ∗E . Here, u+ satisfies the boundary conditions (1.6), whereas the
boundary conditions for v− are determined from v− = E−1v and the boundary conditions (2.1)
for v—in particular,

∂xψ
−(0) = ∂xψ

−(1) = 0 and ∂xζ(0) = ζ(1) = 0, where v =
(

ψ−

ζ

)
. (2.11)

It is straightforward to show that

DT ∗ =
(

ε∂xx + f − � − v ε�−1f E

0 ε∂xx

)
,

and, since also (DT +)∗ = E−1DT ∗E ,

(DT +)∗ =
(

ε ∂xx + 2
√

εv ∂x + f − � ε�−1f

0 ε ∂xx

)
. (2.12)

In view of (2.12), the eigenvalue problem (DT +)∗ŵ+
n = λnŵ

+
n for ŵ+

n = (ω̂+
n, η̂n)

T reads

ε ∂xxω̂
+
n + 2

√
εv ∂xω̂

+
n + (f − � − λn) ω̂+

n = −ε�−1f η̂n,

ε∂xxη̂n = λn η̂n,

subject to the boundary conditions (2.11), with ψ− = ω̂+
n and ζ = η̂n. The latter equation

immediately yields η̂n ≡ 0, so that the former equation becomes homogeneous. It is now
trivial to check that ω̂+

n = ω−
n ≡ ωn/E, where ωn solves the eigenvalue problem (2.7). This

establishes the first part of (2.8).
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Similarly, (2.12) shows that the eigenvalue problem (DT +)∗v̂n = νnv̂n has solutions

v̂n =
(

ψ−
n

ζn

)
,

where the functions {ψ−
n }n satisfy the boundary-value problem (2.9). An application of the

Liouville transform ψn = Eψ−
n leads directly to the self-adjoint problem (2.10).

2.3. Evolution of the Fourier coefficients

Our aim in this section is to write the PDE system (1.10) as an infinite-dimensional system
of nonlinear ODEs. We start by expanding the solution of ∂τu

+ = T +(u+) in terms of the
eigenbasis associated with the linear stability problem,

u+(x, τ ) = εc−1/6 δ
∑
n�0

�n(τ) w+
n(x) + εc

∑
n�0

�n(τ) vn(x), (2.13)

where c > 0 is yet undetermined and the coefficients �n and �n are determined by

�n = ε−c δ−1〈u+, ŵ+
n〉 and �n = ε−c〈u+, v̂n〉. (2.14)

The exponent of 1/6 in the first sum of (2.13) is related to the localized nature of ω+
0 , the

planktonic component of w+
0 . In particular, ω+

0 is shaped as a DCM with an O(ε1/6) biomass
||ω+

0 ||1 (recall from our discussion following (2.8) that, in contrast, ||ω0||2 = 1). More details
on this issue will be presented in section 4.3.2. Moreover, we have introduced the exponentially
small parameter

δ = exp

(−J−(x∗)√
ε

)
� 1, (2.15)

the role of which is to counterbalance the exponentially large amplitudes of the eigenfunctions
w+

n and vn. In particular,

J±(x) = √
v x ± I (x) and I (x) =

∫ x

x0

√
F(s) − F(x0) ds. (2.16)

Here, the O(ε1/3) parameter x0 corresponds to the turning point of (2.7):

x0 = F−1(λ∗ − λ0) = ε1/3σ
−1/3
0 |A1| + O(ε1/2), (2.17)

while x∗ is the location of the DCM, the unique point where J−(·) attains its (positive) maximum
( [25]—see also appendix A), i.e.

x∗ = F−1(v + F(x0)) = F−1(v) + O(ε1/3). (2.18)

Thus, δ−1 is a measure for the amplitude of the ω-component of the (linear) mode associated
with a bifurcating DCM. The introduction of δ in the decomposition (2.13) allows us to identify
small patterns (u+ � 1) and is motivated by the observation that this decomposition yields

ω+(x, τ ) = εc−1/6 δ
∑
n�0

�n(τ) ω+
n(x),

η(x, τ ) = εc−1/6 δ
∑
n�0

�n(τ) ηn(x) + εc
∑
n�0

�n(τ) ζn(x).
(2.19)

The principal part of ω+
0 is derived in appendix A, while asymptotic formulae for ω+

n , with n � 1,
can be derived in a similar manner. For O(1) values of n, it follows that ω+

n is exponentially
small everywhere apart from an asymptotically small neighbourhood of x∗ where it attains its
maximum value of asymptotic magnitude at most O(ε−1/12δ−1). Similarly, the principal part
of η0 is given in appendix B, together with an L∞-estimate which shows that η0 is at most
O(ε1/6δ−1) in [0, 1]. As a result, the coefficients of the eigenmodes �n (n � 0) in (2.13) are
bounded uniformly in L∞(0, 1) by an O(εc−1/12) constant, while those of �n (n � 0) are O(1).
In what follows, we derive the ODEs governing the evolution of these eigenmodes.
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2.3.1. Eigenbasis decomposition of T +(u+) . To derive the ODEs for the eigenmodes, we
need to express T +(u+) in the eigenbasis {w+

n}n�0 ∪ {vn}n�0. In particular, we show that

T +(u+) = εc−1/6 δ
∑
k�0


λk �k − εc

∑
m�0

∑
n�0

(amnk �m�n + bmnk �m�n)


w+

k

+ εc
∑
k�0


νk�k − εc

∑
m�0

∑
n�0

(
a′

mnk �m�n + b′
mnk �m�n

) vk, (2.20)

where we have omitted an O(ε3c−1/2) remainder. The coefficients appearing in this equation
are given by the formulae

amnk = ε−1/6

〈(
1

ε�−1

)
am ω+

n, ŵ
+
k

〉
= ε−1/6〈amωn, ωk〉,

a′
mnk = ε−1/3

〈(
1

ε�−1

)
δ am ω+

n, v̂k

〉
= ε−1/3δ

[
〈amωn, ψk〉 + ε�−1〈amω+

n, ζk〉
]
,

bmnk =
〈(

1
ε�−1

)
bm ω+

n, ŵ
+
k

〉
= 〈bmωn, ωk〉,

b′
mnk = ε−1/6

〈(
1

ε�−1

)
δ bm ω+

n, v̂k

〉
= ε−1/6δ

[
〈bmωn, ψk〉 + ε�−1〈bmω+

n, ζk〉
]
.

(2.21)

Here, we have defined the functions

am = δ
[
(1 − ν) ηm + (1 − ν−1f ) r sm

]
f, with sn(x) =

∫ x

0
ω+

n(s) ds,

bm = (1 − ν) f ζm.

(2.22)

Note that we use 〈·, ·〉 to denote all inner products—in H, Hω+ and Hη—as there is no danger
of confusion.

We start by decomposing T +(u+) into linear and nonlinear terms by means of

T +(u+) = DT +u+ + N (u+), where N (u+) =
(

1
ε�−1

)
(p − f ) ω+. (2.23)

Substitution of the decomposition (2.13) into the linear term yields the eigendecomposition of
that linear term,

DT +u+ = εc−1/6 δ
∑
k�0

�k DT + w+
k + εc

∑
k�0

�k DT + vk

= εc−1/6 δ
∑
k�0

λk �kw
+
k + εc

∑
k�0

νk�kvk, (2.24)

where we have also used that w+
n and vn are eigenvectors of DT + (see section 2.1). It remains

to express the nonlinearity N (u+) with respect to that same eigenbasis. First, since p − f

contains the non-local term
∫ x

0 ω+(s) ds, see (1.7)–(1.8), we write (cf (2.19))

S(x, τ ) := ε−c+1/6
∫ x

0
ω+(s, τ ) ds = δ

∑
n�0

�n(τ) sn(x), (2.25)

where sn was introduced in (2.22). We subsequently obtain, by (1.7) and (1.12),

p = 1 − η

ν−1 − η

1

1 + jH exp(κx) exp(εc−1/6 r S)

= f
1 − η

1 − νη

1

1 + (1 − ν−1f )(exp(εc−1/6 r S) − 1)
.
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Substituting from (2.19) for ω+ and η into this formula and expanding asymptotically, we find
further

p(ω+, η, x) = f − εc−1/6
∑
m�0

am�m − εc
∑
m�0

bm�m + O
(
ε2c−1/3

)
, (2.26)

with am and bm as defined in (2.22). We remark for later use that this asymptotic expansion
remains valid for o(ε1/4−c) values of �n (n � 0) and o(ε−c) values of �n (n � 0) (see our
discussion following (2.19)). Next, (2.19) and (2.26) yield

(p − f ) ω+ = −ε2c−1/3 δ
∑
m�0

∑
n�0

amω+
n �m�n − ε2c−1/6 δ

∑
m�0

∑
n�0

bmω+
n �m�n,

where we have again omitted an O(ε3c−1/2) remainder. By virtue of (2.23), then,

N (u+) = − ε2c−1/3 δ
∑
m�0

∑
n�0

(
1

ε�−1

)
amω+

n �m�n

− ε2c−1/6 δ
∑
m�0

∑
n�0

(
1

ε�−1

)
bmω+

n �m�n + O
(
ε3c−1/2

)
.

We may now decompose the spatial components in these sums with respect to the eigenbasis,(
1

ε�−1

)
δ am ω+

n =
∑
k�0

(
ε1/6δ amnk w+

k + ε1/3 a′
mnk vk

)
,

(
1

ε�−1

)
δ bm ω+

n =
∑
k�0

(
δ bmnkw

+
k + ε1/6 b′

mnkvk

)
,

where the coefficients amnk , a′
mnk , bmnk and b′

mnk are found by means of (2.21). Using this
decomposition, we finally write (omitting throughout an O(ε3c−1/2) term)

N (u+) = − ε2c
∑
m�0

∑
n�0

∑
k�0

(
ε−1/6δ amnk w+

k + a′
mnk vk

)
�m�n

− ε2c
∑
m�0

∑
n�0

∑
k�0

(
ε−1/6δ bmnk w+

k + b′
mnk vk

)
�m�n

= − ε2c−1/6δ
∑
m�0

∑
n�0

∑
k�0

(amnk�m�n + bmnk�m�n) w+
k

− ε2c
∑
m�0

∑
n�0

∑
k�0

(
a′

mnk�m�n + b′
mnk�m�n

)
vk. (2.27)

Combining (2.24) and (2.27), then, we arrive at the desired result (2.20).

2.3.2. ODEs near the bifurcation point. We are now in a position to derive the ODEs for
the amplitudes {�n}n�0 and {�n}n�0. Differentiating both members of (2.13) with respect to
time, we find

∂τu
+ = εc−1/6 δ

∑
k�0

�̇k w+
k + εc

∑
k�0

�̇k vk, (2.28)

where the overdot denotes differentiation with respect to τ . Next, ∂τu
+ = T +(u+) and hence,

combining (2.20) with (2.28), we obtain the ODEs for the amplitudes,

�̇k = λk�k − εc
∑
m�0

∑
n�0

(amnk �m�n + bmnk �m�n) + O
(
ε2c
)
,

�̇k = νk�k − εc
∑
m�0

∑
n�0

(
a′

mnk �m�n + b′
mnk �m�n

)
+ O

(
ε2c
)
.
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We now tune the bifurcation parameter λ∗ so that the largest eigenvalue, λ0, is the only
positive eigenvalue while the eigenvalues λ1, λ2, . . . are negative. In particular, we write
(cf (1.16))

λ0 = ερ
0, where 0 < 
0 � ε−2/3,

νk = −εNk, where Nk > 0 is O(1) for k = 0, 1, . . . ,

λk = −ε1/3
k, where 
k > 0 for k = 1, 2, . . . .

As we will see shortly, the cases of particular interest will turn out to be those where ρ = 1
and 
0 is either O(1) or logarithmically large. Note also that, since the distance between λ0

and λk is O(ε1/3) by (1.13), it follows that λ1, λ2, . . . � ν1. Then, the evolution equations for
the amplitudes become

�̇0 = ερ
0�0 − εc
∑
m�0

∑
n�0

amn0�m�n − εc
∑
m�0

∑
n�0

bmn0�m�n, (2.29)

�̇k = −εNk�k − εc
∑
m�0

∑
n�0

a′
mnk�m�n − εc

∑
m�0

∑
n�0

b′
mnk�m�n, k � 0, (2.30)

�̇k = −ε1/3
k�k − εc
∑
m�0

∑
n�0

amnk�m�n − εc
∑
m�0

∑
n�0

bmnk�m�n, k � 1, (2.31)

where we have omitted all higher order terms.

3. Application of Laplace’s method on a000

Explicit asymptotic expressions for the coefficients in the ODEs (2.29)–(2.31) obtained in the
previous section can be derived by applying Laplace’s method and the principle of stationary
phase to the integrals in (2.21). In this section, we demonstrate the use of the former in deriving
an asymptotic formula for a000. Asymptotic expressions for the remaining coefficients will be
derived independently in sections 5–7, after we have thoroughly analysed the bifurcations that
our system undergoes. Although the analysis in those sections is substantially more involved,
our approach there is very similar to that in this section.

The main result of this section is the leading order approximation

a000 = A(
0) = α a(
0), (3.1)

where we have defined the O(1), positive, 
0-independent constant α and the function a by
means of

α = (1 − ν) f (0) C1 C2 σ
1/3
0 σ−1/2

∗ > 0 and a(
0) = sinh
(√


0(1 − x∗)
)

√

0 cosh

√

0

. (3.2)

Here, σ0 is defined in (1.15), while

C1 =
(∫ ∞

A1

Ai2(s) ds

)−1/2

, C2 = exp(|A1|3/2) and σ∗ = F ′(x∗) = −f ′(x∗), (3.3)

see [25] and appendix A. We start by recalling that the coefficient a000 is given by

a000 = ε−1/6
∫ 1

0
a0(x) ω2

0(x) dx, (3.4)

cf (2.21), where

a0(x) = δ
[
r(1 − ν−1f (x))s0(x) + (1 − ν)η0(x)

]
f (x).
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Employing (2.22), (2.25), using the explicit approximation (B.5) for η0 from appendix B, and
defining the functions

h1(x, y) = f (x)

[
r

(
1 − f (x)

ν

)
− 1 − ν

�
√


0
sinh

(√

0(x − y)

)
f (y)

]
, (3.5)

h2(x, y) = (1 − ν) f (x) cosh
(√


0 x
)

�
√


0 cosh
√


0
f (y) sinh

(√

0(1 − y)

)
, (3.6)

we find further

a0(x) = ε−1/6δ

∫ x

0
h1(x, y) ω+

0 (y) dy + ε−1/6δ

∫ 1

0
h2(x, y) ω+

0 (y) dy.

Thus,

a000 = ε−1/6δ

∫ 1

0

∫ x

0
h1(x, y) ω2

0(x) ω+
0 (y) dy dx + ε−1/6δ

∫ 1

0

∫ 1

0
h2(x, y) ω2

0(x) ω+
0 (y) dy dx

= ε−1/6δ(I1 + I2), (3.7)

where I1 and I2 are the two double integrals appearing in this expression.
We can obtain the principal parts of I1 and I2 using theorem D.2, based on [24],

in appendix D. We start with the latter integral which, as we will see, fully determines
the leading order behaviour of a000. First, the normalization condition ‖ω0‖2 = 1 yields∫ 1

0 h2(x, y) ω2
0(x) dx = h2(0, y) to leading order. Since, also, ω+

0 has a unique maximum at
the interior critical point x∗, theorem D.2.I (with λ = ε−1/2, � = −J−, and � = h2(0, ·))
yields

I2 =
∫ 1

0
h2(0, y) ω+

0 (y) dy = 1

(ε−1/2)1/2

√
2π h2(0, x∗)√−J ′′−(x∗)

ω+
0 (x∗) = ε1/6 δ−1 C3 (3.8)

to leading order, where we have used the explicit leading order approximation (A.2) of ω+
0

from [25] (see also appendix A), recalled the definition (2.15) of δ, defined

C3 =
√

2π h2(0, x∗)√−J ′′−(x∗)

C1 C2 σ
1/3
0

2
√

π F 1/4(x∗)
= C1 C2 σ

1/3
0 σ−1/2

∗ h2(0, x∗), (3.9)

and employed the identity J ′′
− = −2−1F−1/2F ′.

Next, we show I1 to be exponentially smaller than I2. First, we rewrite it as

I1 = ε−1/4 C3
1 C3

2 σ0

8π3/2

6∑
j=1

θj

∫ ∫
D

h1(x, y)√
F(x) F 1/4(y)

exp

(
�j(x, y)√

ε

)
dAxy, (3.10)

where we have used (A.2) and (A.1). Here, D = {(x, y)|0 � y � x, 0 � x � 1} and

�1(x, y) = J−(y) − 2I (x) and θ1 = 1,

�2(x, y) = J−(y) − 2I (1) and θ2 = 2θ,

�3(x, y) = J−(y) + 2I (x) − 4I (1) and θ3 = θ2,

�4(x, y) = J+(y) − 2I (x) − 2I (1) and θ4 = θ,

�5(x, y) = J+(y) − 4I (1) and θ5 = 2θ2,

�6(x, y) = J+(y) + 2I (x) − 6I (1) and θ6 = θ3,

(3.11)

where I (x) and J±1(y) have been defined in (2.16), and

θ =
√

σ1 +
√

v√
σ1 − √

v
with σ1 = F(1). (3.12)
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Theorem D.1 yields, for each integral, a result proportional to exp(max(x,y)∈D �j(x, y)/
√

ε).
We first identify max �1 and then show that max �1 > max �j , for j = 2, . . . , 6; it follows
that the dominant term in (3.10) corresponds to �1 and the rest are exponentially smaller than
it. Now, �1 has no critical points in D, and thus its global maximum lies on

∂D =
3⋃

i=1

(∂D)i = {(1, y)|0 � y � 1} ∪ {(x, x)|0 � x � 1} ∪ {(x, 0)|0 � x � 1}.

First, the global maximum cannot be on (∂D)1; indeed, D̊ lies to the left of (∂D)1 and
∂x�1(x, y) = −2

√
F̄ (x) � 0, where we have introduced F̄ (x) = F(x) − F(x0), so that

�1 assumes higher values in D̊ than on (∂D)1. Next, �1(x, x) = √
vx − 3I (x) on (∂D)2,

and thus max �1(x, x) = �1(x
∗∗, x∗∗) with 0 < x∗∗ = F̄−1(v/9) < x∗ (recall (2.18) and

note that F̄ > 0 is increasing). Finally, �1(x, 0) = −2I (x) � 0 on (∂D)3, and thus
max(∂D)3 �1 � 0 < �1(x

∗∗, x∗∗). In total, then, we find that max �1 = �1(x
∗∗, x∗∗) > 0.

Next, �2(x, y) � �1(x, y) � �1(x
∗∗, x∗∗). Since the leftmost equality holds only in

an O(ε1/2) neighbourhood of x = 1, we find that max �2 < �1(x
∗∗, x∗∗), as desired.

Additionally, �3 � �2 on D, and thus also maxD �3 < maxD �1. Next, �4 has no critical
points in D̊, and hence we need to examine its behaviour on ∂D. First, the maximum cannot be
on (∂D)1 by the same argument we used for �1. Next, �4(x, x) = J−(x) − 2I (1) on (∂D)2,
and thus max(∂D)2 �4 = �4(x∗, x∗) = J−(x∗) − 2I (1). Finally, �4 � −2I (1) < �4(x∗, x∗)
on (∂D)3, and hence max �4 = J−(x∗) − 2I (1) = max �2 < max �1, as desired. Finally,
�5 � �4 and �6 � �4, and the desired result now follows.

These estimates show, then, that max �1 = �(x∗∗, x∗∗) > max �j , for j = 2, . . . , 6.
Since (x∗∗, x∗∗) ∈ ∂D and its Jacobian satisfies D�1(x

∗∗, x∗∗) �= 0, theorem D.1 yields for
(3.10) the asymptotic formula

I1 = ε3/4 C ′
1

(
ε−1/4 C3

1 C3
2

8π3/2
exp

(
�1(x

∗∗, x∗∗)√
ε

))
= ε1/2 C ′′

1 exp

(
�1(x

∗∗, x∗∗)√
ε

)
,

for some O(1) constants C ′
1, C

′′
1 > 0. Since I2 = O(ε1/6δ−1) (3.8) and, by (2.15),

I1

I2
= ε1/3 C ′′

1

C3
exp

(
�1(x

∗∗, x∗∗) − J−(x∗)√
ε

)
with

�1(x
∗∗, x∗∗) − J−(x∗) = [J−(x∗∗) − J−(x∗)] − 2I (x∗∗) < 0

(recall that x∗ is defined in (2.18) as the location of the maximum of J−), it indeed follows that
I1 is exponentially small compared with I2.

We conclude that a000 is given by δ I2 at leading order. Combining the expressions (3.8)–
(3.9) with the definition of h2 in (3.6), we obtain the leading order result (3.1) using the fact
that f (x∗) = �, also at leading order. To derive this last identity, observe that—in the regime
λ0 � 1—it holds that λ∗ = 0 at O(1), see (1.14), (1.16), or equivalently that v = f (0) − �;
further, and also to leading order, F(x∗) = v by (2.18), so that the desired identity follows
from the definition F(x) = f (0) − f (x) applied at x = x∗. Finally, we note that higher order
terms in formula (3.1) may be obtained solely by considering I2, as I1 is exponentially smaller
than I2.

4. Emergence of a stable DCM

The trivial (zero) state is, by construction, a fixed point of the ODEs (2.29)–(2.31) for the
Fourier coefficients. In this and the next section, we identify the remaining fixed points of that
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system and determine their stability. In this entire section, we work exclusively in the regime
ρ = 1 and 
0 = O(1).

4.1. Asymptotic expressions for bm00, a′
00k and b′

m0k

As stated in the previous section, where we derived an asymptotic expression for a000,
asymptotic expressions for the coefficients bm00, a′

00k and b′
m0k appearing in (2.29)–(2.31)

are derived independently in sections 5–7. Here, we summarize the leading order behaviour
of these coefficients, also including (3.1) for completeness:

a000 = A(
0),

bm00 = B, for m � ε−1/3,

a′
00k = −A′

k(
0) A(
0), for 0 �= k � ε−1/3,

b′
m0k = −A′

k(
0) B, for 0 �= k, m � ε−1/3.

(4.1)

The function A was introduced in (3.1)–(3.2), whereas B = √
2 (1−ν) f (0) is a positive O(1)

constant. Further, we have introduced the function A′
k via

A′
k(
0) = α′ a′

k(
0), where α′ =
√

2 C2 σ
1/3
0

C1 C3 σ
1/2
∗

and a′
k(
0) = cos(

√
Nk x∗)

Nk + 
0
. (4.2)

Here, C3 = (Ai′(A1))
2. Note that, similarly to α (cf (3.2)), α′ is an O(1) constant independent

of 
0; the constants σ0, σ∗, C1 and C2 have been defined in (1.15) and (3.3). We also note the
following identity concerning Airy functions (see [5, section 9.11(iv), identity (9.11.5)])∫ ∞

A1

Ai2(s) ds = (Ai′(A1))
2, or equivalently C2

1 C3 = 1,

which, in turn, yields an identity that will prove to be of exceeding importance in the rest of
this section—namely,

2α = α′B. (4.3)

Asymptotic formulae for bm00, a′
00k and b′

m0k and for higher values of m and k can be derived
similarly. However, seeing as such formulae only contribute higher order terms in our analysis
below, we refrain from presenting the details. In what follows, instead, we treat (4.1) as being
valid for all values of k and m.

4.2. The reduced system

System (2.29)–(2.31) exhibits asymptotically disparate timescales depending on the value of
ρ and associated with the asymptotic magnitudes of the eigenvalues. In this section, we
investigate the case ρ = 1, in which regime �0 and �0, �1, . . . evolve on a slow timescale and
the higher order modes �1, �2, . . . become slaved to them. Setting, then, ρ = 1 and rescaling
time (with a slight abuse of notation) as t = ετ , the evolution equations become

�̇0 = 
0�0 − εc−1
∑
m�0

∑
n�0

amn0�m�n − εc−1
∑
m�0

∑
n�0

bmn0�m�n, (4.4)

�̇k = −Nk�k − εc−1
∑
m�0

∑
n�0

a′
mnk�m�n − εc−1

∑
m�0

∑
n�0

b′
mnk�m�n, k � 0, (4.5)

ε2/3�̇k = −
k�k − εc−1/3
∑
m�0

∑
n�0

amnk�m�n − εc−1/3
∑
m�0

∑
n�0

bmnk�m�n, k � 1. (4.6)
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(Here also, the overdot denotes differentiation with respect to t .) It is natural to introduce
slaving relations for the latter modes in this system,

�k = εck Gk(�0, �1, �2, . . .), for all k � 1, (4.7)

where the positive constants c1, c2, . . . and the O(1) functions (with O(1) partial derivatives)
G1, G2, . . . are to be determined. To do so, we first write the evolution equations for �0 and
�1, �2, . . . under these slaving relations; we find

�̇0 = 
0�0 − εc−1a000�
2
0 − εc−1�0

∑
m�0

bm00�m,

�̇k = − Nk�k − εc−1a′
00k�

2
0 − εc−1�0

∑
m�0

b′
m0k�m, k � 0,

where we have retained only the leading order terms from each sum. Dominant balance yields,
then, c = 1. Next, the invariance equation for �k yields that the right member of (4.6) must
vanish to leading order. Dominant balance yields ck = 2/3 and

Gk(�0, �1, �2, . . .) = −a00k


k

�2
0 − �0


k

∑
m�0

bm0k�m.

Recalling, also, (4.1), we arrive at the evolution equations

�̇0 = 
0�0 − A �2
0 − B �0

∑
m�0

�m,

�̇k = −Nk�k + A′
k


A �2

0 + B �0

∑
m�0

�m


 , k � 0.

(4.8)

Here also, we have retained only the leading order terms from each sum.

Remark 4.1. The ODE (1.17)—describing the flow on the one-dimensional centre manifold
in the regime where λ0 = ερ
0 � ε—can be obtained from the system (4.8) above as its

0 → 0 limit. Indeed, the �-modes become slaved to the mode �0 in this limit, and (4.8)
reduces to (1.17) with a000(0) replacing A = a000(
0) (cf (4.1)). Note that a000 has a removable
singularity at zero, so we write a000(0) = lim
0→0 a000(
0) = (1 − x∗) α. Using (3.2), it is
plain to check that, indeed, the formula for a000(0) reported in (1.19) equals (1 − x∗) α.

4.3. The bifurcating steady state

In this section, we identify the non-trivial fixed point of the reduced system (4.8). In particular,
we show that this fixed point is given to leading order by the formulae

�∗
0(
0) = 
0

(1 − x∗) α
and �∗

k (
0) = 2 
2
0 cos(

√
Nk x∗)

(1 − x∗) B Nk (Nk + 
0)
, (4.9)

where k � 0 and the parameter α was introduced in (3.2). Plainly, �∗
0 remains positive, and

hence also ecologically relevant, for all positive values of 
0 and all values of 0 � x∗ < 1
(equivalently, all positive values of v up to the co-dimension two point). Further, the leading
order expression (4.9) for �∗

0 exactly matches

�∗
0 = 
0

a000(0)
, for 
0 → 0, (4.10)

cf our discussion in section 1 and in remark 4.1 above. It will also be elucidated in section 4.3.2
that this fixed point corresponds to a DCM with an O(ε) biomass and an associated O(ε) nutrient
depletion.
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Note that the denominators in the formulae for �∗
0 and �∗

k vanish for x∗ = 1. As explained
in section 1, this value is attained by x∗ at the co-dimension two point where DCMs and BLs
bifurcate concurrently. This is another indication that the nature of the co-dimension two
bifurcation is of independent analytical interest.

4.3.1. Derivation of (4.9) . First, setting the left members of (4.8) to zero, we obtain an
algebraic system for the non-trivial steady states,


0 − A �0 − B
∑
m�0

�m = 0, (4.11)

Nk�k − A′
k �0


A �0 + B

∑
m�0

�m


 = 0. (4.12)

Here, k � 0 and we have removed a superfluous factor of �0 in (4.11) corresponding to
the trivial steady state. Substituting from this equation into (4.12), we obtain the equivalent
formulation

A �0 + B
∑
m�0

�m = 
0 and Nk�k − A′
k 
0 �0 = 0. (4.13)

This system is readily solved to yield

�∗
0 = 
0

α′ s B 
0 + A
and �∗

k = A′
k

Nk


0 �∗
0, (4.14)

where s is defined by the series

s = 1

α′
∑
m�0

A′
m

Nm

=
∑
m�0

cos(
√

Nm x∗)
Nm (Nm + 
0)

.

To produce a closed formula for s, we recast this definition as

s =
∑
m�0

cos(
√

Nm x∗)
Nm (Nm + 
0)

= 1


0


∑

m�0

cos(
√

Nm x∗)
Nm

−
∑
m�0

cos(
√

Nm x∗)
Nm + 
0


 , (4.15)

with both series in the right member converging absolutely and uniformly with x∗. The second
series appearing in the right member of this last equation is a Mittag–Leffler expansion; analytic
formulae for such expansions can often be obtained by means of the Fourier transform. In
particular, [21, equation (1.63)] (with a = π , b = i

√

0, and l = 1) yields the explicit formula∑

m�0

cos
(√

Nm x∗
)

Nm + 
0
= sin

(
i
√


0 (1 − x∗)
)

2i
√


0 cos(i
√


0)
= sinh

(√

0 (1 − x∗)

)
2
√


0 cosh
√


0
= a(
0)

2
, (4.16)

whence also ∑
m�0

cos
(√

Nm x∗
)

Nm

= a(0)

2
= 1 − x∗

2
. (4.17)

Substituting into (4.15), we obtain

s = 1 − x∗
2
0

− a(
0)

2
0
, (4.18)

and therefore (4.14) for �∗
0 becomes

�∗
0 = 
0

(α − α′ B/2) a(
0) + (1 − x∗) α′ B/2
.

The final formulae collected in (4.9) now follow by identity (4.3) and (4.14) for �∗
k .
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4.3.2. Ecological interpretation . We next proceed to show that the steady state (stationary
pattern) we identified above corresponds to an O(ε) biomass with a corresponding O(ε)

depletion of the nutrient. Indeed, (2.19) yields the leading order expression∫ 1

0
ω+(x) dx = ε5/6 δ �∗

0

∫ 1

0
ω+

0 (x) dx (4.19)

for the biomass. Here, we have also recalled that c = 1 and that �∗
1, �

∗
2, . . . are higher order,

cf (4.7). Recalling the definition of δ in (2.15) and using the explicit leading order formula
(A.2) for ω+

0 , we obtain

δ

∫ 1

0
ω+

0 (x) dx = ε−1/12 C1C2σ
1/3
0

2
√

π

∫ 1

0
F−1/4(x) exp

(
J−(x) − J−(x∗)√

ε

)
dx.

As mentioned in section 3, J−(·) has a sole, locally quadratic maximum at x∗, and hence the
integrand above is exponentially small except in an asymptotically small neighbourhood of
that point. Hence, the integral is of the type considered in appendix D, and theorem D.1 yields,
to leading order,

δ

∫ 1

0
ω+

0 (x) dx = ε−1/12 C1 C2 σ
1/3
0

2
√

π

(
ε1/4

√
2π

F 1/4(x∗)
√−J ′′−(x∗)

)
= ε1/6 C1 C2 σ

1/3
0 σ−1/2

∗ ,

where we have also recalled that J ′′
− = −2−1F−1/2F ′. Substituting back into (4.19), together

with the formula for �∗
0 given in (4.9), we finally recover the first expression (1.20) for the

total biomass given in section 1. The second expression may be derived by noting that (1.16)
implies the leading order result ν/(1 + jH ) = �+ v, as well as that ε 
0 = ν(1 + jH )−1 −�−v.

Similarly, (2.19) yields the leading order formula∫ 1

0
η(x) dx = ε5/6δ �∗

0

∫ 1

0
η0(x) dx + ε

∑
k�0

�∗
k

∫ 1

0
ζk(x) dx. (4.20)

Now,
∫ 1

0 ζk(x) dx = (−1)k/Nk by (2.5). Further, the integral
∫ 1

0 η0(x) dx can be calculated
using (B.1): integrating both members over [0, x] and using the boundary condition at zero,
we find

� 
0

∫ 1

0
η0(x) dx = � ∂xη0(1) +

∫ 1

0
f (x) ω+

0 (x) dx. (4.21)

The derivative ∂xη0(1) can be estimated at leading order by (B.5). Differentiating both members
of that formula, we find

� ∂xη0(1) =
∫ 1

0

[
tanh

√

0 sinh

(√

0(1 − y)

)
− cosh

(√

0(1 − y)

)]
f (y) ω+

0 (y) dy.

It follows from (4.21), then, that

� 
0

∫ 1

0
η0(x) dx

=
∫ 1

0

[
1 + tanh

√

0 sinh

(√

0(1 − y)

)
− cosh

(√

0(1 − y)

)]
f (y) ω+

0 (y) dy.

Applying theorem D.1, we obtain∫ 1

0
η0(x) dx = ε1/6δ−1 C1C2 σ

1/3
0 σ

−1/2
∗


0

(
1 − cosh

(√

0 x∗

)
cosh

√

0

)
, (4.22)
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which is the desired formula for
∫ 1

0 η0(x) dx. Recalling also (4.9) for �∗
k , we obtain from

(4.20) the leading order result

∫ 1

0
η(x) dx = ε �∗

0(
0)

[
C1C2 σ

1/3
0 σ

−1/2
∗


0

(
1 − cosh

(√

0 x∗

)
cosh

√

0

)
+ α′ s̄ 
0

]
, (4.23)

where

s̄ = 1

α′
∑
m�0

(−1)m
A′

m(
0)

N2
m

=
∑
m�0

(−1)m
cos

(√
Nm x∗

)
N2

m (Nm + 
0)
=
∑
m�0

sin
(√

Nm (1 − x∗)
)

N2
m (Nm + 
0)

. (4.24)

This equation, together with (4.9) for �∗
0, yields the total nutrient depletion level to leading

order.

4.4. Stability of the small pattern

In this section, we examine the stability of the DCM-like fixed point (�∗
0, �

∗) =
(�∗

0, �
∗
0 , �∗

1 , . . .) which we identified in the previous section. In particular, we show that this
fixed point is stabilized through a transcritical bifurcation at 
0 = 0 and that it subsequently
undergoes a destabilizing Hopf bifurcation.

4.4.1. The eigenvalue equation. We start by linearizing the ODE system

�̇0 = 
0 �0 − A �2
0 − B �0

∑
m�0

�m,

�̇k = −Nk�k + A′
k


A �2

0 + B �0

∑
m�0

�m


 , for all k � 0,

around (�∗
0, �

∗). Letting �0 = �∗
0 + d�0 and �k = �∗

k + d�k and recalling (4.13), we find
that the corresponding linearized problem reads

˙d�0 = −A �∗
0 d�0 − B �∗

0

∑
m�0

d�m, (4.25)

˙d�k = A′
k

[

0 + A �∗

0

]
d�0 +

[
A′

k B �∗
0 − Nk

]
d�k + A′

k B �∗
0

∑
m �=k

d�m, (4.26)

where we have only retained the leading order component from each term.
Truncating at the arbitrary value k = K ∈ N , we obtain the system ˙δ� = LK δ�, where

δ� = (d�0, d�0, d�1, . . . , d�K)T and

LK =




−A �∗
0 −B �∗

0 −B �∗
0 . . . −B �∗

0

A′
0(A �∗

0 + 
0) A′
0 B �∗

0 − N0 A′
0 B �∗

0 . . . A′
0 B �∗

0

A′
1(A �∗

0 + 
0) A′
1 B �∗

0 A′
1 B �∗

0 − N1 . . . A′
1 B �∗

0
...

...
...

. . .
...

A′
K(A �∗

0 + 
0) A′
K B �∗

0 A′
K B �∗

0 . . . A′
K B �∗

0 − NK


 .

To characterize the spectrum of this matrix, we derive a formula for its characteristic polynomial
det(L0 − λI). First, we use the first row of L0 − λI to eliminate the off-diagonal entries of all
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other rows. In this way, we find that the equation det(L0 − λI) = 0 is equivalent to setting to
zero the determinant∣∣∣∣∣∣∣∣∣∣∣

λ + A �∗
0 B �∗

0 B �∗
0 . . . B �∗

0

A′
0(λ − 
0) λ + N0 0 . . . 0

A′
1(λ − 
0) 0 λ + N1 . . . 0

...
...

...
. . .

...

A′
K(λ − 
0) 0 0 . . . λ + NK

∣∣∣∣∣∣∣∣∣∣∣
.

Next, we can use the (k + 2)nd column to eliminate the (k + 2)nd entry of the first column,
for 0 � k � K , as long as λ �= −Nk . Since λ = −Nk if and only if A′

k = 0 (as can
be shown by expanding the determinant along the (k + 2)nd row), we can eliminate all
entries of the first column. (Note that A′

k may indeed be zero: indeed, A′
k is proportional

to cos((k + 1/2)π x∗), which may or may not be zero depending on the values of k and x∗.)
Defining K = {k : A′

k �= 0} ⊂ {0, . . . , K}, Kk = K − {k}, and eliminating the entries of the
first column as detailed above, we obtain∣∣∣∣∣∣∣∣∣∣∣

Q(λ) B �∗
0 B �∗

0 . . . B �∗
0

0 λ + N0 0 . . . 0
0 0 λ + N1 . . . 0
...

...
...

. . .
...

0 0 0 . . . λ + NK

∣∣∣∣∣∣∣∣∣∣∣
= 0. (4.27)

Here,

Q(λ) = (λ + A �∗
0)
∏
k∈K

(λ + Nk) + B �∗
0 (
0 − λ)

∑
k∈K

A′
k

∏
m∈Kk

(λ + Nm).

As detailed above, λ = −Nk solves (4.27) if and only if A′
k = 0 (equivalently, if and only if

k �∈ M). Further, 
0 > 0 cannot be an eigenvalue, since Q(
0) > 0 and 
0 + Nk > 0, for
all k ∈ {0, . . . , K}—note that A, N0, N1, . . . , NK are all positive constants. Hence, we can
extend the set over which we sum in the formula above to the entire set {0, . . . , K} and rewrite
the equation for Q(λ) in the form

Q(λ) =
[
B �∗

0

K∑
k=0

A′
k

Nk + λ
− λ + A �∗

0

λ − 
0

]
(
0 − λ)

∏
k∈K

(Nk + λ).

As we just noted, the elements of the set {−Nk}k∈K are not eigenvalues of L0. Hence, the
eigenvalues of L0 are {−Nk}k �∈K together with all solutions to

B �∗
0

K∑
k=0

A′
k

Nk + λ
= λ + A �∗

0

λ − 
0
.

Substituting for A′
k from (4.2) and for �∗

0 from (4.9), recalling the identity (4.3), and letting
K → ∞, we rewrite this equation in the form

2
0

1 − x∗

∑
k�0

cos
(√

Nk x∗
)

(Nk + λ) (Nk + 
0)
= λ + 
0 a(
0)/(1 − x∗)

λ − 
0
.

Here again, we may write

∑
k�0

cos
(√

Nk x∗
)

(Nk + λ) (Nk + 
0)
= 1

λ − 
0


∑

k�0

cos
(√

Nk x∗
)

Nk + 
0
−
∑
k�0

cos
(√

Nk x∗
)

Nk + λ




= 1

2

a(
0) − a(λ)

λ − 
0
,
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so that the eigenvalue problem becomes (1−x∗) λ+
0 a(λ) = 0. Recalling that a(0) = 1−x∗,
we recast this equation as

λ
a(0)

a(λ)
= −
0, where we recall that a(λ) =

sinh
(√

λ(1 − x∗)
)

√
λ cosh

√
λ

. (4.28)

This equation is satisfied by some λ if and only if it is also satisfied by its complex conjugate
λ∗, as the right member is real and (λ−1a(λ))∗ = (λ∗)−1a(λ∗). Hence, we may restrict arg(λ)

to lie in [0, π ]. Further writing µ := √
λ = µR + i µI , we rewrite the eigenvalue equation in

its final form,

p(µ) := − (1 − x∗) µ3 cosh µ

sinh ((1 − x∗) µ)
= 
0, with arg(µ) ∈ [0, π/2]. (4.29)

We note here for later use that
Re(p(µ))

1 − x∗
= µR(3µ2

I − µ2
R)

sinh[(2 − x∗)µR] cos(x∗µI ) − sinh(x∗µR) cos[(2 − x∗)µI ]

cosh[2(1 − x∗)µR] − cos[2(1 − x∗)µI ]

+ µI (3µ2
R − µ2

I )
cosh[(2 − x∗)µR] sin(x∗µI ) − cosh(x∗µR) sin[(2 − x∗)µI ]

cosh[2(1 − x∗)µR] − cos[2(1 − x∗)µI ]
,

Im(p(µ))

1 − x∗
= µI (µ

2
I − 3µ2

R)
sinh[(2 − x∗)µR] cos(x∗µI ) − sinh(x∗µR) cos[(2 − x∗)µI )]

cosh[2(1 − x∗)µR] − cos[2(1 − x∗)µI ]

+ µR(3µ2
I − µ2

R)
cosh[(2 − x∗)µR] sin(x∗µI ) − cosh(x∗µR) sin[(2 − x∗)µI ]

cosh[2(1 − x∗)µR] − cos[2(1 − x∗)µI ]
.

4.4.2. Analysis of (4.29) for 
0 ↓ 0. We first establish that, as 
0 ↓ 0, the eigenvalues
{λn}n�−1 remain each in a neighbourhood of the discrete values −
0, −N0, −N1, . . ..

For 
0 = 0, (4.29) yields either µ = 0 (equivalently, λ = 0) or cosh µ = 0 (whence
µ = i

√
Nm, m � 0 or, equivalently, λ ∈ {−Nm}m�0). To investigate the possibility of negative

eigenvalues λ for 
0 > 0, we set µR = 0 to find that (4.29) reduces to

p(iµI ) = (1 − x∗) µ3
I

1 − cos[2(1 − x∗)µI ]
sin[(1 − x∗) µI ] cos µI = 
0. (4.30)

For 
0 ↓ 0, there is plainly a small root of this equation, µI = √

0 + O(
0), yielding the

small eigenvalue λ = −
0 +O(
2
0). Additionally, all eigenvalues of the set {−Nm}m�1 perturb

and remain real for small enough values of 
0 > 0. Indeed, p(i·) intersects zero transversally
at {√Nm}m�0, whence the persistence of any finite number of eigenvalues from among this
set is automatically established. That the remaining, infinitely many eigenvalues also persist
can be established by noting that if the maximum value of p(i·) is positive between successive
zeros, then this value grows unboundedly with µI . For the first two eigenvalues, in particular,
we have the Taylor expansions

λ−1 = −
0 + O(
2
0) and λ0 = −N0 + 4

sin[(1 − x∗) π/2]

(1 − x∗) π

0 + O(
0),

which demonstrate that both remain in the interval (−N0, 0) and approach each other as 
0

increases, see also figure 3. These are precisely the first two eigenvalues that collide as 
0 is
increased, yielding a pair of complex conjugate eigenvalues.

Next, the possibility of positive eigenvalues λ—equivalently, positive solutions of (4.29)—
can be excluded by noticing that −
0 < 0 while p(µ) > 0 for all µ > 0. In fact, the possibility
of eigenvalues anywhere but in a neighbourhood of the negative axis can be similarly excluded
by observing that

|p(µ)| = (1 − x∗) |µ|3
(

cosh(2µR) + cos(2µI )

cosh[2(1 − x∗)µR] − cos[2(1 − x∗)µI ]

)1/2

→ ∞, as µR → ∞.
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Figure 3. Plots of the function p(iµI ) (see (4.30)) versus µI (left) and versus λ = −µ2
I (right)

for x∗ = 0.7. Also plotted: the level line at p = 
0, here set at 0.2; the first two members of the
sequence {√Nk}k�0 (left panel) and {−Nk}k�0 (right panel) as solid dots; and the two smallest
solutions µI to (4.30) (left panel) together with the first two eigenvalues λ−1 and λ0 (right panel)
they correspond to, all as hollow dots.

Plainly, for every value of 
0, there exists a value µ∗
R(
0) > 0 which depends continuously

on 
0, satisfies lim
0→0 µ∗
R(
0) = 0, and is such that the equation |p(µ)| = |
0| cannot

be satisfied for any µR > µ∗
R(
0). It follows that all solutions to (4.29) must lie in the half

plane {µ | µR � µ∗
R(
0)} which, in turn, corresponds to a neighbourhood of the half axis

{λ ∈ R | λ � |µ∗
R(
0)|2}. A local analysis around the origin now establishes the absence of

eigenvalues with positive real parts, for 
0 small enough, and hence also the result.

4.4.3. Complexification of eigenvalues and the Hopf bifurcation. As we briefly mentioned
in the last section in conjunction with figure 3, the two principal eigenvalues λ−1 and λ0 come
closer together as 
0 increases. Eventually, they collide at a specific value µ′

I ∈ (0, π/2) and
for 
0 = 
′

0 = p(iµ′
I ) = maxµI ∈(0,π/2) p(iµI ) > 0. For 
0 > 
′

0, this pair of eigenvalues
becomes complex, so it is natural to examine whether it crosses into the right half-plane through
the imaginary axis. (Note that no eigenvalues can cross through zero, as (4.28) does not admit
a zero eigenvalue for 
0 > 0.)

To locate imaginary eigenvalues λ = iλI ∈ iR, we set µR = µI = µ̄ > 0 and rewrite the
real and imaginary parts of p as

Re(p(µ)) = 2(1 − x∗)µ̄3

[
cosh[(2 − x∗)µ̄] sin(x∗µ̄) − cosh(x∗µ̄) sin[(2 − x∗)µ̄]

cosh[2(1 − x∗)µ̄] − cos[2(1 − x∗)µ̄]

+
sinh[(2 − x∗)µ̄] cos(x∗µ̄) − sinh(x∗µ̄) cos[(2 − x∗)µ̄]

cosh[2(1 − x∗)µ̄] − cos[2(1 − x∗)µ̄]

]
,

Im(p(µ)) = 2(1 − x∗)µ̄3

[
cosh[(2 − x∗)µ̄] sin(x∗µ̄) − cosh(x∗µ̄) sin[(2 − x∗)µ̄]

cosh[2(1 − x∗)µ̄] − cos[2(1 − x∗)µ̄]

− sinh[(2 − x∗)µ̄] cos(x∗µ̄) − sinh(x∗µ̄) cos[(2 − x∗)µ̄)]

cosh[2(1 − x∗)µ̄] − cos[2(1 − x∗)µ̄]

]
.
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Figure 4. Plots of the function in the left member of (4.33) for two distinct values of x∗,
namely x∗ = 0.7 (left) and x∗ = 0.3 (right). The solid dots mark the members of the sequence
{(k + 1/4)π x∗−1}k�0. Note that the zeros of the plotted function approach this sequence rather
quickly, with the quality of the approximation decreasing as x∗ ↑ 1. Indeed, in that regime, all
exponentials appearing in (4.33) remain approximately equal for a large range of µ̄-values, and
hence the first term becomes dominant only in the far range.

The condition Im(p(µ)) = 0, derived from (4.29), yields

cosh[(2 − x∗)µ̄] sin(x∗µ̄) − cosh(x∗µ̄) sin[(2 − x∗)µ̄]

= sinh[(2 − x∗)µ̄] cos(x∗µ̄) − sinh(x∗µ̄) cos[(2 − x∗)µ̄)]. (4.31)

Therefore, the equation Re(p(µ)) = 
0, similarly derived from (4.29), becomes

4(1 − x∗)µ̄3 cosh[(2 − x∗)µ̄] sin(x∗µ̄) − cosh(x∗µ̄) sin[(2 − x∗)µ̄]

cosh[2(1 − x∗)µ̄] − cos[2(1 − x∗)µ̄]
= 
0. (4.32)

Condition (4.31) determines the values of µ̄ corresponding to imaginary eigenvalues λ = 2iµ̄2,
while (4.32) yields the corresponding values of 
0 for which these eigenvalues appear. Since
the former of these can be recast as

e(2−x∗)µ̄ sin
(
x∗µ̄ − π

4

)
− ex∗µ̄ sin

(
(2 − x∗)µ̄ − π

4

)
+ e−(2−x∗)µ̄ sin

(
x∗µ̄ +

π

4

)
− e−x∗µ̄ sin

(
(2 − x∗)µ̄ +

π

4

)
=0, (4.33)

we see that there exists a whole, discrete sequence {µ̄k}k�0 of values µ̄, see also figure 4. As
k → ∞, {µ̄k}k�0 limits to {(k + 1/4)π x∗−1}k�0, the sequence of zeros of the first term in
(4.33) which becomes dominant in the regime µ̄ → ∞. Equation (4.32) yields the leading
order result


0 = 2
√

2 π3(1 − x∗) x∗−3(−1)kk3 e(k+1/4)π , as k → ∞,

which establishes that the values µ̄k corresponding to even values of k yield a positive,
increasing sequence of values of 
0. (Odd k-values yield negative 
0-values.) In particular,
the first Hopf bifurcation occurs at an O(1) value of 
0 when the complex conjugate pair
(λ−1, λ0) crosses into the right half-plane through µ̄0. Higher, even k-values correspond to
Hopf bifurcations occurring at higher values of 
0, presumably when higher order eigenvalues
cross into the right half-plane.
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These last remarks conclude our discussion of the DCM-like steady state for O(1) values
of 
0. In the next section, we investigate a logarithmic scaling for 
0 in which the number of
steady states of the system (4.11)–(4.12) becomes two.

4.5. A second DCM pattern

So far, we have identified a DCM pattern corresponding to an O(ε) biomass which is stabilized
through a transcritical bifurcation at 
0 = 0 and destabilized through a secondary, Hopf
bifurcation at an O(1) value of 
0. Here, we show that, the system (4.4)–(4.6) admits a
second, asymptotically larger, DCM-like steady state corresponding to an O(ε1/2) biomass.
We refrain from establishing the stability type, origins and eventual fate of that second steady
state, reserving those problems for a later work.

We start by noting that the inclusion of the first higher order term in the formula for a′
00k

reported in (4.1) yields

a′
00k = −A′

k(
0) A(
0) + ε1/2 α Ã′
k(
0).

This formula is derived in section 6.3, see (6.2) in particular. Here, the 
0-independent
constants α and α′ were defined in (3.2) and (4.2), respectively, whereas the functions a and
a′ are reported in (3.1) and (4.2). Also, Ã′

k(
0) = α̃′ ã′(
0) cos(
√

Nk x∗), with

α̃′ = C1 C2 σ
1/3
0 σ

−1/2
∗√

2 f (0)
, (4.34)

ã′(
0) = sinh
(√


0 (1 − x∗)
) ∫ x∗

0 f (x) cosh
(√


0 x
)

dx√

0 cosh

√

0

. (4.35)

This formula for ã′(
0) is also valid in a logarithmic regime for 
0, see (6.3) for details.
Since the first term in the formula for a′

00k above decreases exponentially with 
0 (see (3.2))
whereas the second term decreases only algebraically, the two terms become asymptotically
comparable for values of 
0 logarithmically large in ε, see section 6 for details.

Replacing the formula for a′
00k in (4.1) by the formula above, substituting into (4.4)–(4.6),

and working as in section 4.2, we obtain the system

�̇0 = 
0�0 − A �2
0 − B �0

∑
m�0

�m,

�̇k = −Nk�k +


(A′

k A − ε1/2 α Ã′
k) �2

0 + A′
k B �0

∑
m�0

�m


 .

(4.36)

This is the analogue of (4.8) with the inclusion of higher order terms. The fixed points (�∗
0, �

∗)
of this system are found, here again, by setting the left members to zero:


0 = A �∗
0 + B

∑
m�0

�∗
m,

0 = −Nk�
∗
k + A′

k 
0 �∗
0 − ε1/2αÃ′

k (�∗
0)

2.

(4.37)

Solving the second equation for �∗
k , we find an explicit expression for �∗

k in terms of �∗
0:

�∗
k = A′

k

Nk


0 �∗
0 − ε1/2α

Ã′
k

Nk

(�∗
0)

2.

Substituting this expression into the first equation in (4.37), we recover a singularly perturbed
quadratic equation for �∗

0:

ε1/2αB


∑

m�0

Ã′
m

Nm


 (�∗

0)
2 −


A + B 
0

∑
m�0

A′
m

Nm


 �∗

0 + 
0 = 0. (4.38)
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In section 4.3.1, we obtained the formula

A + B 
0

∑
m�0

A′
m

Nm

= α a(0),

while (4.16) yields

∑
m�0

Ã′
m

Nm

= α̃′ ã′(
0)
∑
m�0

cos(
√

Nm x∗)
Nm

= a(0)

2
α̃′ ã′(
0).

It follows that the quadratic equation yielding �∗
0 can be recast as

ε1/2 α̃′ B ã′(
0)

2
(�∗

0)
2 − �∗

0 +

0

α a(0)
= 0.

The two solutions of this equation are

�
∗,±
0 = ε−1/2 1 ±

√
1 − 2ε1/2 α̃′ B 
0 ã′(
0)/(α a(0))

α̃′ B ã′(
0)
=
{

2ε−1/2/(α̃′ B ã′(
0)),


0/(α a(0)),

with the first one corresponding to the asymptotically larger DCM pattern and the second one
corresponding to the DCM pattern identified through our earlier work. We remark here that
this first steady state is, indeed, within the reach of our asymptotic methods, as �∗

0 and �∗
k

safely remain asymptotically smaller than the asymptotic bounds ε−3/4 and ε−1 for which our
work in section 2.3.1 remains valid. Note also that this steady state is a nonlinear function of

0, with the distinguished limits

lim

0→0

�∗
0(
0) = 2ε−1/2

(1 − x∗) α̃′ B
∫ x∗

0 f (x) dx
and �∗

0(
0) = 4ε−1/2

� α̃′ B

0, as 
 → ∞.

In particular, this second pattern approaches a non-zero value as 
0 ↓ 0 and eventually grows
linearly for 
0 � 1.

5. An asymptotic formula for bm00

In this section, we derive the asymptotic formula for bm00 given in (4.1), where m ∈ N and

bm00 = (1 − ν)

∫ 1

0
f (x) ζm(x) ω2

0(x) dx. (5.1)

As detailed earlier, the function ω0, appearing in (5.1), decays exponentially outside an
O(ε1/3) neighbourhood of the origin (cf (A.1)), whereas the period of the sinusoidal term
ζm is equal to 2π/

√
Nm = 4/(2m + 1). Below, we analyse the three different regimes—in

which the integrand is predominantly localized, concurrently localized and oscillatory, and
predominantly oscillatory—and we derive the leading order, uniform asymptotic expansion

bm00 =




b, for m � ε−1/3,

b C2
1

∫ ∞

0
cos

(
ε1/3

√
Nm τ

σ
1/3
0

)
Ai2 (τ + A1) dτ, for m = O(ε−1/3),

−b
6 C3 C2

1 σ 2
0

ε N2
m f (0)

, for m � ε−1/3.

(5.2)

Here, b = √
2 (1 − ν) f (0), cf section 4.1.
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5.1. The case m � ε−1/3

Here, 2π/
√

Nm � ε1/3 and hence the integrand is predominantly localized around x = 0.
Thus, ζm may be approximated to leading order by ζm(0) = √

2 in that neighbourhood. Since
‖ω0‖2 = 1 (cf our discussion in sections 2.1 and 2.2), we obtain the desired formula

bm00 ∼ b. (5.3)

5.2. The case m = O(ε−1/3)

Here, 2π/
√

Nm = O(ε1/3), and hence the neighbourhood of the origin outside which ω0 decays
exponentially and the period of the sinusoidal term are of the same asymptotic magnitude.
Defining the new variable τ = τ1 x in (5.1), with τ1 = |A1|/x0 (2.17), we obtain

bm00 =
√

2 (1 − ν)

τ1

∫ τ1

0
f

(
τ

τ1

)
cos

(√
Nm

τ

τ1

)
ω2

0

(
τ

τ1

)
dτ. (5.4)

Now, (A.1) yields, to leading order and for any τ0 � ε−1/3,

ω0

(
τ

τ1

)

=




ε−1/6 C1 σ
1/6
0 Ai (τ + A1) , for τ ∈ [0, −A1),

ε−1/12C1C2σ
1/3
0

2
√

πF 1/4(τ/τ1)
exp

(
− 1√

ετ1

∫ τ+A1

0

√
F

(
t

τ1
+ x0

)
− F(x0) dt

)
, for τ ∈ (−A1, τ0],

where we have also changed the integration variable by means of s = t/τ1 + x0. These two
formulae agree—as, indeed, they should by construction—in the regime 1 � τ0 � ε−1/3.
Indeed, recalling the asymptotic expansion of Ai in a neighbourhood of infinity [2], we find
that the first branch of the formula above yields

ε−1/6 C1 σ
1/6
0

2
√

π τ 1/4
exp

(
−2

3
(τ + A1)

3/2

)
.

Similarly, the formula in the case τ ∈ (|A1|, τ0] becomes, upon Taylor-expanding F ,

ε−1/12 C1 C2 σ
1/12
0 τ

1/4
1

2
√

π τ 1/4
exp

(
−2

3

√
σ0

ε

(
τ + A1

τ1

)3/2
)

.

That the two formulae agree now follows from the definition τ1 = |A1|/x0 and the formulae
(2.17) and (3.3) for x0 and C2. Hence, we may write

ω0

(
τ

τ1

)
∼ ε−1/6 C1 σ

1/6
0 Ai (τ + A1) , for τ � ε−1/3.

Since the contribution to the integral in (5.4) of greater values of τ may be estimated to be
exponentially small, we can write

bm00 = ε−1/3

√
2 (1 − ν) C2

1 σ
1/3
0

τ1

∫ ∞

0
f

(
τ

τ1

)
cos

(√
Nm

τ

τ1

)
Ai2 (τ + A1) dτ

= b C2
1

∫ ∞

0
cos

(
ε1/3

√
Nm τ

σ
1/3
0

)
Ai2 (τ + A1) dτ, (5.5)

to leading order, as desired. Note that this formula reduces to (5.3), for m � ε−1/3.
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5.3. The case m � ε−1/3

Here, 2π/
√

Nm � ε1/3. Similarly to our work in the previous section, we define the new
variable τ = ε−1/3x. We find, then,

bm00 =
√

2 ε1/3 (1 − ν)

∫ ε−1/3

0
g(τ) cos

(
ε1/3

√
Nm τ

)
dτ,

where g(τ) = f (ε1/3τ) ω2
0(ε

1/3τ). Using theorem D.4 (with λ = ε1/3
√

Nm, �(t) = t = τ ,
and h(τ) = g(τ)) and the fact that the right-boundary term is exponentially smaller than the
left one, as ω0(1) is exponentially smaller than ω0(0) (cf appendix A), we obtain

bm00 =
√

2 ε1/3 (1 − ν) Re

( ∞∑
k=0

g(k)(0)

(
i

ε1/3
√

Nm

)k+1
)

=
√

2
1 − ν

ε1/3 Nm

∞∑
k=0

(−1)k+1g(2k+1)(0)

(
1

ε1/3
√

Nm

)2k

. (5.6)

Recalling the definition of g, and employing (A.1) and that Ai(A1) = Ai′′(A1) = 0, we
calculate

g′(0) = 0 and g′′′(0) = −6 [Ai′(A1)]
2 C2

1 σ 2
0 .

The desired result now follows, while (5.6) also reduces to (5.5) for m = O(ε−1/3).

6. An asymptotic formula for a′
00k

In this section, we derive the asymptotic formula for a′
00k for O(1) values of 
0 collected

in (4.1),

a′
00k = −A′

k(
0) A(
0), for 0 �= k � ε−1/3. (6.1)

Further, we extend this result to

a′
00k = −

(
A′

k(
0) A(
0) − ε1/2 α Ã′
k(
0)

)
, for 0 �= k � ε−1/3, (6.2)

which remains valid at least in the regime


0 = 1

4x∗2
log2 ε +

1

x∗2
log ε log(− log ε) +

1

x∗2
log2 log ε + µ log ε, (6.3)

for all µ ∈ (−∞, µ0] and µ0 > 0 any O(1) value. Here, A(
0) = α a(
0), A′
k(
0) =

α′ a′
k(
0), and Ã′

k(
0) = α̃′ ã′(
0). The 
0-independent constants α, α′ and α̃′ were defined
in (3.2), (4.2), and (4.34), respectively, whereas the functions a, a′ and ã′ are reported in (3.1),
(4.2) and (4.35). We remark, here, that these results are valid only for those values of k for
which ζk(x∗) �= 0. For the remaining values of k, theorem D.1 yields (algebraically) higher
order results. Also, we note that asymptotic formulae for higher values of k can be derived as
in the previous section, albeit at considerable extra computational cost.

We first write out explicitly the expression for a′
00k given by (2.21):

a′
00k = ε−1/3δ

∫ 1

0
a0(x) ω0(x) ψk(x) dx + ε2/3δ�−1

∫ 1

0
a0(x) ω+

0 (x) ζk(x) dx.
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Recalling the definition of a0 from (2.22) and working as in section 3, we obtain further

a′
00k = ε−1/3δ2

∫ 1

0

∫ x

0
h1(x, y) ω+

0 (y) ω0(x) ψk(x) dy dx

+ ε−1/3δ2
∫ 1

0

∫ 1

0
h2(x, y) ω+

0 (y) ω0(x) ψk(x) dy dx

+ ε2/3δ2�−1
∫ 1

0

∫ x

0
h1(x, y) ζk(x) ω+

0 (y) ω+
0 (x) dy dx

+ ε2/3δ2�−1
∫ 1

0

∫ 1

0
h2(x, y) ζk(x) ω+

0 (y) ω+
0 (x) dy dx.

Substituting, finally, from (C.21), we obtain an integral formula for a′
00k which is amenable to

the sort of asymptotic analysis employed in sections 3 and 5:

a′
00k = ε−1/3δ2

�

[
(Wψ)−1

∫ 1

0

∫ x

0

∫ x

0
h1,k(x, y, z) ω0(x) ψk,−(x) ω+

0 (y) ψ+
k,+(z) dz dy dx

+ (Wψ)−1
∫ 1

0

∫ 1

0

∫ x

0
h2,k(x, y, z) ω0(x) ψk,−(x) ω+

0 (y) ψ+
k,+(z) dz dy dx

− (Wψ)−1Dk(0)

∫ 1

0

∫ x

0

∫ 1

0
h1,k(x, y, z) ω0(x) ψk,−(x) ω+

0 (y) ψ+
k,−(z) dz dy dx

− (Wψ)−1Dk(0)

∫ 1

0

∫ 1

0

∫ 1

0
h2,k(x, y, z) ω0(x) ψk,−(x) ω+

0 (y) ψ+
k,−(z) dz dy dx

+ (Wψ)−1
∫ 1

0

∫ x

0

∫ 1

x

h1,k(x, y, z) ω0(x) ψk,+(x) ω+
0 (y) ψ+

k,−(z) dz dy dx

+ (Wψ)−1
∫ 1

0

∫ 1

0

∫ 1

x

h2,k(x, y, z) ω0(x) ψk,+(x) ω+
0 (y) ψ+

k,−(z) dz dy dx

+ ε

∫ 1

0

∫ x

0
h1(x, y) ζk(x) ω+

0 (x) ω+
0 (y) dy dx

+ ε

∫ 1

0

∫ 1

0
h2(x, y) ζk(x) ω+

0 (x) ω+
0 (y) dy dx

]
. (6.4)

Here, hi,k(x, y, z) = hi(x, y) f (z) ζk(z), for i = 1, 2, and the constants Dk(0) are reported in
(C.19)–(C.20). Let I1, . . . , I8 denote the integrals in the right member of (6.4) in the order
that they appear (the three-dimensional domains of integration for I1, . . . , I6 are sketched in
figure 5). In what follows, we omit the term θ ω2

0,−(1; x0) ω0,+(x; x0) in the expression (A.1)
for ω0, as one can show that its contribution is exponentially small compared with the leading
order terms (see also sections 3 and 5).

6.1. A rewrite of (6.4)

In this section, we group together integrals appearing in the right member of (6.4) in order to
achieve a first reduction in the numbers of terms of that member. We start with rewriting the
term −(Wψ)−1 Dk(0) I4 + (Wψ)−1 I6 + ε I8. First,

I4 =
∫ ∫

πxD4

(∫ 1

0
h2,k(x, y, z) ω0(x) ψk,−(x) dx

)
ω+

0 (y) ψ+
k,−(z) dAyz,

where πx is the orthogonal projection on the yz-plane—and hence πxD4 = [0, 1]2—and dAyz

is the area element on that plane. Since ψk,− = ε1/3C−1
1 σ

−1/3
0 ω0 in a neighbourhood of
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Figure 5. The domains of integration for the integrals I1, . . . , I6 in (6.4).

the origin (cf (A.1) and (C.12)), ω0 is exponentially small outside this neighbourhood, and
‖ω0‖2 = 1, we write

I4 = ε1/3 C−1
1 σ

−1/3
0

∫ ∫
πxD4

h2,k(0, y, z) ω+
0 (y) ψ+

k,−(z) dAyz.

Recalling that ψ+
k,− = E ψk,−, according to our convention in section 2, and substituting into

the formula above from (A.2) and (C.12), we obtain

I4 = ε1/2 C2
2

4π

∫ ∫
πxD4

h2,k(0, y, z)

F 1/4(y) F 1/4(z)
exp

(
J−(y) + J−(z)√

ε

)
dAyz,

whence, employing also (C.19), we find

(Wψ)−1 Dk(0) I4 = ε−1/6
∫ ∫

πxD4

�4(y, z) exp

(
�4(y, z)√

ε

)
dAyz. (6.5)

Here,

�4(y, z) = C2
2 dk

4π Wψ

h2(0, y) f (z) ζk(z)

F 1/4(y) F 1/4(z)
and �4(y, z) = J−(y) + J−(z). (6.6)

Next, we rewrite I6,

(Wψ)−1 I6 = (Wψ)−1
∫ ∫

πxD6

(∫ z

0
h2,k(x, y, z) ω0(x) ψk,+(x) dx

)
ω+

0 (y) ψ+
k,−(z) dAyz.

Employing (A.1) and (C.13), now, we obtain

(Wψ)−1 I6 = ε1/6 C1 σ
1/3
0

2π Wψ

∫ ∫
πxD6

(∫ z

0

h2,k(x, y, z)√
F(x)

dx

)
ω+

0 (y) ψ+
k,−(z) dAyz.

Further using (A.2) and, once again, (C.13), we find

(Wψ)−1 I6 = ε1/3
∫ ∫

πxD6

�6(y, z) exp

(
�6(y, z)√

ε

)
dAyz. (6.7)
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Here, πxD6 = πxD4, �6(y, z) = �4(y, z), and

�6(y, z) = C2
1 C2

2 σ
2/3
0

8π2 Wψ

f (z) ζk(z)

F 1/4(y) F 1/4(z)

∫ z

0

h2(x, y)√
F(x)

dx. (6.8)

Similarly, renaming (x, y) as (y, z) in I8, we derive the formula

ε I8 = ε5/6
∫ ∫

D8

�8(y, z) exp

(
�8(y, z)√

ε

)
dAyz, (6.9)

where D8 = πxD6 = πxD4, �8(y, z) = �6(y, z) = �4(y, z), and

�8(y, z) = C2
1 C2

2 σ
2/3
0

4π

h2(y, z) ζk(y)

F 1/4(y) F 1/4(z)
. (6.10)

Combining (6.5)–(6.10), we obtain

− (Wψ)−1 Dk(0) I4 + (Wψ)−1 I6 + I8 = −ε−1/6
∫ ∫

πxD4

�̃4(y, z) exp

(
�4(y, z)√

ε

)
dAyz,

(6.11)
where, to leading order, uniformly over πxD4, and for all O(1) values of 
0,

�̃4(y, z) = �4(y, z) = C2
2 dk

4π Wψ

h2(0, y) f (z) ζk(z)

F 1/4(y) F 1/4(z)
. (6.12)

Next, we rewrite the term (Wψ)−1I5 + ε I7. We write first

I5 =
∫ ∫

πxD5

(∫ z

y

h1,k(x, y, z) ω0(x) ψk,+(x) dx

)
ω+

0 (y) ψ+
k,−(z) dAyz,

where πxD5 = {(y, z)|0 � y � z, 0 � z � 1}. Now, (A.1)–(A.2) and (C.12) yield further

(Wψ)−1 I5 = ε1/6 C1 C2 σ
1/3
0

2π Wψ

∫ ∫
πxD5

(∫ z

y

h1,k(x, y, z)√
F(x)

dx

)
ω+

0 (y) ψ+
k,−(z) dAyz

= ε1/3
∫ ∫

πxD5

�5(y, z) exp

(
�5(y, z)√

ε

)
dAyz, (6.13)

where we have defined the functions

�5(y, z) = C2
1 C3

2 σ
2/3
0

8π2 Wψ

f (z) ζk(z)

F 1/4(y) F 1/4(z)

∫ z

y

h1(x, y)√
F(x)

dx (6.14)

and �5(y, z) = �4(y, z). Next, renaming x as z in I7, we find

ε I7 = ε5/6
∫ ∫

D7

�7(y, z) exp

(
�7(y, z)√

ε

)
dAyz, (6.15)

where

D7 = πxD5, �7(y, z) = C2
1 C2

2 σ
2/3
0

4π

h1(z, y) ζk(z)

F 1/4(y) F 1/4(z)
and �7(y, z) = �4(y, z). (6.16)

Combining (6.13)–(6.16), we find, to leading order and uniformly over D8,

(Wψ)−1 I5 + ε I7 = ε1/3
∫ ∫

D7

�̃5(y, z) exp

(
�4(y, z)√

ε

)
dAyz, (6.17)

where �̃5(y, z) = �5(y, z) + ε1/2 �7(y, z).
We now rewrite (Wψ)−1I2. First,

I2 =
∫ ∫

πyD2

H̃2(x) f (z) ζk(z) ω0(x) ψk,−(x) ψ+
k,+(z) dAxz,

where H̃2(x) = ∫ 1
0 h2(x, y) ω+

0 (y) dy. Substituting for ω+
0 (y) from (A.2), we find further

I2 = ε−1/12 C1C2σ
1/3
0

2
√

π

∫ ∫
πyD2

H2(x) ω0(x) ψk,−(x) f (z) ζk(z) ψ+
k,+(z) dAxz,
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where H2(x) = ∫ 1
0 h2(x, y) F−1/4(y) exp(J−(y)/

√
ε) dy. Using theorem D.1, now, we obtain

(Wψ)−1 I2 = ε1/6δ−1 C ′′
2

∫ ∫
πyD2

h2(x, x∗) ω0(x) ψk,−(x) f (z) ζk(z) ψ+
k,+(z) dAxz

= ε7/12
∫ ∫

πyD2

�2(x, z) exp

(
�2(x, z)√

ε

)
dAxz, (6.18)

where C ′′
2 is an O(1) constant, πyD2 = {(x, z)|0 � z � x, 0 � x � 1}, �2(x, z) =

J−(x∗) + J+(z) − 2I (x),

�2(x, z) = C ′
2

h2(x, x∗) f (z) ζk(z)√
F(x) F 1/4(z)

, with C ′
2 an O(1) constant. (6.19)

Finally, we rewrite (Wψ)−1Dk(0) I3. First,

I3 =
(∫ 1

0
f (z) ζk(z) ψ+

k,−(z) dz

)∫ ∫
πzD3

h1(x, y) ω0(x) ψk,−(x) ω+
0 (y) dAxy.

Substituting from (A.1)–(A.2) and (C.12) into this formula and interchanging the roles of y

and z in the single and double integrals, we find

(Wψ)−1 Dk(0) I3 = ε−1/3 Ĩ3

∫ ∫
πyD2

�̃3(x, z) exp

(
�̃3(x, z)√

ε

)
dAxz, (6.20)

where Ĩ3 = ∫ 1
0 F−1/4(y) f (y) ζk(y) exp(J−(y)/

√
ε) dy and

�̃3(x, z) = C̃3
h1(x, z)√

F(x) F 1/4(z)
and �̃3(x, z) = J−(z) − 2I (x), (6.21)

for some O(1) constant C̃3.

6.2. An asymptotic estimate for a′
00k in the regime 
0 = O(1)

In this section, we estimate the various terms derived above, starting from −(Wψ)−1 Dk(0) I4 +
(Wψ)−1 I6 +ε I8 (cf (6.11)–(6.12)). The exponent �4 becomes maximum at the interior critical
point (x∗, x∗), and thus theorem D.1 yields

−(Wψ)−1 Dk(0) I4 + (Wψ)−1 I6 + I8 = −ε1/2 2π∣∣J ′′−(x∗)
∣∣
(
ε−1/6 �̃4(x∗, x∗) exp

(
�4(x∗, x∗)√

ε

))

= −ε1/3 δ−2 C̃4,

where

C̃4 = C2
2 (σ∗Wψ)−1 dk ζk(x∗) f (x∗) h2(0, x∗).

Next, we estimate (Wψ)−1 I5 +ε I7, cf (6.17). The sole (quadratic) maximum of �4 in D7

lies at the critical point (x∗, x∗) ∈ ∂D7, where �̃5(x∗, x∗) = 0 and �̃7(x∗, x∗) �= 0. Recalling
the definition of �̃5 and employing theorem D.1, then, we obtain

(Wψ)−1 I5 + I7 = ε

(
ε1/3 C0 exp

(
�4(x∗, x∗)√

ε

))
= ε4/3δ−2 C̃7,

for some O(1) constants C0 and C̃7.
We now estimate the remaining three integrals starting with (Wψ)−1 I2, cf (6.18)–(6.19).

The exponent �2 has a sole maximum at the point (x∗, x∗) ∈ ∂(πyD2) which is not a critical
point (compare with the maximization of �4 in section 3). Hence, theorem D.1 yields

(Wψ)−1 I2 = ε3/4 C ′′′
2

(
ε7/12 �2(x∗, x∗) exp

(
�2(x∗, x∗)√

ε

))
= ε4/3 δ−2 C2,
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for some O(1) constants C ′′′
2 and C2. Next, since D1 ⊂ D2 and the integrands of I1 and I2

differ only by an O(1) multiple, the above analysis also yields that (Wψ)−1I1 is at most of the
same order as (Wψ)−1I2. Finally, we estimate (Wψ)−1 Dk(0) I3, cf (6.20)–(6.21). First, we
estimate

Ĩ3 =
∫ 1

0

f (y) ζk(y)

F 1/4(y)
exp

(
J−(y)√

ε

)
dy = ε1/4 δ−1 C ′′

3 ,

for some O(1) constant C ′′
3 . Substituting into (6.20), then, we obtain

(Wψ)−1 Dk(0) I3 = ε−1/12
∫ ∫

πyD2

�3(x, z) exp

(
�3(x, z)√

ε

)
dAxz,

where

�3(x, z) = C̃ ′
3

h1(x, z)√
F(x) F 1/4(z)

and �3(x, z) = J−(x∗) + J−(z) − 2I (x),

for some O(1) constant C̃ ′
3. The exponent �3 has a sole maximum at the point (x∗∗, x∗∗) ∈

∂(πyD2) which is also not a critical point (compare with the maximization of �1 in section 3).
Hence, theorem D.1 yields

(Wψ)−1 Dk(0) I3 = ε3/4C ′
3

(
ε−1/12�3(x∗, x∗) exp

(
�3(x∗, x∗)√

ε

))

= ε2/3C3 exp

(
�3(x

∗∗, x∗∗)√
ε

)
,

for some O(1) constants C3 and C̃ ′
3 and where �3(x

∗∗, x∗∗) < 2J−(x∗).
In total, then, and to leading order, we obtain the leading order formula

a′
00k = −C2

2 dk ζk(x∗) h2(0, x∗)
σ∗ Wψ

, for k � ε−1/3. (6.22)

Here, we have used that f (x∗) = � to leading order, while h2 is given in (3.6) and (cf (C.14)
and (C.20))

Wψ = Ai′(A1) |Bi(A1)| = 1

π
and dk = σ

2/3
0

π C3 (Nk + 
0)
.

To derive the desired formula (6.1) from (6.22), we note that (cf (3.5)–(3.6))

h2(0, x∗) = (1 − ν) f (0)
sinh

(√

0(1 − x∗)

)
√


0 cosh
√


0
. (6.23)

Hence, (6.22) becomes

a′
00k = − (1 − ν) C2

2 σ
2/3
0 f (0) ζk(x∗)

σ∗ C3

sinh
(√


0(1 − x∗)
)

√

0 (Nk + 
0) cosh

√

0

.

The desired formula (6.1) may now be derived from this equation by recalling (2.5) and the
definitions collected in (4.2).

6.3. Higher order terms in the asymptotic estimate for a′
00k

As became evident in the material presented above, certain terms among those we estimated
are 
0-dependent, and hence they do not necessarily remain higher order for asymptotically
large values of 
0. As we will see in this section, certain terms which are higher order for

0 = O(1) become leading order for 
0 � 1. Apart from that, these higher order terms
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have an important effect even for 
0 = O(1), as they lead to the singularly perturbed problem
(4.38) for the steady states of the reduced system (4.4)–(4.6).

To quantify these terms, we recall from the last section that

− (Wψ)−1 Dk(0) I4 + (Wψ)−1 I6 + I8 = −ε1/3 2π∣∣J ′′−(x∗)
∣∣ δ−2 �̃4(x∗, x∗). (6.24)

By definition of �̃4,

�̃4(x∗, x∗) = �4(x∗, x∗) − ε1/2 �6(x∗, x∗) − ε �8(x∗, x∗), (6.25)

where �4, �6, and �8 are expressed in terms of the function h2 defined in (3.6)—see (6.6),
(6.8), and (6.10), respectively. As we saw in the last section,

−ε−1/3δ2 Dk(0)

� Wψ

I4 = − (1 − ν) C2
2 σ

2/3
0 f (0) ζk(x∗)

σ∗ C3

sinh
(√


0(1 − x∗)
)

√

0 (Nk + 
0) cosh

√

0

.

At the same time, we calculate

−ε−1/3δ2

� Wψ

I6 = ε1/2 (1 − ν)C2
1 C2

2 σ
2/3
0 ζk(x∗)

2σ∗

sinh(
√


0 (1 − x∗))
∫ x∗

0 f (x) cosh(
√


0 x) dx√

0 cosh

√

0

,

ε
ε−1/3δ2

�
I8 = ε

(1 − ν) C2
1 C2

2 σ
2/3
0 ζk(x∗)

σ∗

cosh
(√


0 x∗
)

sinh
(√


0 (1 − x∗)
)

√

0 cosh

√

0

.

There are two distinguished limits for these expressions, namely,

−ε−1/3δ2 Dk(0)

� Wψ

I4 = − (1 − ν) (1 − x∗) C2
2 σ

2/3
0 f (0) ζk(x∗)

σ∗ C3

1

Nk + 
0
,

ε−1/3δ2

� Wψ

I6 = ε1/2 (1 − ν) (1 − x∗) C2
1 C2

2 σ
2/3
0 ζk(x∗)

∫ x∗
0 f (x) dx

2σ∗
,

ε−1/3δ2

�
ε I8 = ε

(1 − ν) (1 − x∗) C2
1 C2

2 σ
2/3
0 ζk(x∗)

σ∗
,

for 
0 � 1, (6.26)

and

−ε−1/3δ2 Dk(0)

� Wψ

I4 = − (1 − ν) C2
2 σ

2/3
0 f (0) ζk(x∗)

σ∗ C3

e−√

0 x∗

√

0 (Nk + 
0)

,

ε−1/3δ2

� Wψ

I6 = ε1/2 (1 − ν) � C2
1 C2

2 σ
2/3
0 ζk(x∗)

4σ∗

1


0
,

ε−1/3δ2

�
ε I8 = ε

(1 − ν) C2
1 C2

2 σ
2/3
0 ζk(x∗)

2σ∗

1√

0

,

for 
0 � 1, (6.27)

where we have used theorem D.2 to estimate the integral appearing in the definition (6.8) of
�6. It immediately follows that ε �8(x∗, x∗) � ε1/2 �6(x∗, x∗) for all 
0 � ε−1/2.

Next, we estimate (Wψ)−1 I5 + ε I7 in the regime 
0 � 1. First, we recall (6.17),

(Wψ)−1 I5 + ε I7 = ε1/3
∫ ∫

D7

�̃5(y, z) exp

(
�4(y, z)√

ε

)
dAyz,

where �̃5(y, z) = �5(y, z) + ε1/2 �7(y, z). The functions �5 and �7 are expressible in terms
of the function h1 defined in (3.5), see (6.14) and (6.16), respectively. Working as for h2 above,
we procure the leading order asymptotic relation

h1(x, y) = r f (x)

(
1 − f (x)

ν

)
− θ

(√

0 (x − y)

)
h2(x, y).

Here, θ(s) = (1 − e−2s)/2—and hence θ(0) = 0—while the first term in the right member
is 
0-independent and hence remains bounded in this regime also. Using this expression, we
can establish that (Wψ)−1 I5 + I7 is at most of order ε4/3 
−1

0 and hence higher order.
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Similarly, (6.18) yields to leading order

(Wψ)−1 I2 = ε4/3 δ−2 (1 − ν) �2 C ′
2 C ′′′

2 ζk(x∗)
2 F 3/4(x∗)

1√

0

, for 
0 � 1,

where C ′
2 and C ′′′

2 are O(1) constants. Hence, this term is also higher order. The term (Wψ)−1I1

can be bounded in a similar way, whereas (Wψ)−1 Dk(0) I3 is, here also, exponentially smaller
than all other terms.

In total, then, and to leading order, we obtain the formula

a′
00k = (1 − ν) C2

2 σ
2/3
0 σ−1

∗ ζk(x∗)

(
−f (0)

C3

sinh
(√


0 (1 − x∗)
)

√

0 (Nk + 
0) sinh

√

0

+ ε1/2 C2
1

2

sinh
(√


0 (1 − x∗)
) ∫ x∗

0 f (x) cosh
(√


0 x
)

dx√

0 cosh

√

0

)
.

This formula precisely matches (6.2). The two associated distinguished limits are

a′
00k = (1 − ν) (1 − x∗) C2

2 σ
2/3
0 ζk(x∗)

σ∗

(
− f (0)

(Nk + 
0)C3
+

C2
1

∫ x∗
0 f (x) dx

2

)
,

for 
0 � 1,

and

a′
00k = (1 − ν) C2

2 σ
2/3
0 ζk(x∗)

σ∗

(
−f (0)

C3

e−√

0 x∗

√

0 (Nk + 
0)

+
� C2

1

4

ε1/2


0

)
, for 
0 � 1.

Note that, in this last formula, the first term in the parentheses dominates the second one for
all o(1) values of µ (cf (6.3)); the two terms only become commensurate for O(1) values of µ.

7. An asymptotic formula for b′
m0k

Finally, we derive the asymptotic formula for b′
m0k

b′
m0k = −A′

k(
0) B, for 0 �= k, m � ε−1/3, (7.1)

which has already been reported in (4.1). We also remark that, here also, this result is valid for
those values of k for which ζk(x∗) �= 0. Theorem D.1 yields an (algebraically) higher order
result for the remaining values of k.

Definition (2.21) and (C.21) yield the expression

b′
m0k = ε−1/6δ (1 − ν)

∫ 1

0
f (x) ζm(x) ω0(x) ψk(x) dx

+ ε5/6 δ �−1(1 − ν)

∫ 1

0
f (x) ζm(x) ω+

0 (x) ζk(x) dx

= ε−1/6δ (1 − ν)

�

[
1

Wψ

∫ 1

0

∫ x

0
f (x) f (y) ζm(x) ζk(y) ω0(x) ψk,−(x)ψ+

k,+(y) dy dx

− Dk

Wψ

∫ 1

0

∫ 1

0
f (x) f (y) ζm(x) ζk(y) ω0(x) ψk,−(x)ψ+

k,−(y) dy dx

+
1

Wψ

∫ 1

0

∫ 1

x

f (x) f (y) ζm(x) ζk(y) ω0(x) ψk,+(x) ψ+
k,−(y) dy dx

+ ε

∫ 1

0
f (x) ζm(x) ζk(x) ω+

0 (x) dx

]
. (7.2)
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Let I1, . . . , I4 denote the integrals in the right member of this formula in the order that they
appear in it. We will derive the leading order terms in the asymptotic expansions of these
integrals using theorem D.1, as in the previous section and also for k, m � ε−1/3. In what
follows, we omit the terms θω2

0,−(1; x0)ω0,+(1; x0) and θω2
0,−(1; x0)ω

+
0,+(1; x0) in (A.1) and

(A.2), respectively, as one can show that their contribution is exponentially small compared
with the leading order terms (see also sections 3, 5 and 6).

First, we derive a formula for −(Wψ)−1Dk I2 + (Wψ)−1I3 + ε I4. We write

I2 =
∫ 1

0

(∫ 1

0
f (x) ζm(x) ω0(x) ψk,−(x) dx

)
f (y) ζk(y) ψ+

k,−(y) dy

= ε1/3
√

2 f (0) C−1
1 σ

−1/3
0

∫ 1

0
f (y) ζk(y) ψ+

k,−(y) dy,

where we have used that ψk,− = ε1/3 C−1
1 σ

−1/3
0 ω0 in a neighbourhood of the origin, that ω0 is

exponentially small outside this neighbourhood, the identity ‖ω0‖2 = 1, and (2.5). Employing
(C.12), next, we obtain

I2 = ε7/12 f (0) C2√
2π C1 σ

1/3
0

∫ 1

0

f (y) ζk(y)

F 1/4(y)
exp

(
J−(y)√

ε

)
dy.

Substituting for Dk from (C.19), we obtain

(Wψ)−1 Dk I2 = ε−1/12
∫ 1

0
�2(y) exp

(
�2(y)√

ε

)
dy, (7.3)

where we have defined the functions

�2(y) = C2 f (0) dk√
2π C1 Wψ σ

1/3
0

f (y) ζk(y)

F 1/4(y)
and �2(y) = J−(y). (7.4)

Next, we change the order in which integration is carried out in I3 and use (A.1) and (C.12)–
(C.13) to rewrite this integral as

(Wψ)−1 I3 = (Wψ)−1
∫ 1

0

(∫ y

0
f (x) ζm(x) ω0(x) ψk,+(x) dx

)
f (y) ζk(y) ψ+

k,−(y) dy

= ε5/12
∫ 1

0
�3(y) exp

(
�3(y)√

ε

)
dy, (7.5)

where �3(y) = �2(y) and

�3(y) = C1 C2 σ
1/3
0

4π3/2 Wψ

(∫ y

0

f (x) ζm(x)√
F(x)

dx

)
f (y) ζk(y)

F 1/4(y)
. (7.6)

Finally, using (A.2) and renaming the integration variable x as y, we obtain

ε I4 = ε−13/12
∫ 1

0
�4(y) exp

(
�4(y)√

ε

)
dy, (7.7)

where

�4(y) = C1 C2 σ
1/3
0

2
√

π

f (y) ζm(y) ζk(y)

F 1/4(y)
and �4(y) = �3(y) = �2(y). (7.8)

Combining (7.3)–(7.8), we obtain

− (Wψ)−1Dk I2 + (Wψ)−1I3 + I4 = −ε−1/12
∫ 1

0
�̃2(y) exp

(
�2(y)√

ε

)
dy, (7.9)
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where, to leading order and uniformly over [0, 1],

�̃2(y) = �2(y) = C2 dk ζk(y) f (0) f (y)√
2π C1 σ

1/3
0 Wψ F 1/4(y)

. (7.10)

Regarding I1, we use (A.2) and (C.12)–(C.13), to write it in the form

(Wψ)−1 I1 = ε5/12
∫ ∫

D

�1(x, y) exp

(
�1(x, y)√

ε

)
dA, (7.11)

where D = {(x, y)|0 � x � 1 and 0 � y � x}, �1(x, y) = J+(y) − 2I (x), and

�1(x, y) = C1 C2 σ
1/3
0

4π3/2 Wψ

f (x) f (y) ζm(x) ζk(y)√
F(x) F 1/4(y)

. (7.12)

First, we estimate −(Wψ)−1 Dk I2 + (Wψ)−1 I3 + ε I4, cf (7.9)–(7.10). The exponent �2

assumes its maximum at the interior critical point x∗ ∈ (0, 1), and hence theorem D.1 yields

−(Wψ)−1 Dk I2 + (Wψ)−1 I3 + ε I4 = −ε1/4

√
2π√−J ′′−(x∗)

(
ε−1/12 δ−1 �̃2(x∗)

)
= −ε1/6 δ−1 C̃2.

Here,

C̃2 =
√

2 C2 σ
1/3
0 f (0) f (x∗) ζk(x∗)

C1 C3 σ
1/2
∗ (Nk + 
0)

.

Next, we estimate I1, cf (7.11)–(7.12). The exponent �1 assumes its maximum at the point
(x∗, x∗) ∈ ∂D which is not a critical point of �1 (compare with the maximization of �4 in
section 3). As a result theorem D.1 yields

(Wψ)−1 I1 = ε3/4 C ′
1

(
ε5/12 δ−1 �1(x∗, x∗)

) = ε7/6 δ−1 C ′′
1

to leading order, and with C ′
1 and C ′′

1 being O(1) constants.
In total, then, and to leading order, we obtain

b′
m0k = −

√
2 (1 − ν) C2 σ

1/3
0 f (0) ζk(x∗)

C1 C3 σ
−1/2
∗ (Nk + 
0)

, for m, k � ε−1/3.

Formula (7.1) now immediately follows.

8. Discussion

As argued in section 1, there are two contextual themes central to this paper. The first one
relates to understanding the nonlinear, long-term dynamics of small patterns of DCM type
generated through the linear destabilization mechanism identified in [25]. The second theme
concerns the development of a concrete approach to studying the dynamics generated by the
(rescaled) PDE model (1.5) near a linear destabilization but beyond the region of applicability
of the centre manifold reduction. In this paper, we have reported significant results (outlined in
section 1) touching on both themes. These results, in turn, inspire further investigation within
this dual context.

Regarding our first focal point, and in view of our discovery that the bifurcating, small-
amplitude, DCM pattern undergoes a Hopf bifurcation, the central question is naturally
what happens beyond this secondary bifurcation. This question can be answered by the
methods developed here, as it is in principle possible to deduce analytically the sub- or
supercriticality of the Hopf bifurcation undergone by (4.8). The numerical simulations of [15]
indicate that this bifurcation may be only the first of a cascade of subsequent period-doubling
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bifurcations leading to a region of spatio-temporal chaotic dynamics and throughout which the
phytoplankton profile maintains a DCM-like structure. There is, of course, no a priori reason
for this cascade to occur entirely within the regime λ − λ∗ = O(ε) covered by our analysis
here. In fact, the simulations of [15] suggest that, for the parameter combinations considered
there, this is indeed not the case. On the other hand, our analysis is able to determine regions
in parameter space where this cascade can or cannot occur (for instance, in the event that the
Hopf bifurcation turns out to be subcritical). Moreover, the possibility that there exist regions
in parameter space where the entire cascade is within the reach of our asymptotic methods
cannot be excluded. A similar question concerns, naturally, the origins and fate of the second
DCM pattern identified in section 4.5.

These last remarks bring us to the second theme. The approach we developed here will
be used—and if necessary extended—in forthcoming work investigating the remaining issues
pertaining to our linear destabilization results in [25]—namely, determining the nonlinear
behaviour associated with the destabilization of BL type. Our analysis in [25] strongly suggests
that, for realistic choices of the parameters pertinent to shallower water columns (e.g. estuaries
and lakes), patterns of BL type are equally relevant to the dynamics generated by (1.1) as the
DCM patterns considered here. In fact, preliminary numerical simulations strongly suggest
that co-dimension two-type patterns combining DCM and BL characteristics play an important
role in the region where the trivial state is unstable. From a mathematical point of view, the
co-dimension two point may also be seen as an ‘organizing centre’ for the more complex
behaviour exhibited by the system studied numerically in [15]. That is, the cascade of period-
doubling bifurcations reported in [15] may be based on the presence of that co-dimension two
point. In view of that, the derivation and analysis of an extended reduced system for parameter
values valid within an O(ε) neighbourhood of that point may prove highly engaging.

The same methodology can also be applied to extended models. A natural extension of
(1.1) is a multi-species model, i.e. a model similar to (1.1) in which several phytoplankton
species compete for the same nutrient. At the linear level, the species evolution decouples [25].
Nonlinear coupling, however, is present through shadowing (light limitation) and nutrient
uptake (nutrient limitation), and hence the presence of extra species affects the life cycle
of each species. Reaction–diffusion models of this sort for eutrophic environments—i.e.
in the presence of an ample nutrient supply—have been developed and investigated both
numerically [14] and (partially) theoretically [8]. The oligotrophic case, on the other hand—
where these multi-species models are coupled to a PDE for the nutrient—has so far only been
investigated numerically [15].

Another natural, if not outright necessary, extension is the inclusion of horizontal
spatial directions. Plainly, the dynamics generated by (1.1) will be strongly influenced by
the flow in directions perpendicular to the one-dimensional water column considered here:
oceanic currents are bound to mix neighbouring water columns and thus also enrich the
collection of emerging planktonic patterns. Finally, and as already described in section 1,
we are currently studying the simplified model problem (1.21) through which we hope to
understand the applicability and limitations of the general method developed here. This
approach may also serve as a first step towards obtaining a rigorous validation of our
method.
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Appendix A. An asymptotic formula for ω0

The formula for the principal part in the asymptotic expansion of ω0 reads

ω0(x) ∼




ε−1/6 σ
1/6
0 C1Ai

(
A1(1 − x−1

0 x)
)
, for x ∈ [0, x0),

ε−1/12 C1 C2 σ
1/3
0

2
√

π F 1/4(x)

[
ω0,−(x; x0) + θ ω2

0,−(1; x0) ω0,+(x; x0)
]
, for x ∈ (x0, 1],

(A.1)

cf [25], where x0, C1, C2, F , σ0 and θ have been defined in (1.15), (2.17), (3.3), and (3.12).
We remark that C1 is a normalizing constant ensuring that ||ω0||2 = 1. (This factor does not
appear in the formula for ω0 we give in [25], since ω0 was not normalized there.) Also,

ω0,±(x; x0) = exp

(
±I (x)√

ε

)
,

where I has been defined in (2.16). An asymptotic formula for ω+
0 = E ω0 is readily derived

using (A.1) above,

ω+
0 (x) ∼




ε−1/6 σ
1/6
0 C1e

√
v/ε xAi

(
A1(1 − x−1

0 x)
)
, for x ∈ [0, x0),

ε−1/12 C1 C2 σ
1/3
0

2
√

π F 1/4(x)

[
ω+

0,−(x; x0) + θ ω2
0,−(1; x0) ω+

0,+(x; x0)
]
, for x ∈ (x0, 1],

(A.2)

where we have defined the functions

ω+
0,±(x; x0) = E(x) ω0,±(x; x0) = exp

(
J±(x)√

ε

)
,

with J± as in (2.16). We remark that J− becomes maximum at the well-defined point
x∗ ∈ (0, 1)—the location of the DCM, see (2.18)—whereas J+ increases monotonically. Also,
the terms involving ω0,+ in (A.1) and ω+

0,+ in (A.2) are exponentially smaller than the terms
ω0,−(x) and ω+

0,−(x), respectively, everywhere except for an O(
√

ε)-region of x = 1. Indeed,
for all x < 1,

J+(x) − 2I (1) = J−(x) − 2(I (1) − I (x)) < J−(x). (A.3)

In particular, ‖ω+
0‖∞ can be bounded by an O(ε−1/12δ−1) constant, where δ =

exp(−J−(x∗))/
√

ε is an exponentially small parameter (cf (2.15)).

Appendix B. An asymptotic formula for η0

We recall that η0 is the solution to the boundary-value problem (2.6),

ε ∂xxη0 − λ0 η0 = −ε�−1f ω+
0 , where ∂xη0(0) = η0(1) = 0.

Recalling that λ0 = ε
0 in our bifurcation analysis, we find that

∂xxη0 − 
0η0 = −�−1f ω+
0 , where ∂xη0(0) = η0(1) = 0. (B.1)
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The functions η0,±(x) = e±√

0x form a pair of fundamental solutions to the homogeneous

problem. Using variation of constants, then, we obtain a special solution to the inhomogeneous
ODE,

η0,sp(x) = (2�
√


0)
−1
[
�0
(
η0,+f ; x

)
η0,−(x) − �0

(
η0,−f ; x

)
η0,+(x)

]
.

Here, we have defined the family of functionals

�n (· ; x) =
∫ x

0
·(s) ω+

n(s) ds, parametrized by x ∈ [0, 1] and n � 0. (B.2)

The solution to (B.1) is, then,{
η0(x) = [

C+
η − (2�

√

0)

−1�0
(
η0,−f ; x

)]
η0,+(x)

+
[
C−

η + (2�
√


0)
−1�0

(
η0,+f ; x

)]
η0,−(x).

(B.3)

Imposing the boundary conditions for η0 and using the identity �0 (· ; 0) = 0, we find that the
constants C−

η and C+
η satisfy the linear system√


0 C+
η −

√

0 C−

η = 0,[
2�
√


0C
+
η − �0

(
η0,−f ; 1

)]
e
√


0 +
[
2�
√


0C
−
η + �0

(
η0,+f ; 1

)]
e−√


0 = 0,

the solution to which is C+
η = C−

η = Cη/(2�
√


0), with

Cη = �0
(
η0,−f ; 1

)
η0,+(1) − �0

(
η0,+f ; 1

)
η0,−(1)

2 cosh
√


0
.

Thus, (B.5) becomes

η0(x) = (2�
√


0)
−1
[
2Cη cosh

(√

0 x

)
+ �0

(
η0,+f ; x

)
η0,−(x) − �0

(
η0,−f ; x

)
η0,+(x)

]
.

(B.4)

Further employing the definition (B.2), we calculate

�0
(
η0,+f ; x

)
η0,−(x) − �0

(
η0,−f ; x

)
η0,+(x)

=
∫ x

0

[
η0,−(x)η0,+(y) − η0,+(x)η0,−(y)

]
f (y) ω+

0 (y) dy

= −2
∫ x

0
sinh

(√

0(x − y)

)
f (y) ω+

0 (y) dy

= −2 �0

(
sinh

(√

0(x − ·)

)
f ; x

)
.

Additionally,

Cη = �0
(
η0,−f ; 1

)
η0,+(1) − �0

(
η0,+f ; 1

)
η0,−(1)

2 cosh
√


0

= 1

2 cosh
√


0

∫ 1

0

[
η0,−(y) η0,+(1) − η0,+(y) η0,−(1)

]
f (y) ω+

0 (y) dy

= 1

cosh
√


0

∫ 1

0
sinh

(√

0(1 − y)

)
f (y) ω+

0 (y) dy

= 1

cosh
√


0
�0

(
sinh

(√

0(1 − ·)

)
f ; 1

)
,
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and hence (B.4) becomes

η0(x) = 1

�
√


0

[
cosh

(√

0 x

)
cosh

√

0

�0

(
sinh

(√

0(1 − ·)

)
f ; 1

)

−�0

(
sinh

(√

0(x − ·)

)
f ; x

)]

= 1

�
√


0

[
cosh

(√

0 x

)
cosh

√

0

∫ 1

0
sinh

(√

0(1 − y)

)
f (y) ω+

0 (y) dy

−
∫ x

0
sinh

(√

0(x − y)

)
f (y) ω+

0 (y) dy

]
. (B.5)

To estimate ‖η0‖∞ over [0, 1], we first show that η0 is positive and that it assumes its
maximum in an O(ε1/4) neighbourhood of x∗. First, an estimate based on (B.5) establishes
readily that η0(x) > 0 for all x ∈ (0, 1):

η0(x) �
∫ 1

0

[
cosh

(√

0 x

)
cosh

√

0

sinh
(√


0(1 − y)
)

− sinh
(√


0(x − y)
)] f (y) ω+

0 (y)

�
√


0
dy

= sinh
(√


0(1 − x)
)

�
√


0 cosh
√


0

∫ 1

0
cosh

(√

0 y

)
f (y) ω+

0 (y) dy > 0,

for x ∈ (0, 1). To locate the maximum, we differentiate both members of (B.5) and obtain

� ∂xη0(x) = sinh
(√


0 x
)

cosh
√


0

∫ 1

0
sinh

(√

0(1 − y)

)
f (y) ω+

0 (y) dy

−
∫ x

0
cosh

(√

0(x − y)

)
f (y) ω+

0 (y) dy

− sinh
(√


0(x − y)
)

√

0

f (x) ω+
0 (x). (B.6)

Theorem D.1 can be used to yield the principal part of the two integrals in this formula, whereas
the term proportional to ω+

0 can be estimated via (A.2). For the values of 
0 we are interested
in, the localized term in either integrand is ω+

0 , while the 
0-dependent terms vary on an
asymptotically larger length scale. Thus,

∂xη0(x) = sinh
(√


0 x
)

� cosh
√


0

∫ 1

0
sinh

(√

0(1 − y)

)
f (y) ω+

0 (y) dy > 0,

to leading order and for x < x∗ and |x − x∗| � ε1/4, since the second and third terms in the
right member of (B.6) are exponentially small compared with the first one. Similarly,

∂xη0(x) = 1

� cosh
√


0

[
sinh

(√

0 x

) ∫ 1

0
sinh

(√

0(1 − y)

)
f (y) ω+

0 (y) dy

− cosh
√


0

∫ x

0
cosh

(√

0(x − y)

)
f (y) ω+

0 (y) dy

]
,

for x > x∗ and |x − x∗| � ε1/4, since the second and third terms in the same formula are
of the same asymptotic order and the third one is exponentially smaller. Changing the upper
limit of the second integral to one (and thus only introducing an exponentially small error) and
combining the two integrals, we find

∂xη0(x) = −cosh
(√


0 (1 − x)
)

� cosh
√


0

∫ 1

0
cosh

(√

0 y

)
f (y) ω+

0 (y) dy < 0.
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Since η0 ∈ C2(0, 1), now, it follows that η′
0(x1) = 0 at a point x1 such that |x∗ − x1| = O(ε1/4),

as desired. Hence, we can now use (B.5) to estimate further

‖η0‖∞ � η0(x1) �
cosh

(√

0 x1

)
�
√


0 cosh
√


0

∫ 1

0
sinh

(√

0(1 − y)

)
f (y) ω+

0 (y) dy.

Using our asymptotic estimate on x1 and theorem D.1, we find

‖η0‖∞ � C ε1/6 δ−1 cosh
(√


0 x∗
)

sinh
(√


0(1 − x∗)
)

√

0 cosh

√

0

,

for some 
0-independent, O(1) constant C. Since the 
0-dependent quantity in the bound
above remains bounded by an O(1) constant also for 
0 � 1, we finally conclude that ‖η0‖∞
can be bounded by an O(ε1/6δ−1) constant.

Appendix C. Asymptotic formulas for ψn, n � 0

The function ψn is the solution to the boundary-value problem

ε ∂xxψn + (f (x) − � − v − νn) ψn = −ε�−1f E ζn, where G (ψn ; 0) = G (ψn ; 1) = 0,

cf (2.10). Here, G (ψn ; x) = ψn(x) − √
ε/v ∂xψn(x) and we recall that

ζn(x) =
√

2 cos(
√

Nn x), (C.1)

see (2.4). Recalling also the definitions F(x) = f (0) − f (x) and λ∗ = f (0) − � − v, as well
as that λ∗ = λ0 + ε1/3µ0 by (1.13), we write

f (x) − � − v = λ0 − F(x) + ε1/3µ0,

with µ0 = σ
2/3
0 |A1| + O(ε1/6). Finally, since λ0 = ε
0 and νn = −εNn, we may rewrite

(2.10) in the final form

ε ∂xxψn − [
F(x) − ε1/3µ0 − ε (Nn + 
0)

]
ψn = −ε E f ζn

�
, (C.2)

together with the boundary conditions G(ψn ; 0) = G(ψn ; 1) = 0. In what follows, we
derive asymptotic formulae for ψn and for values of n satisfying n � ε−1/3. In that case,
ε(Nn + 
0) � ε1/3—recall our assumption that 
0 � ε−2/3 in section 2.3.2—and hence this
term is perturbative to ε1/3µ0. Hence, we may write

ε1/3µ0 + ε(Nn + 
0) = F(xn), where xn = x0(1 + o(1)) (C.3)

is a turning point for (C.2). Then, (C.2) becomes

ε ∂xxψn − [F(x) − F(xn)] ψn = −ε�−1f E ζn, (C.4)

equipped with the boundary conditions (2.10). The solution to this boundary-value problem
may be found by variation of constants,

ψn(x) = [
C+

ψ − (�Wψ)−1G−(x)
]
ψn,+(x) +

[
C−

ψ + (�Wψ)−1G+(x)
]
ψn,−(x). (C.5)

Here, ψn,± is any pair of fundamental solutions to ε ∂xxψn = [F(x) − F(xn)]ψn and
Wψ = ψn,−∂xψn,+ −ψn,+∂xψn,− is the associated Wronskian. (To derive the result above, one
needs to show that Wψ is constant. This is plain to show by using the identity ∂xWψ(x) = 0,
for all x ∈ [0, 1], which follows from the definition of Wψ and the ODE that ψ± satisfy.)
Further,

G±(x) =
∫ x

0
f (y)ζn(y) ψ+

n,±(y) dy, (C.6)
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where ψ+
n,± = E ψn,±. Using (C.5), we further obtain

∂xψn(x) = [
C+

ψ − (�Wψ)−1G−(x)
]
∂xψn,+(x) +

[
C−

ψ + (�Wψ)−1G+(x)
]
∂xψn,−(x),

and thus the boundary conditions yield the system

C+
ψG

(
ψn,+ ; 0

)
+ C−

ψ G
(
ψn,− ; 0

) = 0,[
C+

ψ − 1

�Wψ

G−(1)

]
G
(
ψn,+ ; 1

)
+

[
C−

ψ +
1

�Wψ

G+(1)

]
G
(
ψn,− ; 1

) = 0.

The solution to this system is

C+
ψ = − 1

�Wψ

Dψ G
(
ψn,− ; 0

)
and C−

ψ = 1

�Wψ

Dψ G
(
ψn,+ ; 0

)
, (C.7)

where

Dψ = G−(1) G
(
ψn,+ ; 1

)− G+(1) G
(
ψn,− ; 1

)
G
(
ψn,+ ; 0

)
G
(
ψn,− ; 1

)− G
(
ψn,− ; 0

)
G
(
ψn,+ ; 1

) . (C.8)

Thus, also, (C.5) becomes

ψn(x) = (�Wψ)−1
[
�−(x) ψn,−(x) − �+(x) ψn,+(x)

]
, (C.9)

where

�−(x) = G+(x) + Dψ G
(
ψn,+ ; 0

)
(C.10)

�+(x) = G−(x) + Dψ G
(
ψn,− ; 0

)
. (C.11)

These formulae hold for an arbitrary pair ψn,± of fundamental solutions. Working as
in [25], where the problem was considered in detail in the absence of the perturbative term
ε(Nn + 
0), we can derive the following leading order formulae for a specific pair of solutions
ψn,±:

ψn,−(x) =



ε1/6 σ
−1/6
0 Ai

(
A1(1 − x−1

0 x)
)
, for x ∈ [0, x0),

ε1/4 C2

2
√

π F 1/4(x)
ω0,−(x; x0), for x ∈ (x0, 1],

(C.12)

ψn,+(x) =



ε1/6 σ
−1/6
0 Bi

(
A1(1 − x−1

0 x)
)
, for x ∈ [0, x0),

ε1/4 1√
π C2 F 1/4(x)

ω0,+(x; x0), for x ∈ (x0, 1].
(C.13)

Here, we have used that xn = x0 +o(
√

ε). The identity ∂xWψ = 0, which was reported earlier,
leads to

Wψ(x) = Wψ(A1) = −Ai′(A1)Bi(A1) = lim
χ→∞ Wψ(χ) = 1/π > 0, (C.14)

for all x ∈ [0, 1] and for this particular pair. (To calculate the limit, we used the asymptotic
expansions of Ai(χ) and Bi(χ) as χ → ∞—see, e.g. [2].) Next, we simplify formula (C.8) by
investigating the asymptotic magnitude of the terms in its right member. By definition (2.10),

G
(
ψn,± ; 0

) = ψn,±(0) −
√

ε/v (∂xψn,±)(0).

Equations (C.3) and (C.12)–(C.13) yield

G
(
ψn,− ; 0

) = − ε5/6 σ
−5/6
0 Ai′(A1) (Nn + 
0) + O(ε7/6),

G
(
ψn,+ ; 0

) = ε1/6 σ
−1/6
0 Bi(A1) + O(ε1/3).

(Here, we have Taylor expanded Ai(A1(1 − x−1
0 x)) around its zero x = 0.) Next,

G
(
ψn,± ; 1

) ∼ ε1/4 (1 ∓ √
σ1/v) c±

σ
1/4
1

exp

(
±I (1)√

ε

)
, (C.15)
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recall (3.12). These formulae imply that G(ψn,+ ; 0)G(ψn,− ; 1) is exponentially smaller than
G(ψn,− ; 0)G(ψn,+ ; 1), and thus

Dψ = Dn(1) G+(1) − G−(1)

G
(
ψn,− ; 0

) , where Dn(1) = G
(
ψn,− ; 1

)
G
(
ψn,+ ; 1

) (C.16)

and down to exponentially small terms. Next, the relative asymptotic magnitudes of
the terms in G−(1) − Dn(1)G+(1) may be derived using the definitions (2.10) and (C.6)
together with Laplace’s approximation (cf theorem D.1). One finds that G−(1) is dominated
by exp(ε−1/2J−(x∗)), whereas Dn(1)G+(1) by exp(ε−1/2J−(1)), and hence the latter is
exponentially smaller than the former. Hence,

Dψ = − G−(1)

G
(
ψn,− ; 0

) . (C.17)

It follows, then, that

�−(x) = G+(x) − Dn(0) G−(1) and �+(x) = G−(x) − G−(1), (C.18)

and down to exponentially small terms. Here,

Dn(0) = G
(
ψn,+ ; 0

)
G
(
ψn,− ; 0

) = ε−2/3 dn(
0), (C.19)

where (recall (C.14))

dn(
0) = − σ
2/3
0 Bi(A1)

Ai′(A1) (Nn + 
0)
= σ

2/3
0

π C3 (Nn + 
0)
> 0. (C.20)

Combining this formula with (C.9), we find

ψn(x) = (�Wψ)−1
[
G+(x)ψn,−(x) − G−(x)ψn,+(x) + G−(1)

(
ψn,+(x) − Dn(0)ψn,−(x)

)]
= (�Wψ)−1

[
(G+(x) − Dn(0)G−(1)) ψn,−(x) + (G−(1) − G−(x)) ψn,+(x)

]
= (�Wψ)−1

[
ψn,−(x)

(∫ x

0
f (y)ζn(y) ψ+

n,+(y)dy − Dn(0)

∫ 1

0
f (y)ζn(y) ψ+

n,−(y) dy

)

+ ψn,+(x)

∫ 1

x

f (y)ζn(y) ψ+
n,−(y) dy

]
. (C.21)

Appendix D. Asymptotic approximation of integrals

D.1. Localized integrals

Our main tool in this section will be Laplace’s method and, in particular, the following three
theorems based on [24, chapter II, VIII, IX].

Theorem D.1 ([24], theorem IX.3). Let n ∈ N , D ⊂ Rn be a domain with piecewise smooth
boundary ∂D, and u0 ∈ D̄. Let, also, the functions � ∈ C2(D̄, R) and � ∈ C(D̄, R) satisfy
the conditions

(a) inf
D̄−B(u0;δ)

�(u) > �(u0), for all δ > 0,

(b) σ
(
D2�(u0)

) ⊂ R̊+,

(c) the integral ID(λ) :=
∫

· · ·
∫

D

�(u) e−λ�(u) du converges absolutely

for all sufficiently large λ.
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(Here, D2� denotes the Hessian matrix of �.) Then,

ID(λ) ∼ e−λ�(u0)

∞∑
k=0

ck λ−(k+n/2) (λ → ∞),

where one may derive explicit formulae for the constants {ck}k . In particular,

(I) ID(λ) ∼
(

2π

λ

)n/2
�(u0) e−λ�(u0)√

det D2�(u0)
, if u0 ∈ D̊ and �(u0) �= 0,

(II) ID(λ) ∼
(

2π

λ

)(n+2)/2

C0 e−λ�(u0), if u0 ∈ D̊ and �(u0) = 0,

(III) ID(λ) ∼
(

2π

λ

)n/2
�(u0) e−λ�(u0)

2
√

det D2�(u0)
, if u0 ∈ ∂D, �(u0) �= 0, and D�(u0) = 0,

(IV) ID(λ) ∼
(

2π

λ

)(n+1)/2
�(u0) e−λ�(u0)

2π
√

det J
, if u0 ∈ ∂D, �(u0) �= 0, and D�(u0) �= 0,

as λ → ∞, for some constant C0 which is at most O(1) with respect to λ and under the
assumption that ∂D is smooth around u0 in the cases where u0 ∈ ∂D. Here, J is a matrix
related to D2�(u0) and to the local characteristics of ∂D around u0.

Theorem D.2. Let a < b and u0 ∈ [a, b]. Let, also, the functions � ∈ C2([a, b], R) and
� ∈ C([a, b], R) satisfy the conditions

(a) inf
[a,b]−B(u0;δ)

�(u) > �(u0), for all δ > 0,

(b) the integral I(λ) :=
∫ b

a

�(u) e−λ�(u) du converges absolutely

for all sufficiently large λ.

Then,

I(λ) ∼ e−λ�(u0)

∞∑
k=1

ck λ−k/2 (λ → ∞),

where one may derive explicit formulae for the constants {ck}k . In particular, as λ → ∞,

(I) I(λ) ∼ e−λ�(u0)

λ1/2

√
2π �(u0)√
�′′(u0)

, if u0 ∈ (a, b) and �(u0) �= 0,

(II) I(λ) ∼ e−λ�(u0)

λ3/2

√
π
(
�′′(u0) − �′(u0) �′′′(u0)

�′′(u0)

)
√

2 [�′′(u0)]3/2
, if u0 ∈ (a, b) and �(u0) = 0,

(III) I(λ) ∼ e−λ�(u0)

λ

�(u0)

|�′(u0)| , if u0 ∈ {a, b}, �(u0) �= 0, and �′(u0) �= 0,

(IV) I(λ) ∼ e−λ�(u0)

λ1/2

√
π �(u0)√
2�′′(u0)

, if u0 ∈ {a, b}, �(u0) �= 0, and �′(u0) = 0,

(V) I(λ) ∼ e−λ�(u0)

λ2

±�′(u0)

[�′(u0)]2
, if u0 =

{
a (+)

b (−)
, �(u0) = 0, and �′(u0) �= 0,

(VI) I(λ) ∼ e−λ�(u0)

λ

±�′(u0)

�′′(u0)
, if u0 =

{
a (+)

b (−)
, �(u0) = 0, and �′(u0) = 0.
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Theorem D.3. Let D ⊂ R2 be a two-dimensional domain with piecewise smooth boundary
∂D and u0 ∈ ∂D. Let, also, the functions � ∈ C2(D̄, R) and � ∈ C(D̄, R) satisfy the
conditions

(a) inf
D̄−B(u0;δ)

�(u) > �(u0), for all δ > 0,

(b) the integral ID(λ) :=
∫

· · ·
∫

D

�(u) e−λ�(u)du converges absolutely

for all sufficiently large λ.

Assume, further, that ∂D has a corner at u0 and, in particular, that ∂D is given (locally around
u0) by the curves k(x, y) = 0 and h(x, y) = 0 with Dk(u0) × Dh(u0) �= 0. Let the vectors vk

and vh satisfy

vk ⊥ Dk(u0), vh ⊥ Dh(u0) and ‖vk × vh‖ = 1.

If vk and vh can be selected to further satisfy the conditions

�k := 〈vk, D�(u0)〉 > 0 and �h := 〈vh, D�(u0)〉 > 0, (D.1)

then

ID(λ) ∼ e−λ�(u0)

∞∑
k=0

ck λ−(k+2) (λ → ∞),

where one may derive explicit formulae for the constants {ck}k . In particular,

(I) ID(λ) ∼ 1

λ2

�(u0) e−λ�(u0)

2�k�h

√
�2

k + �2
h

, if �(u0) �= 0,

(II) ID(λ) ∼ 1

λ3

(�k�h + �h�k) e−λ�(u0)

�2
k�

2
h

√
�2

k + �2
h

, if �(u0) = 0,

as λ → ∞. Here, �k := 〈vk, D�(u0)〉 and �h := 〈vh, D�(u0)〉, compare with (D.1).

D.2. Oscillatory integrals

Theorem D.4. Let a < b, � ∈ C([a, b], R), and � ∈ C2([a, b], R). Assume that

�(t) = �(a) + (t − a) �1(t) and �′(t) > 0, for all t ∈ [a, b] and with �1(a) �= 0.

Then, the integral I(λ) := ∫ b

a
�(t) eiλ�(t) dt has the following asymptotic expansion:

I(λ) ∼
∞∑

k=0

[
h(k)(0) eiλ�(a) − h(k)(�(b) − �(a)) eiλ�(b)

] ( i

λ

)k+1

(λ → ∞),

where we have defined the function

h(τ) = �(t(τ )) t ′(τ ).

Here, τ(t) = �(t) − �(a) or, equivalently, t (τ ) = �−1(�(a) + τ).
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