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Abstract 

The Ginzburg-Landau (GL) equation 'generically' describes the behaviour of small perturbations of a marginally unstable 
basic state in systems on unbounded domains. In this paper we consider the transition from this generic situation to a degenerate 
(co-dimension 2) case in which the GL approach is no longer valid. Instead of studying a general underlying model problem, 
we consider a two-dimensional system of coupled reaction-diffusion equations in one spatial dimension. We show that near 
the degeneration the behaviour of small perturbations is governed by the extended Fisher-Kolmogorov (eFK) equation (at 
leading order). The relation between the GL-equation and the eFK-equation is quite subtle, but can be analysed in detail. 
The main goal of this paper is to study this relation, which we do asymptotically. The asymptotic analysis is compared to 
numerical simulations of the full reaction-diffusion system. As one approaches the co-dimension 2 point, we observe that the 
stable stationary periodic patterns predicted by the GL-equation evolve towards various different families of stable, stationary 
(but not necessarily periodic) so-called 'multi-bump' solutions. In the literature, these multi-bump patterns are shown to exist 
as solutions of the eFK-equation, but there is no proof of the asymptotic stability of these solutions. Our results suggest that 
these multi-bump patterns can also be asymptotically stable in large classes of model problems. © 1998 Elsevier Science B.V. 

PACS: 02.30 Jr; 02.30 Mv; 02.60 Cb 
Kevwords: Nonlinear stability; Modulation equations; Degenerations; Numerical simulations 

1. Introduct ion  

The behaviour near criticality of  small solutions of  a system of  partial differential equations on an unbounded 

domain can be described by the so-called modulation or amplitude equations. The most well-known, and 'generic '  

modulation equation is the (complex) Ginzburg-Landau (GL) equation 

A r = r A  + c A A  + h A I A [  2, (1.1) 
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where A is a complex valued function, r a (real) control or bifurcation parameter and c and h complex parameters 

which are determined by the underlying 'full '  system of PDEs (see for instance [15]). Generally, h is referred to as 

the Landau-constant. 

The derivation of  the GL-equation is based on a detailed analysis of a linearised stability problem. Let 

f t  = L R ~  + N ( ~ ) ,  if(x, y, t) : •n x ~ × ~+ --~ ~x ,  (1.2) 

describe the 'full' problem, where LR (respectively N) is a linear (nonlinear) operator, R is a control or bifurcation 

parameter and X2 is a bounded domain C R 'n. For simplicity we assume that n = 1. The linearised stability of  the 

basic solution ~P0(y) of (1.2) is determined by setting 

¢~ = ~0 + f ( Y )  eikx+ut 

and solving, for any pair (k, R), an eigenvalue problem for f ( y )  with eigenvalues # ----/t(k, R). Define/t0(k, R) 

as the critical eigenvalue (i.e. the eigenvalue with the largest real part) for a given pair (k, R) and R, as the critical 

bifurcation value of  R: Re#0(k,  R) < 0 for all k ~ ~ and R < Re, i.e. the basic solution ~0 of (1.2) is linearly 

stable for R < Re. The curve in the (R, k)-plane where Re/to(k, R) ---- 0 is the so-called neutral curve. The critical 

values kc of  k and Wc of  #0(k, R) are defined by 

/t0(kc, Rc) = iwc; 

fc(Y) is the critical eigenfunction at R = Ro  k -- kc. If R is 'slightly' above Ro  i.e. R = Rc + rE 2 with 0 < e << 1, 

r > 0, one makes the following basic 'ansatz' on which the derivation of the GL-equation is based: 

¢ (x ,  y, t) = ¢0(3') + eA(~, r ) f c ( y )e  i(k~x+wct) + c.c., (l.3) 

where s e and r are rescaled time and space coordinates. Eq. (1.3) gives only the leading order term of a double 

expansion: as a Taylor series in e and as a Fourier series in e i(k~x+wct). The GL-equation (1.1) describes the 

modulation of the unknown amplitude A (s e, r)  (see Section 3.1 for more details). In the last 10 years much progress 

has been made in the mathematical justification of  this approach. Eckhaus [16] showed that the above 'ansatz' can 

be made rigorous for a large class of  model systems. The validity of  the GL-equation for various types of  model 

equations has been shown by many authors (see [5,18,3,28]). 
The fact that ~p (x, y, t ) -  ~P0 (Y) can be expanded in a Fourier series in e i(kcx+w~t) is a fundamental 'non-degeneracy 

condition' on which both the asymptotic process leading to the GL-equation and the proof of  its validity is based. It 

is clear that the Fourier expansion must break down when kc = We = 0. A priori this might seem like a phenomenon 

of high co-dimension, but this is not necessarily the case: Wc = 0 is a 'generic' property of  basic reversible systems 

(1.2), i.e. systems of PDEs that are symmetric with respect to the transformation x ~ - x .  Reversible systems are 

very natural, a classical example is convection (see for instance [25], one of the first papers in which a GL-equation 

has been derived). Note that the reversibility symmetry does not necessarily cause wc to be 0, but, when wc ¢ 0, 

the symmetry either forces kc to be 0 (see Remark 1.2 and [22,28]) or the creation of  a pair of 'linearly most 

unstable waves' (a left-moving and a right-moving, see [29] for an explicit study of  these bifurcations in binary 
fluid convection). However, We = 0 does occur as a co-dimension 1 phenomenon in reversible systems: one only 

needs an extra bifurcation parameter, s, to make the GL ansatz (1.3) degenerate, i.e. there must be a special value 

of s such that kc(s) = 0. 
In this paper we make an asymptotic analysis of  the behaviour of  small solutions near such a co-dimension 2 point: 

a point in the two-dimensional parameter plane at which the classical GL ansatz (1.3) breaks down. In Remark 1.1 we 
discuss the relation of  the co-dimension 2 point studied in this paper to other, similar, co-dimension 2 degenerations 
that occur in the derivation of the GL-equation. Such co-dimension 2 degenerations occur in convection problems, 
nematics, lasers, etc. [33,2,23,241. 
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Instead of  performing this analysis on a very general (reversible) model problem as (1.2), we focus on a more 

simple, but highly relevant 'basic' problem, a general reversible two-dimensional system of reaction~tiffusion 

equations: 

ut = r u + c l V + U x ~ . + N l ( u , v ) ,  vt = s v + c 2 u + d v x x + N 2 ( u , v ) ,  (1.4) 

where x E ~; N1 and N2 are analytic nonlinear expressions (thus we assume that Ni (u, v), i = 1, 2, do not have 

any linear terms). The system will be studied by varying the bifurcation parameters r and s; the other constants, cl, 

c2 and d, will be kept fixed. If we compare (1.4) to (1.2), we note that ¢'(x, y, t) --- (u(x, t), v(x, t)) T, thus, there is 

no v variable (i.e. ~ = 0): this simplifies the linear stability analysis considerably. Moreover, the model problem 

is chosen in such a way that ¢'0(Y) = (0, 0) T. 

It should be remarked that studying the weakly nonlinear stability of a 'trivial pattern' (fi(:~, t), f,(~. t)) = 

(/-)0, 1)0), where (h(:~, t), ~(,~, t)) is a solution of the, a priori, more general system 

fit = d l f i~  + .lJ (h, ~), f:t = d2b~ + f2(h, b), (1.5) 

is completely equivalent to studying the weakly nonlinear stability of the trivial, basic pattern (0, 0) of (1.4). This 

can be seen by setting (h(.~, t), ~(,~, t)) = (t)0 + u(:~, t), ~'0 + v(~, t)) and substituting this into (1.5) - ~ can be 

rescaled to x in such a way that dl = 1. Thus, model problem (1.4) can also be used to describe the GL bifurcation 

and its degeneration in well-known models as the Brusselator (see [22] for the derivation of  the GL-equation in the 

Brusselator), the Gray-Scott  model [ 10], systems of  predator-prey type [6[, etc. Moreover, our basic model is as 

general as the system studied by Turing [32], although it should be noted that in that paper the equations are studied 

on a bounded x-domain, while it is crucial for the forthcoming GL-analysis that x 6 ~. 

Another additional advantage of  studying (1.4) instead of (1.2) is that it is now quite easy to check the asymptotic 

computations by a numerical simulation of  the full basic system (1.4)-see Section 5. 

If  clc2 < 0, there is a curve FGL in the (r, s) = R parameter plane at which the GL bifurcation can occur, i.e. 

the basic pattern (0, 0) becomes unstable and the evolution of small solutions can be described by 'ansatz' (1.3) 

and the GL-equation (1.1), where now c, h ~ ~, due to the reversibility symmetry, and A = 02/0~ 2. From now 

on we rescale to ct = 1, c2 = - 1  to assure that clce < 0. However, kc = kc(s) and there is a point (reFK, SeFK), 

where kc = 0 (and wc = 0; in Section 2 we will also encounter a point (rcGL, ScGL), where kc = 0 but wc :~ 0, see 

Remark 1.2). On one side of the point (reFK, SeFK) on ['GL, kc 7 ~ 0 exists, on the other side kc --= 0. 

In an O(S), 0 < 3 << l, neighbourhood of the point (reFK, SeFK) one has to replace the GL ansatz (1.3) by the 

following ansatz: 

this is only a Taylor expansion in 6, and no longer a Fourier expansion. Note also that the unknown 'amplitude' 

B (~e, rB) is real valued, while A (~, r)  was complex. Moreover, the scalings of ~e and re differ from those of ~ and 

r (see Sections 3.1 and 3.2). Based on this ansatz one can derive a so-called extended Fisher-Kolmogorov (eFK) 

equation for B, that reads in rescaled form 

B r B  = B + DB~e~e - -  B ~ B ~ B ~ B ~ B  - -  B 2, (1.7) 

where D still depends on r and s: D < 0 as kc ¢ 0 exists, D = 0 at (reFK, SeFK) and D > 0 as kc = 0. Note 
that the naming of Eq. (1.7) in the literature is somewhat confusing. Here we follow [26,8,20,7]. However, the 

name eFK-equation is usually given to equations of the type (1.7) with D > 0 and a cubic instead of  a quadratic 
nonlinearity. In the case D < 0 the name Swift-Hohenberg (SH) equation would be more appropriate [31 ], however, 
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the SH-equation also has a cubic nonlinearity in general. Since the transition at (reFK, SeFK) from D > 0 to D < 0 

is most naturally described by an equation in the form of a (quadratic) eFK-equation we prefer in this paper the 
name eFK2 for Eq. (1.7). We will also encounter the more standard cubic eFK or SH-equation as a degenerate case 

of the eFK2-equation (1.7) and call it the eFK3-equation. 

The derivation of the eFK2-equation is quite straightforward. However, if one compares the (complex) GL- 

equation (1.1) to the (real, fourth order) eFK2-equation, then it is a priori hard to grasp how the transition from the 

GL-equation to the eFK2-equation should take place. Understanding this transition is the main subject of this paper. 

Although we do not approach this problem by transforming it completely into Fourier space (as for instance 
in [18]), we will use the interpretation of the GL ansatz (1.3) and the eFK ansatz (1.6) in Fourier space to study 

the transition. The GL ansatz is represented in Fourier space by sharp disjunct 'peaks' around the values nkc, 

n = 0, + l ,  ±2  . . . .  (see Fig. 4, Section 4.2), while the eFK ansatz is described by a wide, solitary, 'peak'. It is 

shown in this paper that the GL ansatz breaks down as kc $ 0 and the formerly disjunct peaks start to overlap. The 
wide eFK peak then appears as the envelope of the overlapping GL peaks (Fig. 5, Section 4.2). 

However, this is only a part of the full picture. We will show that there is a region on FGL near the co-dimension 

2 point (reFK, SeFK) at which both the GL-equation and the eFK2-equation are valid. In this region these equations 
both describe the evolution of small solutions, but the scales of the magnitude, and the temporal and spatial evolution 

differ significantly, i.e. the GL and the eFK2-equation describe different patterns. Moreover, the GL-equation should 

be replaced by a singularly perturbed GL-equation: 

ArA = r A  + CeFKA~A~A + I ~ d A I A I  2 
4 i d y  dvCdy 2 
1 - d A~A~A~A 1 - d A ~ A ~ A ~ A ~ A  (1.8) 

(at leading order), where 0 < Y = E/3 << 1 and CeFK, heFK are (rescaled) limits of the values of c, h of (1.1) at 
(reFK, SeFK). Here something very interesting occurs. It follows from the asymptotic analysis that 

heFK > 0, (1.9) 

independent of the nonlinear terms Nl (u, v) and N2 (u, v) in (1.4). This is interesting because the (non-singularly 
perturbed) GL-equation (1.1) (in one dimension) does not have stable, bounded, periodic solutions if h > 0. 

Moreover, solutions have a tendency to blow up (in finite time) in this case. It follows immediately in the numerical 

simulations of the full system (1.4) that small O(e) solutions (see (1.3)) grow towards an O(1) magnitude if h > 0, 

which means that the weakly nonlinear GL approach is only valid on very small time intervals and cannot be used to 
study the asymptotic behaviour of patterns. Thus, as in almost all applications and studies of the GL-equation (see 

[27] for a review), one prefers a GL-equation with a negative Landau coefficient h when describing the evolution of 

small patterns near FGL. If (r, s) is near FGL but not near (reFK, SeFK), this can be achieved for a 'generic choice' 
of NI (u, v) and N2(u,  v) (see Section 4.1). One then observes stationary, stable periodic patterns in the numerical 

simulations of the full system (1.4), exactly as predicted by the GL-equation. However, since we found that heFK > 0 
we know that there must be a point (rnl, Snl) on FGL where h = 0. This can be called a nonlinear bifurcation. 

This bifurcation was first studied in [17,9] and later more rigorously in [30]. To give a correct description of 
the behaviour of solutions in this case one needs to consider extra nonlinear terms of higher order (such as A IAI 4 

and A~IAI 2 - see Section 4.1) to obtain a degenerate GL-equation of a form as given in (4.5). If the (rnl, Snl) is 
not close to (reFK, SeFK) then there is a part of FGL, where the GL approach is valid and the GL-equation has a 
positive Landau coefficient: here there are no bounded small solutions. Thus, since we are interested in bounded 
small solutions, we have to choose (rnl, Sn0 so close to (reeK, SeFK) that the eFK approach is already valid between 

(rnl, Snl) and (reFK, SeFK). 
We did not study this situation in its full asymptotic details (see Figs. 7-9 for the numerical simulations and 

Section 5.4 for a discussion), but, we did consider the special c a s e  heFK ~- O. This can quite easily be achieved 
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by considering nonlinearities N1 (u, v) and N2 (u, v) in ( 1.4) of cubic or higher order. In this case we find that the 

behaviour of small solutions near (reFK, SeFK) is governed by a cubic (!) eFK-equation, the eFK3 (or SH) equation: 

BTB = B + DB~B~B - -  B~B~B~B~B "FIB 3, (1.10) 

where D is as in (1.7). The sign of I can now be both positive or negative, as function of the structure of Nl (u, v) 

and N2(u, v) (see Section 3.4). Thus, although the assumption that both NI (u, v) and N2(u, v) are cubic makes the 
problem of a higher co-dimension, it is a natural assumption: this way there are no 'problems' with solutions that 

cannot be described (for all time) by the weakly nonlinear theory. Moreover, it enables us to derive equations that 

appear throughout the literature [26,8,31,20,7]. 
As already mentioned above, we supplement the asymptotic analysis of the transition from the GL-equation to 

the eFK-equation by a numerical study of the behaviour of small solutions of the full system (1.4) near FGL, and of 

course especially near (reFK, SeFK). Since we choose NI (u, v) and N2(u, v) such that h < 0 we can first check the 

validity of the GL approach: we find stable periodic solutions as predicted by the Eckhaus stability criterion [13]. 

By bringing (r, s) closer and closer to (reFK, SeFK), we observe stable, stationary patterns of a much richer structure 

than the sine/cosine like periodic patterns described by the (real) GL-equation (see Figs. 7-9). 
These solutions have a clear 'multi-bump' structure. In Fig. 1 we show two examples of (small) numerically stable 

'multi-bump' solutions of the full reaction~tiffusion system ( 1.4). Parameters r and s are close to (reFK, SeFK) and 
NI (u, v) and N2 (u, v) are such that the solutions are (asymptotically) described by the eFK3-equation. Solutions 

like these have been and still are the subject of much ongoing research (see for instance [4,19,20,26] and the 

references given there). In these papers the existence of solutions similar to those observed as stable patterns of 
the reaction~tiffusion system (1.4) near the co-dimension 2 point, is shown to exist for the stationary problems 

associated to either the eFK2 ([4]) or the eFK3-equation [20,26,19]. However, it should be noted that there are 
no proofs (yet) of the stability of these stationary 'multi-bump' solutions as solutions to the full eFK PDE (the 

stability of certain types of homoclinic and heteroclinic multi-bump solutions has recently been shown for a class 

of eFK-equations that have a variational structure with a double-well potential, such as the eFK3-equation [19]). 
Nevertheless, Fig. 1 l(a) shows a typical example of a stable multi-bump pattern that appears by integrating the 

eFK3-equation: note that these patterns are quite similar to those shown in Fig. 1. We refer to Section 5.4 for a more 

detailed discussion. 
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Fig. 1. The v-component of the asymptotically stable (small) solutions to (1.4) for (r, s) close to the co-dimension 2 point (s = 0.75)• 
In Section 3.4 it will be shown that these solutions are described by the eFK3-equation. The only difference between (a) and (b) is the 
choice of  initial conditions: (a) four periods (b) eight periods (we refer to the caption of Fig. 10 for more details). 
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Thus, the asymptotic and numeric calculations both strongly suggest that the 'mult i-bump'  solutions to the 

eFK2,3-equations can be asymptotically stable and that the 'attractors' in these equations also are of  significant 
importance to the behaviour of  small solutions near the co-dimension 2 point at which the kc of  the GL ansatz (1.3) 

becomes 0 (or small). However, both steps are not proven. The results of this paper are based on a detailed analysis of 

the reaction~liffusion system (1.4). The essence of the method in this paper does not depend on the exact structure 
of the underlying model problem. Therefore, the analysis in this paper can also be applied to much more general 

systems with a similar co-dimension 2 degeneration. As a consequence, it can be expected that the asymptotic stable 

'mult i-bump'  patterns encountered in this paper will also occur in these more general model problems. 

Remark 1.1. There exist some related co-dimension 2 bifurcations studied in the literature. Two of those are quite 

similar to the bifurcation studied in this paper. In [23,24] a complete weakly nonlinear description is given of a 

co-dimension 2 bifurcation that appears in laser dynamics. As in this paper, kc = Wc = 0 at the co-dimension 2 point 

described by £2 = 0: the 'detuning' £2 plays a role similar to s in this paper. However, unlike the eFK-bifurcation 
studied here, Wc(£2) ~ 0 for £2 ¢ 0. As a result, the dynamics near threshold are described by different kinds of 

cubic and complex SH equations. Another co-dimension 2 point is the so-called Lifshitz point that, for instance, 

appears in (planar) nematics (see for [2,33]). This is a purely two-dimensional (i.e. in (x, y)-space) phenomenon: 

the critical point of  the neutral surface at k : kc, l = 0 bifurcates into two critical points at k = k' c, l = -+-lc¢ 0 
[2]. In this case the modulation equation for the amplitude A(~, r/, r )  is once again cubic and complex, it reduces 

to the eFK3-equation if one considers a real amplitude A, independent of ~ [33]. There are many more possible 

co-dimension 2 degenerations, we do not intend to try to give a complete list here; see, for instance, [34,29,11 ], and 

the references given there, for co-dimension 2 bifurcations in convection problems. 

Remark 1.2. As noted above, we will also encounter the co-dimension 2 point (rcGL, ScGL) on I"GL where kc = 0, 
but wc -¢ 0. In Section 3.3 we briefly sketch how this case can be described by a coupled system of GL equations 

(see [11] and the references given there). Numerically we observe that the stable periodic patterns described by 

(1.1) obtain a periodically modulated amplitude near the point (rcGL, SccL), see Fig. 6(a). 

Remark 1.3. The structure of  the paper is as follows: in Section 2 we study the linear stability of  the trivial solution 
(0, 0) to (1.4), with cl = 1, c2 --- - 1 .  The derivations of the GL, the eFK and some other relevant modulation 

equations are given in Section 3 (and Appendix A). The main subject of  the paper, the transition from the GL to 

eFK2-equation, is studied in Section 4. In Section 5 we present and interpret the numerical simulations. 

2. The linear stability analysis 

We start by performing a linear stability analysis for the solution (u, v) = (0, 0) of  the reaction-diffusion system 

(1.4), where cl = 1, c2 = - 1 :  

ut = r u + v - t - U ~ x + N l ( U , V ) ,  v t = s v - u + d v x x + N 2 ( u , v ) .  (2.1) 

We study the stability of the solution by substituting 

into the linear part of  the system. This gives the following eigenvalue problem: 
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(r , s  23, 

Studying the linearised stability of (0, 0) reduces to calculating the eigenvalues w of  this 2 x 2 eigenvalue problem. 

The solution (0, 0) is stable as long as the real parts of  both eigenvalues are negative for all k 6 R and becomes 

unstable when the real part of one of the eigenvalues becomes positive (for some k 6 R). The characteristic 

polynomial  reads 

co2 _ (s + r - (l + d)k2)co + rs + 1 - (rd + s)k  2 + dk 4 = 0. (2.4) 

This leads to two eigenvalues wl and co2, where we assume that Re(wl)  > Re(w2). Moreover, we define for 

fixed s and d the neutral curve {Re col (k, r)  = 0}. When we plot this curve in the (k, r)-plane,  we know that the 

solution (0, 0) is stable against perturbations of the type (2.2) for (k, r)  outside the neutral curve; perturbations 

grow exponentially when (k, r )  is inside the neutral curve. 

In order to study this neutral curve, we need to know more about the real part of  the two eigenvalues. We start 

with looking for the critical points (kc, r , )  of  the neutral curve. Here the re still depends on s. First we assume that 

co is real near (kc, re). By definition we know that co(kc, re) = (Oco/Ok)(kc, re) = 0. Setting co(kc, rc) = 0 in (2.4) 

leads to 

dk 4 - (red + s)k2c + rcs + 1 = 0. (2.5) 

Applying O/Ok to (2.4) and substituting co(kc, re) -= (Oco/OK)(kc, re) = 0 gives 

kc(4dk~ - 2(rcd + s)) = 0. 

Therefore 

kc = O V k 2 -  red + s 
2d ' 

where rc has yet to be determined. The second pair of critical values only exists when ( r c d +  s ) / 2 d  > O. It follows 

from (2.4) that kc = 0 is the only critical value if co(kc, rc) ~t N. 

Thus, we can distinguish between different types of  instabilities. As long as ( r c d +  s ) / 2 d  > 0 the eigenvalue- 

curve, where Re(col ) is given as a function of k for fixed (r, s), has two maxima in kc = +~ / ( rcd  + s ) / 2 d  and one 

minimum in k = 0 (see Fig. 2(c). This can be seen as follows: for [k] >> 1, (2.4) implies, by taking only all the 

terms of  the highest order, that o) 2 + (1 + d)k2co + dk 4 ~ O. Thus co ~ - k  2 or co ~ - d k  2, therefore, for Ik[ >> 1, 

the real parts of the eigenvalues are negative. The first solution to become unstable, for this eigenvalue-curve, is the 

wave e ikcx, where kc = x/(rcd + s ) /2d .  

We now note that a co-dimension 2 bifurcation occurs, where s is the second bifurcation parameter, for (red + s ) /  

2d = 0: the curve has only one maximum in k = 0 for (red + s ) / 2 d  < 0. Here, the first solution to become unstable 

is the 'wave '  with wave number k = 0: e i°x. Thus, for fixed r = re and varying the second bifurcation parameter s 

we see that this bifurcation occurs at s = SeFK with rcd + SeFK = 0. For s > SeFK, the curve has two maxima and 

for s < SeFK the curve has one maximum (see Figs. 2(a)-(c)).  

Since we assume that the first bifurcation occurs at (kc, re) we have to set Recol (k, re) _< 0 and Reco2(k, rc) < 0 

for every k e R, this implies that col + o92 < 0. Combining this with the fact that (2.4) can be factorised as 

(co - cot)(co - co2) = 0)2 _ (col + co2)co + colco2 = 0, leads to s + rc - (1 + d)k  2 <_ 0 for every k c ~. From this it 

follows that 

s + r c < O .  
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Fig. 2. The real part of the eigenvalue-curves given as a function ofk for different choices of the pair (r, s). (a) on F1 where s is not close 
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Fig. 3. The (r, s)-plane for d < 1. The bifurcation curves F1,/"2 and F 3 are the thicker lines. 

We now have the two conditions under which the first bifurcation occurs: r + s < 0 and rd + s > 0. It depends 

on the magnitude of d in which region of  the (r, s)-plane these conditions hold. For d < 1, they hold in the second 

quadrant of  the (r, s)-plane (r < 0 and s > 0) and for d > 1 they hold in the fourth quadrant. From now on we 

choose d < 1, this does not influence the results. This choice fixes the signs of  r and s, namely r < 0 and s > 0. 

In Fig. 3, we sketch the second quadrant of  the (r, s)-plane with the bifurcation curves obtained for d < 1. There 

is a bifurcation c u r v e / ' G L  which consists of  three parts: F l , / ' 2 ,  /'3. The different eigenvalue-curves occur on these 

three parts. O n / ' !  the eigenvalue-curve has one maximum and on F2 it has two maxima. We will now determine 

the form of the eigenvalue-curve on F3. 
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If s + rc = 0, then Re ~ol (0, rc) = Re o)2(0, rc) = 0 and the eigenvalue-curve has three maxima,  in k = 0 and in 

k = ± k o  where Re ~Ol = 0 in all three maxima.  Therefore another co-d imens ion  2 bifurcat ion occurs at s = ScGL 

with ScGL Jr- rc = 0. Here the eigenvalue-curve transforms from a curve with two maxima,  through a curve with three 

maxima,  to a curve with one m a x i m u m  in k = 0 (see Figs. 2(d)-(f)).  To be able to sketch the eigenvalue-curves we 

also need to know where the eigenvalues are real and where they become complex.  Note that the eigenvalues are 

always real in a ne ighbourhood o f k  = kc 5 ~ 0 and for Ikl >> 1. Since the eigenvalue-curves are symmetr ic  in k, the 

first k-value for which they can become complex is for k = 0 (see (2.4)). Setting k = 0 in (2.4) and solving o9 from 

that equation gives 

O)1, 2 = I ( S  "{- r 4- ~/(s - r)  2 - 4). (2.6) 

Thus the eigenvalues become complex in k = 0 when (s - r)  2 - 4 = 0. This implies that the eigenvalues are 

complex in some interval of  k-values for s - 2 < r < s 4- 2. We define g as the value of s at which the neutral curve 

at r = rc becomes complex at k = 0. Since r < 0 and s > 0, the eigenvalues become complex for r = s - 2 at 

s = ~ = 2v/-d(1 + vcd). For s < g, all eigenvalues are real. Complex eigenvalues exist for s > g. 

Of  course we still have to determine rc. We can calculate re f rom (2.5) for the different choices of s. For s < SeFK 

and on the bifurcat ion curve/"1,  we have that kc = 0 and so we get that 

1 
r C ~ - - - ,  

s 

By substi tut ion of kc = +~/(rcd 4- s ) /2d  in (2.5), we can determine the critical r -va lue  re which belongs to the 

s-values on the bifurcat ion curve F2 (SeFK < s < ScGL). We obtain that 

s 2 ~ - -  
rc  - -  d 

where we chose the minus  sign because r < 0. Note that from this calculation it follows that Cl c2 has to be negative 

in system (1.4) .  This can be seen from Eq. (2 .5)  with general  cl and c2, instead o f c l  = 1 and c2 = - 1  

dkZc - ( r c d  + s)kc 2 + rcS - C1C2 = O. 

Substi tut ing kc 2 = ( r c d  + s ) /2d  leads to 

( r c d -  s)2 = --4dcl c2, 

from which can be seen that clc2 < 0 has to hold. Thus, if ClC2 > 0 the above described bifurcations do not occur. 

On the curve ~ we know that Re o91 (0, rc) = Re 092(0, re) = 0, thus we deduce from (2.6) that 

r c ~-~ - - S .  

Now, we can determine the above-defined SeFK and ScGL. It follows from rcd 4- SeFK = 0 that 

SeFK = V / ~ .  

From rc 4- ScGL = 0 we obtain that 

2,/a 
S c G  L - -  

1 4 - d "  
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3 .  T h e  m o d u l a t i o n  e q u a t i o n s  

So far we showed that when varying (r, s) along the bifurcation curve FGL, the eigenvalue curves (the real part of  

the eigenvalues) change smoothly from a curve with one maximum at k = 0 (on Fl ,  for s < SeFn) to a curve with 

two maxima at k = ±kc and a minimum at k = 0 (on F2, for SeF K < s < ScGL) to again a curve with one maximum 

at k = 0 (on F3), see Fig. 2. For these different cases, modulation equations can be derived by weakly nonlinear 

stability analysis. Since the eigenvalue-curve goes smoothly from one type to another, the derived equations are 

limits of  each other. First we derive the GL-equation on F2 for SeF K < s < ScG L. Then there are two transitions, they 

occur at s = SeFK and at s = ScG L. In this paper we will not study the transition at s = ScGL. Decreasing s so that 

it is close to SeFK leads to the eFK-equation as modulation equation. Decreasing s further to s << SeFn on/"1 gives 

the Fisher-Kolmogorov equation. For s close to ScG L a coupled system of  two GL-equations can be derived (this 

explains the index 'cGL' :  'coupled Ginzburg-Landau ' ) ;  and for s << ScGL on /'3 we again obtain a GL-equation. 

However, the coefficients here are complex. In this section we will derive all relevant modulation equations. 

For r < rc the real part of  the eigenvalue coj becomes positive for an interval of  k-values, which means that for 

these k-values the solution is unstable. The modulation equations to be derived in this section describe the behaviour 

of  'small  solutions'  for r < rc and r - rc << 1. We consider as nonlinear terms in (2.1) 

N1 (u ,  1)) = ~t 1 u 2 -~- ot2ul) q- or3 v2 - au 3, 

N2(u, v) =i l l  u2 + flzuv q-r3 v2 - by 3. 

(3.1) 

(3.2) 

This choice is not at all essential, we can take more (general) terms into account but then only the calculations 

become more extensive: new terms do not influence the derivation process, they only alter the coefficients of  the 

modulation equation. Studying the stability of (0, 0) is done by studying the eigenvalue problem (2.3). We define 

"A4c=( rc - - lkC2  s - 1  2 ) d k  " (3.3) 

Now we can derive the modulation equation(s) for different choices of s. 

Remark 3.1. General analytic nonlinear terms Ni (u, v) can be expanded into a power series in u and v. Expressions 

(3.1) and (3.2) can then be seen as the first four terms in these expansions. It is easy to check that only the quadratic 

and the cubic terms in Ni (u, v) are relevant in the derivation of the modulation equations. 

3.1. The GL-equation 

We start by setting SeF K < s < ScGL (and s not close to SeFK) along F2, then a standard, real GL-equation can be 

derived. Although the derivation is quite standard and straightforward we present it here in some detail so that it can 

serve as background for the subsequent sections. Here rc = s /d  - 2v/-d and kc = x/(rcd + s ) /2d  = ~/(s - x/-d)/d, 
therefore 

,) 
The eigenvalues of  this matrix .A//c are X l = 0 and )v 2 = - - ( 1  - d ) / ~  < 0 and the corresponding eigenvectors 

are 



V. Rottsch~fer, A. Doelman / Physica D 118 (1998) 261-292 271 

(+) Wl = r e s p .  11)2 ~ • 

We will see that a modulation equation appears as a consequence of  a certain solvability condition. Here, the 

solvability condition is given by the equation A,4cX = b. This equation can only be solved when b E Sp{w2 }. Thus, 

if  we write b = (~;) we find the solvability condition 

1 
bl ~/~1)2 ---- 0. (3.4) 

In the following sections, we will find that .Mc is, in highest order, always as given above and thus the solvability 

condition is also the same in all derivations. 

As is standard in the derivation of  the GL-equation, we take r close to rc: r = rc - vie e, where 0 < ~, << 1 and 

vl > 0. In the nonlinear stability analysis we model the perturbation of  the solution (0, 0) as a slow modulation of 

the wave with wave number k = kc = ~/(s - ~/-d)d, the 'most  unstable wave' :  

= ~ A(~, r ) e  lkcx + c,c. + hot, 
v 

here (j'#~) is the 'most  critical direction' ,  it is the eigenvector which belongs to the eigenvalue ~-1 = 0. The slow 

space and time variables ~ and r are scaled in a standard way, ~ = sx  and r = s2t (see [16] for a rigorous foundation 

of  these scalings). We will explain the scaling of  ~ a bit further. Classically, this scaling is related to the width of 

the interval of  k-values for which the solution (0, 0) is unstable at r = re - vie  2. We have to determine for which 

k the eigenvalue-curve of  the largest eigenvalue intersects the k-axis. Substituting co = 0 and r = rc - v ie  2 into 

(2.4) leads to 

dk  4 - (2s - 2, , /d - v l d s e ) k  e + - 1 - v i se  e = O. 

This equation has four solutions: k = +kc 4- ( e / 2 ) ~ / v / d v l / ( s  - v/d).  Therefore the width of the interval of  the 

unstable k-values is of O(s)  and we scale ~ = sx .  Note that for s ~ SeF K = V/"d ,  the term s - ,¢~ becomes small, 

which changes the width of  the interval of unstable k-values and thus the scaling of  ~ changes, see Section 3.2. The 

relevant scalings of  ~, r and the magnitude of  the perturbation of  solution (0 .0)  can also be deduced by using the 

significant degeneration method (see [ 14]). 

The nonlinear terms in (2.1) will generate harmonics of  the simple linear wave e ikcx . Thus the higher order terms 

in the expansion of the perturbation are constructed from a product of this most unstable wave with itself, 

8 2 (  X02 ) 
Y02 + " "  

( : )  = e i k c x ( 8 ( ~ l d ) A ( ~ , r ) + ~ 2 ( X l 2  g 3 (  XI3 

+ c2  cx( 2 (x 2 + . .  + c .c  
!~, Y22 ] 

Here the Xij, Yij are functions of ~ and r for every i, j E N. Substituting this expansion into (2.1) and gathering 

terms of  the form 8 aj e ik~b~x for a l ,  bL e N will lead to the GL-equation. The equations at the al  = 2-level can be 
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solved: the functions in expansion (3.5) can all be expressed in terms of  A, the unknown amplitude. The solvability 

condition for ix'3] at the al = 3, bl  = l-level, yields the GL-equation for A (see Appendix A for the details of the \ YI3 ,I 
derivation): 

4 v ~ d ( s  - v - d )  A h_ _ r i d  A + + 
a r  (1 - d~ -~ --~/~ za~ (1 d) a la l2 '  (3.6) 

where 

h = -[x/-d(2~l v/d + c~2) - (2fll ~ + fl2)]F 

- [v/d(~/-dot2 + 2~3) - (vrd/~2 + 2fi3)lG + 3(ad 2 - b), (3.7) 

d 
F 9(s - q'-d) 2 (c~(15s + 4v/-d) - 19fl), (3.8) 

1 
G -- 9(s - vFd) 2 (19dot ÷ fi(15s - 34v'-d)), (3.9) 

ot = doq + vfdot2 q-Or3, (3.10) 

fl = d~l  -{- w/"d/~2 -t- f13. (3.1 l) 

where ~l . . . . .  fi3 are introduced by the nonlinear terms (3.1) and (3.2). Note that h, F and G seem to blow up as 

s ~ SeFK ~--- ~ /d .  We refer to  [3] and the references given there for results on the validity of  (3.6). 

Eq. (3.6) can be brought into a standard-form by rescaling ~, r and A (introducing f" = cj r, g = c2~ and 

A = c3fi0. We can now choose the Cl, c2 and c3 so that, after omitting the tilde, the equation becomes 

Ar = A + A ~  + IAIA] 2, (3.12) 

where 1 ---- + 1. The sign of 1 depends on the sign of h. 

Note that there are three situations in which this scaling degenerates. First we note that the diffusion constant 

( 4 ~ ( s  - vFd))/(1 - d) in (3.6) disappears as s $ q~d, the study of this process is the main topic of this paper: 

it describes the transition of the GL-equation to the eFK-equation. The second bifurcation occurs as h = 0 (or 

Ihl << 1 ). In this case (3.6) is not the correct modulation equation: it should be replaced by the so-called degenerate 

GL-equation (see [9,17,30] for a valid result). This bifurcation will be encountered in Section 4.1. The third 
degeneration, d = 1, corresponds to a fundamental observation due to Turing [32]. 

3.2. The eFK2-equation 

We consider s near SeFK (on Fl or F2), i.e. we set s = SeF K q- 0"3, with 0 < 3 << 1. Thus, kc = 0 and 
rc = - 1 / s  = - l / x / d  + cr3/d - cr232/dv/-d + 0(33). Note that cr > 0 corresponds to Fig. 2(c): col(k, re) has 

three extremes that merge as ~r $ 0; (r < 0 is represented by Fig. 2(a). As above we choose r 0(32) close to rc: 

r = re - v232, where v2 > 0. Therefore, by substitution of  the expressions for re and kc into (3.3), it follows in 
highest order that M e  is the same as defined in Section 3.1 and the solvability condition is also as given there. Below 

we will introduce a number of scalings which are different from those used in the classical GL case. In Section 4 

we will analyse the transition from the classical GL case (see Section 3.1) to this eFK case; there, these scalings 
will also be explained in more detail. 

We model the perturbation of  the solution (0, 0) as a slow modulation of  the 'most unstable wave' with wave 

number k = kc = 0. However, here this 'wave'  e ik°x C) reduces to lC). This yields that in this case we cannot 
expand the perturbation as both a Fourier series and a Taylor series in 3. Thus, (3.5) has to be replaced by 
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v \ Y01 + h o t ,  (3.13) 

where (1"#~) is again the 'most critical' direction. Note that the unknown amplitude B has to be real now: all 

eigenvalues and eigenfunctions are real. The replacement of the complex amplitude A by a real amplitude B will 

(also) be discussed in Section 4. In standard nonlinear stability analysis, as in the derivation of  the GL-equation 

in Section 3.1, the perturbation of  the solution (0, 0) is taken to be O(8) i.e. p = 1. Using the same assumption 

in this case and substituting the expansion into the reaction-diffusion system (2.1), leads on the O(82)-level to an 

inconsistent system of equations: on the 32-level we obtain 

o = + + + 2, 0 = + - + 2, 

where c~ and fi are as defined in (3.10) and (3.11) in Section 3.1. This leads to 

= ~ B 2. (3.14) 
M c  - a  v l a  B - 

Applying the solvability condition gives 

u - = 0, (3.15) 

which yields, since ~ and/5 are arbitrary constants: B = 0, i.e. we need to consider smaller perturbations. Therefore, 

we are forced to choose p = 2 in this section. The variables ~B and rB are slow space and time variables, where the 

scaling of  ~B is standard: TB = 82t. The scaling ofs~B is not the same as in the GL case. It is related to the width of 

the interval of  the k-values for which the solution (0, 0) is unstable (the largest eigenvalue is positive for these k) at 

r = rc - v282 (as is also the case in the derivation of  the GL-equation). Therefore we have to determine for which 

k the eigenvalue-curve of the largest eigenvalue intersects the k-axis. Substituting oa = 0 and the expressions for r 

and s into (2.4) leads in highest order to 

dk  4 + 23elk 2 - v2~/d62 = O. 

This equation has two solutions: k = ±(V/cr 2 + v z d ~  - cr) /dl /Zv/8.  Therefore the width of  the interval of  the 

unstable k-values is of  order ~ and we scale Cn = ~/Sx. The higher order terms in the expansion of  the perturbation 

are modelled as 

\ YoJ + \ Yo2 ) + h o t .  (3.16) 

Here the Xoi, Yoi are real functions of  ~B and rB for every i 6 ~, i > 0. Substituting this expansion into (2.1) and 

sorting together the terms which have the same order of 3 will lead, by applying the solvability condition (3.4), to 

the eFK2-equation on the 84-level. On the 83-level we have 

Applying the solvability condition (3.4) leads to the trivial condition 

- ~  B - - B~8~B = 0. (3.18) 
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Hence, the inconsistency which appeared for choosing p = 1 in (3.13) is no longer there. Since det .Mc = 0, 

Eq. (3.17) does not have a unique solution, therefore we have to introduce a second amplitude function B1 which 

depends on ~8 and r s .  Then X01 and Y01 can be solved in terms of  B and Bl:  

(x0  (l Y01 = 0 + BI(~B, r s ) .  (3.19) 

The equation on the 34-1evel reads 

 c( 02)  x0, 
YO2 Y01 dYoI~8'CB 

where et and fi are as in Eqs. (3.10) and (3.11) in Section 3.1. Applying the solvability condition (3.4) here yields 

( d - 1 ) B r ~  + (v2d + a~d) B - c r  ( ~ d X O l  - Yo, ) 

- (  v/-dXol~e¢8 -dYoI~B~B) -- ( V/~et -- fl)B 2 = 0. (3.20) 

Substituting (3.19) gives 

1 d (v2dB - 2~/da B~8~8 - dv~B~8~uSBSB - (v/da - fl) B 2 ) .  (3.21) B r B -  1 -  

This equation can be brought into a standard-form by rescaling the r s ,  ~8 and B: 

B~ B = B + DB~B~B - B~e~8~8~8 - B 2, (3.22) 

where D = D(a ,  v2, d) = - 2 a / ( x / - ~ d  3/4 is the only parameter left. Note that the sign of D decides between 

an eigenvalue-curve with three critical points (D < 0 or a > 0) or one critical point (D > 0, a < 0). Besides 

the Turing degeneration at d = 1 [32] we also encounter again a 'nonlinear '  degeneration as v/-det - 13 = 0, see 

Sections 3.4 and 5.4. 

3.3. More modulation equations 

So far, we derived o n / ' 2  for SeFK < s < ScGL, the GL-equation and for s close to SeFK, the eFK2-equation. In 

this section we give the modulation equations which can be derived for other choices of  s. We will only state the 

equations here and will not derive or study them any further. 

We start on Fl with s not close to SeFK, then kc = 0 and a Fisher-Kolmogorov equation can be derived: 

(1 - -  s 2 ) B r  = v 2 s 2 B  - ( s  2 - d ) B ~  - (set - -  f l ) B  2. (3.23) 

Here et and fi are as defined in Section 3.1 and r = ezt and ~ = ex. The perturbation of  the solution (0, 0) is 

taken of  O(e2), as in the case of  the eFK-equation. Of course, there is a transition from this FK-equation to the 

eFK-equation by letting s --+ SeFK, but we will not study this transition here. 

There is a second branch of GL-bifurcations for r = - s  (on F3), see Fig. 3. Here the eigenvalue-curve has one 

maximum in kc = 0 and around this maximum the eigenvalues are complex. Therefore a complex GL-equation can 

be derived where the perturbation of  the solution is taken around the 'wave '  e ia)ct where O9c = Im ~o(0, rc): 

Cr = r3C q- d3C~ q- c3CICI 2. (3.24) 
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Here r3, d3 and c3 are complex-valued (see for instance [22] for the derivation of this equation in the Brusselator 

model and [28] for a validity result). One would expect here that the space variable ~ has to be chosen as a 'travelling' 

variable, ~ = ~(x + vt), where v = Re(l/i)(O~o/Ok)ltkc.~c), see [15]. However, since kc = 0, it follows that v = 0 

thus the scaling of ~ is as before. The two GL-bifurcation branches F2 and /"3 intersect at the co-dimension 2 

bifurcation point (rcGL, ScGL), see Fig. 3. Both 'instability mechanisms' (at k = kc and at k = 0) can interact here, 

thus the bifurcation is described by a system of coupled GL-equations: 

Ar = r l A  + d l A ~  +ClAIAIZ +c2AICI 2, Cr =r2C + d 2 C ~  +c3CIcIZ +c4CIAI 2. (3.25) 

Again the ~-variable is as before. By setting C = 0 we recover the real GL-equation described in Section 3.1 

around the critical wave e ikcx, kc = ~/(s - qrd)/d (thus rl, dl, cl ~ R); A = 0 yields the above-described complex 

GL-equation for C. We refer to [ 11 ] for more information (general derivation, behaviour of solutions, references) 

on coupled GL-equations. 

3.4. The eFK-equation with cubic terms 

Up to now we studied the reaction~liffusion system (2.1) with general nonlinear terms Nl and N2 as given in (3.1) 

and (3.2). As we showed in Section 3.2, this leads for s close to SeFK to an eFK-equation with quadratic nonlinear 

terms. We can also study the case when N1 and N2 do not contain quadratic terms but only cubic terms. We will 

show that in this case the behaviour of 'patterns' near (reFK, SeFK) is governed by an eFK-equation with cubic terms 

(denoted by eFK3). This observation is especially interesting, since the eFK-equation with cubic terms is studied 

extensively in literature (see [8,20,26] and the references given there). See also Section 5.4 for a discussion. Thus 

we consider in (2.1) nonlinear terms of the following form: 

Nl(U, v) = - a u  3, N2(u, v) = - b y  3, 

which follows from setting Ot i = f l i  = 0 for i = 1, 2, 3 in (3.1) and (3.2). We again set s = SeFK + ~r6, with kc, rc 

and r as defined in Section 3.2. We model the perturbation of  the solution (0, 0) as a slow modulation of  the wave 

with wave number k = kc = 0. We now note that the inconsistency which appears in Section 3.2 if we consider 

p = 1 does not appear: (3.15) is again 'trivial' since of = /~  = 0 here. Thus, we expand 

where B is a real amplitude function which depends on the slow space and time variables ~8 and rs ,  which were 

defined in Section 3.2. The scaling of r8 is standard: r8 = ~2t and since the eigenvalue-curve is still the same as in 

Section 3.2, the scaling of  the ~B is the same as in that section: ~8 = ~/~x. The higher order terms in the expansion 

are given as 

1 Y01 + Y02 + h o t ,  

where the Xoi, Yoi a r e  real functions of  ~8 and r8 for every i 6 N, i > 0. After substituting this expansion into 
(2.1) and solving the equations on the 32-level (as in Section 3.2), we find the eFK3-equation by the application of 

the solvability condition on the 83-level: 

2v/d~r d,c/-d (ad 2 - b) B3" _ v2d B - d) B~8~8 - - B ~ 8 ~ B ~ R  + (3.26) 
BrB (1 -- d) (1 (1 - d) (1 - d) 
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This equation can again be brought into standard form by rescaling the rs ,  ~R and B: 

BrR = B + DB~B~B - B~8~8~B~e + 1B 3. (3.27) 

Here 1 = i l  and D is as in Section 3.2, the sign of  I depends on the sign of  ad  2 - b. Note that in rescaling 

the eFK-equation with quadratic terms the sign of  the nonlinear term was irrelevant but now in the case of  the 

eFK3-equation, the sign of ad  2 - b is very important in reducing the equation to standard form: as in the GL case 

it is important for the existence of bounded solutions. 

4. The transition from the GL-equation to the eFK2-equation 

In Section 3.1 we described the nonlinear evolution of  small solutions of (2.1) by a GL-equation, since s > SeFK 

and Is --SeFK I = O( 1 ). We found in Section 3.2 that the evolution of  small solutions is described by the eFK2-equation 

when Is - SeFKI = 0(3) << 1. In this section we will study the transition between these two modulation equations. 

First we will study the GL-equation for is - SeFKI = 0(3)  << l: in this case one can still derive the GL-equation 
as long as r - r~ = - v l  e 2 << 0(82). At leading order this GL-equation is exactly the same as the one derived in 

Section 3.1, however, now the higher order derivatives A ~  and A ~  are of  order O(e/8),  respectively, O(e2/32), 

and thus much larger than in Section 3.1. Also, we will find that, the coefficient h of  the nonlinear term becomes 

positive. 

Thus, in the overlap region Is - SeFKI = 0(3)  << 1 both modulation equations, the eFK2-equation and the 

singularly perturbed GL-equation, describe the evolution of small solutions. However, these equations describe 

different processes, as we shall show in detail below. At this point this can be seen by noticing that the eFK2- 

equation governs the evolution of  0(82) solutions on the time scale r8 = 32t and the spatial scale ~8 = ~/~x (see 

Section 3.2), while we shall find in Section 4.1 that the singularly perturbed GL-equation governs O(e3) solutions 

on a O ( l / e  2) timescale and a O(~/~/e) spatial scale. Observe that these scalings merge as e ~ 8, but, we shall see 

that in this limit the derivation process leading to the singularly perturbed GL-equation loses its validity. However, 

we will show in Section 4.1 that in this limit, the GL-equation can be interpreted as an equation governing the 

evolution of  a special class of  spatially periodic solutions of  the eFK2-equation. This interpretation, for instance, 

enables us to understand the relation between the quadratic nonlinear term in the real eFK2-equation and the cubic 

nonlinear term in the complex  GL-equation. 

First we study the form of the eigenvalue-curve for s = SeFK +3,  see also Fig. 2(c). We find that the difference in the 

eigenvalue between the maxima and the minimum of the curve is of  O(82). This can be seen as follows: at r = rc = 

s / d  - 2 /x /d  we have that co(kc, rc) = 0 and co(0, rc) = ½(s + rc + x/(s - rc) 2 - 4). Substituting the expressions 

for r~ and s gives that co(0, rc) = 0(32) and thus the difference between co(kc, r) and co(0, r) is of order 82. 

4. 1. The singularly per turbed GL-equat ion 

Now we study the derivation of  the modulation equation for 3 >> e, this is quite similar to the derivation of  the 

GL-equation in Section 3.1. We set s as in Section 3.2 with ~ = 1, thus s = SeFR + 8. Here rc ---- - 1 / ~ / d  + 3/d ,  

k 2 = 8 /d  and we assume r to be close to rc: r = rc - vt e 2 with vl > 0. One of  the differences with the GL derivation 
in Section 3.1 is the order of  magnitude of  the perturbations of  the trivial solution (0, 0). Taking the perturbation of  

O(e) leads to an inconsistent system on the O(e2)-level, which appears in the same way as we showed in Section 3.2, 
therefore we must take the perturbation of  order eS: 

( u ) = e S (  l'~?d)A(sea, rA)eikC~ + c . c . + h o t .  (4.1) 
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Here rA and ~A are slow time and space variables respectively, with for rA, the standard scaling rA = 82t. The 

scaling of ~A is again related to the width of  the interval of the k-values at which the solution (0, 0) is unstable. 

Thus we have to determine for which k-values ~Ol = 0. Substituting o0 = 0 and the expressions for r and s into 

(2.4) leads in highest order to k 2 = (3/d)(1 4- (x/~d3/4/6)8) which gives four solutions: k = 4-kc 4- O(e/v/6).  

Therefore the width of  the interval of  unstable k-values is of O(e/v/~) and we scale ~a = (6/X/~)X. 

It is a priori not clear how to choose the magnitudes of the harmonics and the higher order terms of (4.1). For 
instance, the nonlinear interactions suggest that the e 2ikcx and the e °x mode should be 0(8232), while 

02 ( .~  83 ) 
Ox 2 (83Ae i~c-v) = e 8"A~A~4 q- 2iT~TA~A -- 3k~A e ik~v, 

which suggests that a higher order correction on the e ik~-" mode should become 0(823). However, it follows from [X()2~ (X22~ the computations in appendix A (see Eqs. (A.1) and (A.2)) that the tY0_~J and vectors in (3.5) do not remain 
\Y22 ] 

O(1)  as s ---- v ' d  + 3. Thus, the higher order terms of (4.1) should be modelled as: 

82 ( X02"1 
\ Y 0 2 ]  + ' ' '  

U ( ( l ~ )  (XI2 (X,3"~ (v) = eik'x 83 A + e 2 3 \ y 1 2 ) + 8 3 \ y 1 3 } j  (4.2) 

+ e2ikcx ( 8 2 ( X 2 2 ) )  
\ Y22 q- "'" q- C.C. 

Again, A, Xij, Yij are functions of ~A and rA for every i, j 6 ~]. Substituting this expansion into (2.1) and gathering 

terms of  the form 8 a~ 3a2e i&hlx for al,  a2, bl c [~ will lead to a modulation equation on the al = 3, a2 = 1, bl = l- 

level. The equations on the (al, a2)-level where al + a2 < 3 can be solved in terms of  A. The equation including 

higher order terms becomes 

9 8 8- 
(1 - d)Ar~ = vldA + 4vVdA~A~A + hAIAI 2 - --4idA¢A~a~a -- ~dx/dA~A~A~A~A + O(~), (4.3) 

8 

where the O(~.) terms are the usual higher order terms in the GL-equation (see for instance [9]). Note that the 

A~a~A~a~A-term should be included in the O(e) terms if 32 > 8. The expression for the coefficient h of  the non- 

linear term simplifies considerably due to the new scalings and the fact that s = SeFK + ~ (see (3.7)-(3.11 )): 

h = 3 8 , , / d ( v ~  - fl)2 q._ 0(3).  (4.4) 
9 

Thus, h is always positive near the eFK-bifurcation! In other words: even if h < 0 for s not close to SeFK, h will 

become positive if s decreases towards SeFK. This means that there must be a value of s, Snj, at which h changes 

sign. Near s,,/the GL-equation should be replaced by a degenerate GL-equation (see [9,17,30]) of  the form 

Ar = rA + A ~  -- cIAIAI 2 + c2AIAI 4 + i(c3lAl2A~ + c4AZA~). (4.5) 

This behaviour has a drastic effect on the patterns exhibited by (2.1): if s > Snl the GL-approximation predicts 

stable, stationary, periodic patterns of the form Re iK~ in (3.6). However, these solutions do not exist for h > 0. In 
Section 5 we will encounter this phenomenon numerically. In [9] the stability of  the stationary periodic patterns to 

(4.5) is studied. 
Note also that the cubic coefficients in the nonlinear terms of (2.1) do not have a leading order influence on h as 

Is - SeFK I << 1. Thus, this procedure degenerates if we only consider cubic (and higher order) terms in (2.1). This 
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is in agreement with the analysis of  Section 4: in this case the GL-equation limits on the eFK3-equation (and many 

scalings are different). In this paper we do not pay attention to the details of this transition: it is quite similar to, and 

even a bit less complex than, the transition from the GL-equation to the eFK2-equation. 

4.2. The limit 3 $ O(s) 

The transition case s = O(S) or 3 = O(s) can be obtained in two different ways: either one fixes r - rc, i.e. s, 

and decreases s (i.e. 3), or one fixes s - SeFK (3) and increases r - rc (s). The behaviour at s = 0(3) is independent 

of this. Here we consider 5 $ O(s). The best way to understand what happens to the GL-equation in this limit, 

is to interpret the GL ansatz and scalings in Fourier space. The Fourier transform of the classical decomposition 

(3.5) (with the scaling ~ = sx) consists of 'peaks' of  width O(s) around the points Nkc, N c 7/; the peaks around 

+kc are of  height O(1/s)  and the peaks around +2kc and 0 are O(1). In general, the peaks around Nkc are of  a 

O(8 INI-2) height (N ~ 0), see [18] for more details. The Fourier transform of the decomposition leading to the 

singularly perturbed GL-equation has a similar structure: there are peaks of height 1/s3 around k = ±kc and peaks 

around k = 0, +2kc of  height 1. All these peaks have a width of  O(e~'~), see Fig. 4. As 3 decreases we see that the 

width of the peaks increases, while the distance between the peaks, kc, decreases (since kc = O(x/~)). When 3 has 

become O(s) we see that we cannot distinguish between separate peaks: they are all overlapping (see Fig. 5). 

Thus, one cannot assume any longer a decomposition like (4.2). It must be replaced by the eFK decomposition 

(3.16), see again Fig. 5: the structure in Fourier space is now only one 'wide'  peak of  height 1/s 2 and width ~ .  

//  

.., s / / / i /  i 

? 

-2k~ -kc 

1 

L 
0 

\ 

I 

kc 
I 

2kc 

\ \  

\ \  
\ 

o(v ) 
Fig. 4. The GL-decomposition (the peaks) and the eFK-decomposition (the dotted curve) given in Fourier space. In the GL-decomposition 
the peaks around k = kc are of height 1/s6 and around k = 0, ±2kc of height 1. All these peaks are of width O(e/x/g).  The 
eFK-decomposition is one 'wide' peak of height 1/S 2 and width ,,/~. 
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Fig. 5. The GL-decomposition (the peaks) and the eFK-decomposition (the dotted curve) given in Fourier space in the limit 3 $ O(e). 
The peaks of the GL-decomposition start to overlap and become of height l/e 2, which is the same as the height of the 'wide' curve of 
the eFK-decomposition. All the peaks of the GL-decomposition together form the 'wide' curve of the eFK-decomposition. 

Note that one can also observe the evolution of  the GL ansatz (4.2) to the eFK ansatz (3.16) in (4.2) itself: as 

decreases to e, the leading order term becomes 

( u'] I ( ~ l d )  Z(~A'rz)ei(l/~/d)~B-~ ( ) ( X 2 2 )  e2i(l/~'/d)~B 1 X02 q_ q- . . . .  82B(~B, Z'B) 
V,I =82 Y02 Y22 

by definition (note that kcx = (6/vr-de)~a = (1 / v/-d)~8). Another way to see that the GL ansatz is not valid anymore 

is the fact that when 3 ~ 8 all the terms of  the form (oN/o~N)A (for every N) become O(1) in Eq. (4.3). 

We now want to study how the transition from the eFK2-equation (3.21 ) to the singularly perturbed GL-equation 

(4.3) takes place quantitatively. Note that this means that all the coefficients in the equations have to agree. Since 

r is differently defined in the derivations of  the singularly perturbed GL-equation and of the eFK2-equation, the 

coefficients cannot agree yet. We have taken in the derivations rGL = rccL -- v182 = --1/w/-d + 3/d - p182 and 

reFK = rceFK -- 1)232 = --l/~/r~ -l- ~/d - 3 2 / d ~  - v232 (when taking a = 1). Comparing these two expressions 

for r gives a relation between Vl and v2: 

1 82 
v2 - d~¢/- d + vl ~ .  (4.6) 

We need to compare the two expansions of the perturbation around the solution (0, 0) and equate (3.16) and (4.2). 

This leads to 

~2B(esB, rB)(~-ld)+hot=e6A(e~A, rA)(?)e ikcX+c.c .+hot ,  

where ~a = (8 / ~u/~) x ,  ~B = ~ / ~ X ,  72 a = ezt, r8 = ~2t and kc = v/~/d. Thus 

8 rA)ei~8/x/~ + 8 - B(~B, rB) = ~A(~A, ~A(~A, rz )e  - i~/x/~ q-hot. (4.7) 
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However, all the higher order terms cannot be neglected, as we will see below. Therefore, we write 

oo 
g "CA) e in~8/~,/d, B(~B, rB) = ~ Z I n ( ~ a ,  

tl=-oo 
(4.8) 

where 1 - n  = ~n since B is real (the l n ' s ,  n ~ 1, correspond to the ix,21 amplitude of the harmonics in (4.2)). We tY~2J 
know that 11 = A and that 11,~ I << 1 for n 7~ 1. Substituting this expression for B into the eFK2-equation (3.21), 
we find, after multiplying by g/8, the following set of equations for the !n"  

82 ( ( n 2 - - 1 )  2 82) 4in8 2 
~-(l  -- d ) l n r  A = • -~/_~ -'~ 1316 ~ llr n q- T ( n  - 1)ln~ A 

83 8- 
+2x/d(3n  2 _ 1) ~ I~tl~AS A -- 4ind ~3 I/ZnSA~A~A 

84 ~ ( V/ ~ Ol eC , 

l=--oo 

where we have already used (4.6). Now, we want to derive the equation for 11 (=  A): we should obtain the singularly 

perturbed GL-equation. Recall that I I ~  I << 1 for n ~ 1 which implies that the I , ,  for n 7~ + 1 still can be rescaled. 
For n = 0 we obtain, at leading order, 

= - -  
1 ~x) 

~ 1 0 - 2 ~ ( w / - d o e - f i )  Z ] 1 / ]  2. 
l=0 

This implies that we must rescale I 0  with the factor 8/6 (<< 1 when e << 6) to obtain a consistent system. Thus we 

introduce 10 = (e /a)~0.  This yields 

~0 = - 2 ~ ( v / - d ~  - fl)P!l [ 2. (4.9) 

Setting n = 2 gives, at leading order, 

= _ _  
o~ 

9 ~ ( , 4 , ~  
~ 1 2 - -  - - f l )  Z !112-1 ,  

I=-oo 

which gives us that 1//2 also must be scaled with e/a ,  therefore we introduce 12 = 6 " / ~ 2 ,  and obtain 

~ 2 = - x / d ( w / d o t - f l ) 1  2. 
9 

The equation for 11 reads: 

(4.10) 

8 8 2 
(1 -- d)lbA = P l d l l  + 4~JNll~A~A -- ~4id!I~A~A~A -- -~d%/-dII~A~A~A~A 

- -  2 ( ~ U  -- f l)(1211 + ~0gtl) + hot. 

Substituting expressions (4.9) and (4.10) for ~0 and ~2, finally gives exactly the singularly perturbed GL- 
equation (4.3) for l f .  

Thus in the region 0 < 8 << 6 << 1 one can derive the GL-equation from the eFK2-equation by using the relation 
(4.7). However, one should be careful here: inserting (4.7) violates the assumptions made in the derivation of the 
eFK2-equation (Section 3.2). There, we assume that B = O(1) and that it is a function of the spatial scale ~8 and 
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timescale rg.  This is clearly not the case in (4.7). Another way to see this is to look once again at Fig. 4: here we 

plotted both the singularly perturbed GL-peaks and the eFK-peaks for 0 < e << ~ << 1. These structures describe 

different phenomena. One cannot describe the GL behaviour using the eFK ansatz. Thus, the singularly perturbed 

GL-equation and the eFK2-equation do not coincide in the overlap region 0 < e << ~ << 1 (they coincide as 

= O(e) but then the GL-equation is no longer valid). However, the above derivation of  an equation for 7zj = A is 

still useful: it clearly shows, for instance, the subtle relation between the quadratic nonlinearity in the eFK2-equation 

and the cubic nonlinearity in the GL-equation. 

Remark4.1.  We can now compare the ~0 and 7)2, which are given above, with the ~Yo2J and (v_~]) appearing in 

the derivation of  the GL-equation, see Section 3.1 and Appendix A. Setting s = x/cd + a in Eq. (A. 1 ) gives, after 

rescaling A with a, for Y02 exactly the same equation as we obtained for f0 .  In the same way, after rescaling A 

with ~ in Eq. (A.2), we obtain for 1/22 the same equation as for ~)2. This rescaling of  A comes from the fact that the 

first order term of  both expansions of the perturbations (for the GL-equation in Section 3.1 and for the singularly 

perturbed GL-equation in Section 4.1 ) differ by a factor 3. 

4.3. Deriving the GL-equation within the eFK2-equation 

If  one studies the eFK2-equation on an unbounded domain, one can analyse the nonlinear stability of the trivial 

(i.e. - 0) solution by the 'GL approach'  of  Section 3.1. Later we shall show that we can derive the GL-equation 

within the eFK2-equation. Note that this has also been done rigorously in [5] for the SH (or eFK3)-equation. Here we 

present the asymptotic approach to relate it to the transition studied in Section 4.2. Thus we study the eFK2-equation 

(3.21) and write it as 

BrB = L (B)  + N(B) ,  

where 

1 dr2 - N ( B )  -- 
L - - l - d  ' 1 - d  " 

This system has a basic solution B = 0. The linearised stability of the solution is determined by setting 

B(~, r )  = ce rw(k'v2)+il~ + c.c. 

Substituting this into the linear part of  the equation gives 

1 
w(k, v2) = 1 - d (dr2 + 2x/-dak2 - dx/-dk4)" 

This gives the eigenvalue-curve. As long as co(k, v2) < 0 for every k, the solution B = 0 is stable and for 

co(k, v2) = 0, the solution becomes unstable. For cr < 0, the eigenvalue-curve has one maximum at k = 0, we will 

not study this. For cr > 0, the eigenvalue-curve has two maxima at k = +v/7-/d and one minimum at k = 0. For 

v2 < - a 2 / d x / ~  the eigenvalue is negative for all k, the solution B = 0 is stable, whereas for v2 = - a 2 / d x / - d  

the solution becomes unstable at k = -4-x/~/d. And so for v2 > - a 2 / d x / ~  there is a whole interval of k-values 

around k = +x/7-/d where the solution is unstable. Thus we can derive a classical modulation equation by the 

GL approach. Here the critical point is (kc, v2,~,) = (x/bTd, -cr2/dx/ 'd) .  We take v2 = - a Z / d x / d  + wli  2 where 

0 < bt << 1 and w > 0. The perturbation of the basic solution B = 0 is taken as a slow modulation of the most 

unstable wave eikcx: 

B(~', r )  = #A(r/ ,  v)e ikcx + c.c. + hot. (4.11) 
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where ~7 and v are slow space and time variables which are given by O -- #~ and v = / ~ 2 r  (the standard GL-scaling). 
Then we can derive on the/z3eik°x-level the following GL-equation 

38 4,-~ (4'-d~ S-/3) 2 AIAI2. 
(1 - d ) A r  = w A  + 4 v / - d ~ r A ~  + 9 rr 2 

Note that the Landau-constant is always positive! This equation is exactly the same as the leading order part of  

the singularly perturbed GL-equation, when we set c~ = 1, derived in Section 4.1. This is no surprise: the above 

analysis is in essence the same as that of  Section 4.2, compare (4.7) to (4.11 ). Note that/~ << 1 plays the role of E/3 

in Section 4.2. 

Thus, the leading order part of the singularly perturbed GL-equation can be considered as a GL-equation within 

the eFK2-equation. However, as we explained in Section 4.2 and Fig. 4 ,  this does not mean that the GL-equation 

can be replaced by the eFK2-equation. 

5. N u m e r i c a l  s i m u l a t i o n s  

In this section, we study numerically the dynamics of  the reaction-diffusion system (2.1). For the GL-equation 

it is proved theoretically that when the Landau-constant is negative there exist, for some interval of  wave numbers, 

stable, periodic solutions, see Appendix B. We will use the existence of these solutions of the GL-equation to look 

for (periodic) solutions near the eFK-bifurcation. 

First we will numerically check the existence of  the periodic solutions which are theoretically known to be 

solutions of the GL-equation. Then we will decrease s to study how the transition to the eFK2-equation influences 

the behaviour of these solutions. To be able to do numerical simulations we have to restrict x to a bounded interval. 

This interval has to be large enough to ensure that the boundaries do not influence the dynamics (too much). We 

refer to Section 5.4 for a discussion. We fixed the length of the interval on x c [0, 400]. This choice is 'justified' 

by a numerical check of the theoretical predictions of  the stability of  periodic solutions of the GL-equation. 

Most of the parameters in system (2.1) remain fixed during the simulations. We chose for most of  the simulations 
I d = ~ and oq ---- c~3 = /~l = 133 = 0, ~2 = 0.71,/32 = 0.5 and a = 1, b = 3. We also did simulations for other 

choices of  oq . . . . .  /33, a and b and found that the results of  the numerical simulations do not really depend on the 

choice of  these parameters (see also Section 5.4). The choice of d is so that d < 1 is satisfied (Section 2), and it 

gives us that SeFK = ½",/~ ~ 0.707 and ScGL = ~-v/2 ~ 0.943 (Section 2). With the above chosen coefficients the 

Landau-constant (3.7) remains negative for almost all s-values. For SeFK < s < 0.709 it is positive. We did change 

s and r and the initial conditions, we will explain the choice of initial data in more detail later on. 

We used a moving-grid code to integrate system (2.1) which is described in detail in [1 ], see also [10] for an 

application to reaction-diffusion systems. The space variable x in system (2.1) is scaled to .~ so that the numerical 

simulations take place on the ~-interval [0, 1 ]. We take homogeneous Neumann boundary-conditions: 

3u  _ Ou Ov ~ Ov _ 
= 0 ,  t)---- ff-~(~ = 1,t) = ~ ( x  = 0 ,  t) = ~(x----- 1,t)  = 0 .  

As it is known that the GL-equation has stable, stationary, periodic solutions, the initial conditions are also taken to 
be periodic with respect to x: 

u(2, 0) = v(2, 0) = 0.05 cos(pJrx). 

We chose the amplitude of  this initial condition to be of  O(e 2) (we set e 2 = 0.01) because near the eFK-bifurcation 

we find that the magnitude of  the solution is of  O(e2), see Sections 3.2 and 4.2. In some of the simulations we 
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fixed p to obtain a certain number of  periods in the interval [0, 1 ], in other simulations we changed p as to vary 

the number of periods in the interval. Throughout the simulations we have been looking for asymptotically stable 

solutions, we only found stable, stationary patterns. 

5.1. Checking the GL-equat ion 

We started the numerical simulations by checking the theoretical results which are known for the GL-equation, 

Thus we chose SeFK < s < ScGL along F2 (Fig. 3) to be in the interval of  s-values for which the GL-equation is 

derived. 

First we took as initial data 

u(Y;, O) = v(.~, O) = O.05cos(kcx) ,  

1 

where kc is the critical k-value ~/(s - v / d ) / d  (Section 2) and chose s such that the initial data satisfy the boundary 

conditions. It follows from GL-theory that this solution is stable (as long as the Landau-constant is negative). 

Therefore, we calculated for several SeFK < s < ScGL the corresponding kc and rc. Throughout the simulations we 

set r = re - ~2 where e 2 = 0.01. Then for every pair (r, s) we started with the initial data u(£, 0) = v(£, 0) = 

0.05 cos(kcx) and studied the evolution in time. We find that for 0.75 < s < 0.9 the initial function is stable, where 

the amplitude of  u decreases to 0.035 (and for v it still is 0.05); see Fig. 6(b) for the v-component of  the stable, 

periodic solutions for s = 0.82. 

For s > 0.9, since s comes closer to ScGL we find that the solutions are influenced by the dynamics of the coupled 

GL-system (3.25) which governs the behaviour for s close to ScGL( ~ 0.94). We see here that the amplitude of the 

stable solution is periodic (see Fig. 6(a)). For 0.71 _< s < 0.75, the number of maxima of  the stable solution is 

the same as the number of  maxima of the initial periodic solution. However, the stable stationary solutions are no 

longer periodic; they have a 'multi-bump' structure. In Fig. 6(c) the v-component of the stable solution is given for 

s = 0.72. 

Thus for s not too close to SeFK or to ScGL, the numerical results coincide with the theoretical results which are 

known for the GL-equation. For s close to SeFK or ScGL we find that the eFK2-equation resp. the coupled system of 

GL-equations influences the behaviour of the stable solution considerably. 

The predictions of  the GL-theory can also be checked by fixing s (and thus r) and changing the period of the 

initial data. Theoretically, we know that around k = kc there is a whole interval of k-values for which there are 

stable stationary periodic solutions cos(kx), see Appendix B. We fixed s = 0.8; r = - 1 . 2 4  and started with an 

initial periodic cosine-function which has an integer number of periods in the interval. We changed this number 

from 8 to 48 periods. From the simulations we see that periodic solutions which start with a number of  periods that 

is between 21 and 31 (including 21 and 31) are stable. Initial data which have more or tess periods in the interval 

are not stable and will go to solutions which have a number of periods in between 21 and 31. 

These results more or less coincide with the theoretical results. However, theoretically the interval of  number of 

periods where the solution is stable is slightly different. The number of periods has to lie (theoretically) between 
21.4 and 33.5 periods, see Appendix B. The observation that the interval of stable solutions differs from what could 

be expected by the theoretical predictions for the GL-equation might be explained by the influence of the singularly 
perturbed GL-equation. The interval of  numerically stable solutions is shifted to the left with respect to the interval 

of  theoretically stable solutions of the GL-equation. This is exactly what is shown for the singularly perturbed GL- 

equation, see Appendix B. We will not study this in detail because for s = 0.8 the singularly perturbed GL-equation 
can only be expected to have a very small influence on the solutions. 
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Fig. 6. The v-component of the stable solutions when starting with the initial data 0.05 cos(kcx) for (a) s = 0.94, (b) s = 0.82 and (c) 
s = 0.72. Here ot I = a3 =/31 =/~3 = 0, a2 = 0.71,/32 = 0.5, a = l and b = 3. 

5.2. Numerical simulations n e a r  (reF K, SeFK) 

So far, we showed numerical  s imulat ions for s in the region where we derived the GL-equat ion.  However, we 

already observed some 's t range '  behaviour  for s _< 0.74 when starting with initial data u(£,  0) = v(£, 0) = 

0.05 cos(kcx). This is ascribed to the influence of  the eFK2-equat ion.  Now, we will study this influence further. We 

will start with fixed initial  data and vary the pair (r, s) from ( - 0 . 9 6 ;  0.94) to ( -  1.48; 0.68) where we decrease s 

with steps of 0.1 (or sometimes larger steps) and take r = re(s) - e2. We performed these s imulat ions for initial 

data with 8, 10 and 12 periods. We found that when  taking 0.77 < s < 0.94, the initial data evolve towards a stable, 

sinusoidal periodic solution; for 0.69 < s < 0.76 the s imulat ions exhibit a non-per iodic  stable solution, for s even 

smaller  we find a constant  solution. The transi t ion from s -= 0.77 to s = 0.76 is quite drastic, see Figs. 7(a) and (b) 

(and Section 5.4). 

First we focus on 0.77 < s < 0.94. Here we observe stable periodic solutions, however, the number  of periods 

of  the stable solution is not  the same as in the initial data. We also see that the number  of  periods at the end of 

the s imulat ion depends on the number  of periods of  the initial function. Theoretically, we would expect that the 

end-period lies in an interval which is symmetr ic  around 2rr/kc, this is the period of the stable solution cos(kcx) 

where kc depends on s. We find that, except for s = 0 . 82 ,  the end-periods lie in the theoretical stable interval. For 
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Fig. 7. The v-component of the stable solutions for an initial condition that has eight periods in the interval. The figures are given for the 
following choices of s: (a) s = 0 .77 ;  (b)  s = 0 .75 ;  (c)  s = 0 .72 ;  (d)  s = 0 . 6 9  ( N  1 and  N 2 are as in Fig. 6). 

s = 0.82, the periodic stable solution must have, according to theory, from 26.8 to 33.7 periods. We find a stable 

function with 25 periods if we take an initial condition with 8 and 12 periods (taking an initial condition with 10 

periods, we find a stable function with 30 periods, this is in the interval of  theoretically stable solutions)-see also 

Section 5.4. This could be ascribed to the same phenomenon which shifted the theoretical interval of stable solutions 

which we found before for s = 0.8. 

Now, we will look at the behaviour of  the solutions for 0.69 < s < 0.76. The number of maxima of the stable 

solution remains the same as in the initial data, see Figs. 7-9 .  Again we see that the stable function depends on 

the number of periods of the initial function. Some of the simulations result in a periodic stable solution. However, 

these solutions are not a 'simple' sin- or cosine-like function as in the GL case, but so-called multi-bump solutions. 

When starting with 10 periods where s=0.69 (Fig. 8(b)) and with 12 periods where s = 0.69 and s =- 0.7, the 
periodic solutions have maxima which are sharp peaks and minima which are much smoother. For initial data with 

eight periods where s = 0.71 and s = 0.72 (Fig. 7(c)) and with 10 periods where s = 0.74, s = 0.75 and s = 0.76 

(Fig. 8(a)) the solutions still have sharp peaks as maxima. At the minima we see that a 'dip' appears. For the other 

initial data, the stable solutions are not periodic. However, we see repeating patterns similar to the ones we saw 

before. The maxima are always sharp peaks and the minima are either smoother or have a 'dip' (Figs. 7(b) and (d) 
and 9(a) and (b) and Section 5.4). All the stable solutions are symmetric in the middle of the x-interval. 
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5.3. Numerical simulations with cubic nonlinearities 

In Section 3.4 we derived an eFK-equation with cubic nonlinear terms, this followed by setting U l . . . . .  f13 equal 

to zero in the nonlinear terms N1 and N2 ((3.1) and (3.2)). Because the eFK3-equation is studied extensively in 

literature [26,8,20,7], we also did some numerical simulations in this case, where the eFK3-equation is expected to 

describe the behaviour of small solutions. We started with an initial function with six periods and decreased s from 

s = 0.77 to s = 0.67 where we take steps of size 0.01. Except for s ---- 0.68 and s = 0.67, the stable solutions 

are periodic, but, these solutions are not all 'simple'  sin- or cosine-like functions, once again multi-bump solutions 

occur. For s = 0.77 and s = 0.76 we do find a 'simple'  cosine-like function. In the transition to s = 0.75 the stable 

solution changes drastically, see Figs. 10(a) and (b). For 0.71 < s < 0.75 the solutions have both at the maxima and 

at the minima a 'dip' ,  see Fig. 10(b). For s = 0.7 and s = 0.69, this dip vanishes at the maxima and still remains 

at the minima (see Fig. 10(c)). Note that this solution is not symmetric in the x-axis. 
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Fig. 10. The v-component of the stable solutions with an initial condition that has six periods in the interval. Here ~1 = 0~2 = 0 t 3  = f l l  = 

f12 = f13 = 0, a = 1 and b = 3: the dynamics are described by the eFK3-equation. The figures are given for the following choices of s: 
(a) s = 0.76; (b) s = 0.75; (c) s = 0.7; (d) s = 0.67. 

We also performed numerical simulations for other initial data. Similar behaviour as described above is found. 

We fixed s = 0.75 changing the period of the initial condition gives interesting stable solutions when starting with 4 

and 8 periods, see Figs. 1 (a) and (b). However, when starting with 12 or more periods, nearly all the exotic behaviour 

has vanished and the stable solutions become periodic cosine-functions. 

5.4. Interpretation 

At the beginning of  Section 5 we remarked that the outcome of the simulations did not really depend on the 

choices of  N] (u, v) and N2(u, v). We for instance chose oq . . . . .  I33, a,  b such that the sign of the quadratic term in 

the eFK2-equation changed (with respect to the standard choice of  Figs. 7-9).  This yields the expected outcome: 

we found that the observed multi-bump patterns are in essence the same, except for the fact that the v-components 

of the stable patterns are now reflected in the x-axis.  However, in choosing Nl (u, v) and N2(u, v) it is crucial that 

v ' d a  - / 3  (see (3.21) and (4.4)) is small. If that is not the case then the simulations follow the predictions of the 

asymptotic theory (see Section 4.1): the Landau coefficient does not change sign near (reFK, SeFK), thus, there are 

no bounded small solutions between (rnt, Sni) and (reFK, SeFK) for r near and below rc(S). 



288 

1 5  

1 

O.S 

m o 

- 0 . 5  

- 1  

a. 
- 1 5  i 

/2 

V. Rottsch~fer, A. Doelman/Physica 

12 

1.5 

1 

0 5  

co 0 

~I -o.5i 
- 1  

b. 

D 118 (1998) 261-292 

A 

20 40 60 80 100 20 40 60 80 100 
X X 

Fig. 11. (a) The stable solution for the eFK3-equation (3.27) with an initial condition that has four periods in the interval, here we chose 
/ = - 1, D = -2. (b) The stable solution for the 'eFK2+3' - Eq. (5.1) with an initial condition that has four periods in the interval, here 
D = -2. k = 0.5 andl = -1. 

A priori, one might guess that the fact that x/dot - fl is small will not influence the asymptotic analysis too much. 

However if 4"dot - fl is 'numerically' small, then it is not clear whether one can neglect the asymptotic higher order 

terms of  the eFK2-equation (3.21) of 0(8).  On the contrary, it can be expected that at least some of these terms 

cannot be neglected. Of course, this problem can be circumvented by only considering cubic nonlinearities NI and 

N2, then ~/-dot - / 3  = 0 (see (3.10) and (3.11)). Here the above problem does not occur: the asymptotic dynamics 

are described by the eFK3-equation (see Section 3.4). In Fig. 1 l(a) we show a plot of  the outcome of  a numerical 

simulation of  the eFK3-equation. Here the coefficients and initial conditions are comparable to the choices we made 

when performing the numerical simulations on (2.1) that produced the solution given in Fig. l(a). We know by 

Section 3.4 that the behaviour of  these solutions should be described asymptotically by the eFK3-equation. There is 

a striking resemblance between Figs. 11 (a) and 1 (a) (at least qualitatively). This strongly suggests that the attractors 

of the eFK3-equation should also be 'approximations' of the attractors of the full system (1.4) near (reFK, SeFR) (for 

cubic N] and N2). Of course, we are still far away from a mathematical proof of  such a statement. 

A full asymptotic analysis of  the more 'generic' case of  quadratic nonlinearities is the subject of  future research 

(see [12]). The analysis will become much more involved: x,/-dot - fl should be considered as a third small quantity. 

This yields that the 'nonlinear' degenerate GL bifurcation described in Section 4.1 [17,9,30] occurs asymptotically 

close to the eFK bifurcation point. Thus, the analysis of this paper should be combined with the approach of  

[17,9]. As a result, one expects that the dynamics near (reFK, SeFK) are described by a combination of the eFK2, 

the eFK3 and the degenerate GL-equation (4.5). This is also supported by a numerical simulation of the 'eFK2+3'  

equation: 

Bt = B + D B x x  - Bxx~_~ + k B  2 + l B  3. (5.1) 

We again consider the situation (and initial conditions) similar to that described by the asymptotic eFK2-equations 

of this section. Then, we find that there are no bounded solutions for ! = 0 (and D < 0). Note that this agrees 

with the above: this is the case that VFdot --/3 is not small. Thus, the existence of  a (negative, possibly small) cubic 
term is of crucial importance. In Fig. 1 l(b) we show an attractor of  (5.1) for k = 0.5, l = - 1  and D = - 2 .  At 
this point it is not clear whether this is a pattern that can also be found in the simulations of  (2.1): it is certainly 

not exactly like those shown in Figs. 7-9. A full analysis will yield all relevant nonlinear terms of the 'degenerate' 
eFK-equation. Indeed, it is found in [12] that 'Kuramoto-Sivashinsky terms' as (Bx) 2 will appear: the behaviour 
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of small solutions in this degenerate case is (at leading order) described by 

Bt = B + DBxx  - Bx.v,~x + k l B  2 + k2BBxx + k3(Bx) 2 + k4B 3, 

where kl,2,3,4, D and the scalings of B, x and t are determined by the parameters of (2.1). 
Another interesting phenomenon that we so far did not discuss is the sharp transition between the 'regular'  GL 

patterns and the multi-bump patterns: compare for instance Figs. 7(a) and (b), here the only difference is a 0.02 
change in s (or Fig. 10(a) to Fig. 10(b): As = 0.01). This transition is - at least numerically - closely related 

to the process by which an unstable periodic pattern of  the (real) GL-equation evolves towards a stable periodic 
pattern. This process has been described by Kramer and Zimmerman in [21 ], but that description does not seem to be 

accurate enough to understand it completely - at least not in the context of  this paper (note that the transition occurs 
in a region where the GL-equation should be replaced by the singularly perturbed GL-equation (4.3)). Initially there 

is no significant difference in the numerical simulations leading to Figs. 7(a) and 7(b): both unstable cosines of 

the initial conditions form 'dips'  either at the maxima or the minima, and start to look like a multi-bump pattern. 

However, in the simulation leading to Fig. 7(a) these 'dips'  grow until a sinusoidal pattern appears. In the simulation 

leading to Fig. 7(b) the "dips' stop to grow at a certain level and the stable multi-bump pattern is formed. The 

same mechanism seems to be responsible for all multi-bump patterns observed in this paper. Thus, a more detailed 

understanding of the process by which the GL-equation brings a periodic pattern from outside the Eckhaus band 
into this band of stable solutions would shed more light on the creation of stable multi-bump solutions (and vice 

versa). 
Finally, we remark that changing the length of the x-interval has a very subtle influence on the numerical 

simulations of this process and thus on the type of the observed asymptotically stable multi-bump patterns: the 

'dips'  appear 'suddenly'  at different places, resulting either in a periodic GL pattern with an unexpected number of  

periods, or a structurally different multi-bump pattern. 
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Appendix A 

Here we give a detailed derivation of the GL-equation. First we express the functions in expansion (3.5) in terms 

of A by solving the equations at the al = 2-level. Fora l  = 2, bl = 0, we get 

sYo2 - X02 + 231AI 2 = 0, rcX02 q- Y02 q- 2otIAI 2 = O, 

where 

= da l  + w/-dot2 q- if3, /~ = d¢h + ,/-d¢~2 + ~3. 

From this system we can solve X02 and Y02: 

( X o 2 )  _ 2d,A,  2 ( sc~ - [3 

I102  ( s - 7 ~ - ) 2  \oe + f l r c / "  
(A.1) 
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On the al = bl = 2-level we have: 

rcX22 q- Y22 - 4k2X22 + otA2 : 0, 

Solving X22 and Y22 from this system: 

X22 ] _ dA2 

Y22 ,] 9(s - w/d) 2 

Fora l  = 2 ,  bl = l w e f i n d  

v. Rottschdfer, A. Doelman / Physica D 118 (1998) 261-292 

sY22 - X22 - 4k2dY22 + flA 2 = O. 

(3s - 4,fd)~ + ¢~ 

+ 
(A.2) 

/ Mc \ r12 ] 

This equation automatically satisfies the solvability condition (3.4): 

where A2 is a second higher order amplitude which depends on ~a and r. Finally, on the al = 3, bl = l-level, the 

modulation equation is derived from 

( X 1 3 ~ :  f )  - F V l o ~ A  _ (X12~A 

{ 2~1 ~¢/-d(x02 + x22) + ~2(~/d(Y02 + Y22) + x02 + x22) + 2ot3 (Y02 + Y22) AIAI 2 
/ \ 2ill V~(X02 q- X22) Jr- flZ(q/d(Y02 + Y22) q- x02 q- x22) ~- 2f13(Y02 -+- Y22) / J 

+ 3 ( ad~/-d) AlAI 2, (1.4) 

where 

(xo  ( o2 
Y02) =lAI2\y02)  and (Y22 \ Y 2 2 / "  

Setting F = x02 + x22 and G -- Y02 + Y22 and applying the solvability condition (3.4) leads to 

(d - 1)At + vldA - 2ikc(V'-dX12~A - dYl2~A) + ((2ill ~ + /32 -- 2otld -- x/~ot2) F 

+(V~fl2  + 2fl3 -- dc~2 - 2x/d~3)G + 3(ad 2 - b))AIAI 2 = O. 

which yields Eqs. (3.6)-(3.1 1). 

Appendix B 

Here we briefly describe results on the stability of periodic solutions of  the GL-equation. It is known that for a 
general GL-equation 

AT : RA + bA~ + IAIA[ 2 (B.I)  
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there exist periodic solutions of  the form 

bk 2 - R 
A = 4-pe ik~ where p2 _ _ _  

l 

These periodic solutions are stable as long as k 2 < R / 3 b  (see [13]). This gives us the stable periodic solutions of  

the GL-equation (3.6) where R, b and I can be expressed in terms of  d, s and h (we set Vl = 1): 

d 4x,/-d(s - x/~) h 
R - -  b - -  1 =  

1 - d '  1 - d  I - d "  

Thus, for k 2 < 1/(12(s - 8 ) )  the periodic solutions A = -t-pe ik~ with p2 = (4v'-d(s - x/-d)k 2 - d ) / h  of the 

GL-equation (3.6) are stable. Now we want to find stable periodic solutions of  the reaction-diffusion system (2.1). 

Therefore we use the expansion 

( : ) - - - e (  l ~ ) ( A e i k c X + A e - i ~ c X ) + h o t ,  

where k2c = (s - x / ~ ) / d  (see Section 3.1). Substituting the expression which we found for A, gives for v (observe 

that u = x / d r  at leading order) 

v = 2ep cos((ke + kc)x), 

where we used the fact that ~ = ex.  This solution is stable as long as k 2 < 1/(12(s - v/d)) .  Thus, fixing d and s 

(which are the only parameters left in this problem), the family of  stable periodic solutions can be calculated. 

For example, setting d = 0.5 and s = 0.8, as we do in the simulations in Section 5.1, we obtain kc = 0.431 and 

stability for k 2 < 0.897. Thus the solutions a cos(rex) are stable when 0.336 _< m _< 0.526, where a = 2ep (here 

we used the fact that in the numerical simulations e = 0. l).  This coincides with a cosine-function which has from 

21.4 to 33.5 periods in the interval [0, 400]. 

For the singularly perturbed GL-equation stability of  periodic solutions can also be given. We will only state the 

results here, the calculations go along the same line as for the classical GL-equation. We can rescale the singularly 

perturbed GL-equation (4.3), by rescaling r, s e and A, to the following equation: 

Ar = A + Ae~ - 2 i b A ~  - b 2 A ~  - 1AIA[ 2, (B.2) 

w h e r e / =  4-1 and0 < b << 1 .Then the reex i s tpe r iod icso lu t ionsof the fo rmA = Re i~  where R e = l - k e ( b k + l )  2. 

These solutions are stable f o r - ~ - b  - ~3 < k < - l b  + 1 / C 3  (for the non-singular GL-equation the solutions are 

stable for k 2 < ½). Thus, the interval of k-values for which the solution Re ik~ is stable has shifted to the left. 
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