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1. Introduction.

A local field is a complete field with respect to a discrete valuation. It is usually assumed

in the theory of Galois extensions of local fields that the residue class field extension is

separable, which holds for completions of number fields and function fields with a perfect

field of constants (see e.g. [7, ch. IV]). We refer to this case as the classical case. There are

many examples of imperfect residue class fields though, for instance the residue field of the

local ring of a prime divisor on an algebraic surface in non-zero characteristic. This note

is concerned with Galois extensions of local fields with an inseparable residue class field

extension. As indicated in Zariski-Samuel [8], this leads to considering two intertwined

filtrations of the Galois group with ramification groups. We will introduce this double

filtration in section 2.

For the classical case, some basic results on the location of jumps in the sequence of

ramification groups can be found in Serre [7, ch. IV, §3]. For instance, it is shown there

that the jumps are all congruent modulo the residue characteristic. The goal of this note

is to generalize these elementary statements in terms of the double filtration. See Fontaine

[4] for an improvement for the case of a perfect residue field.

Deeper results like Hasse-Arf’s theorem (see [7]) are even impossible to formulate

for inseparable residue field extensions, because there is no satisfactory definition of an

“upper numbering” in this case (see [3] and [5]). The most advanced result for local fields

with imperfect residue class fields is probably Kato’s local class field theory in [6] for “n-

dimensional local fields” F , in which a canonical homomorphism, the norm residue map,
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from a certain Milnor K-group to Gal(F ab/F ) is constructed. Hyodo defines ramification

groups in the upper numbering by looking at a filtration of this K-group (see [5]), but

results on their relation to the usual ramification groups in lower numbering seem to be

lacking.

2. Ramification groups.

For a local field K, we denote the valuation ring by AK , its maximal ideal by pK and its

residue class field by K. Let K ⊂ L be a finite Galois extension of local fields with group

G. Assume that char K = p > 0 and let f = fsepfinsep be the degree of L over K, where

fsep is the degree of the separable part. Let e = etameewild be the ramification index of L

over K, where etame is the tame ramification index (i.e., the p-prime part of e).

2.1 Definition. For n, i ∈ Z≥0 the (n, i)-ramification group Gn,i of L over K is the

subgroup of G = Gal(L/K) consisting of those K-automorphisms of L that induce the

identity on pi
L/pn+i

L , i.e. Gn,i = {σ ∈ G : ∀x ∈ pi
L : x − σ(x) ∈ p

n+i
L }.

Note that Gn,i is a normal subgroup of G, as it is the kernel of the homomorphism G →

Aut(pi
L/pn+i

L ). For n ≥ 0 we will use the notation Gn = Gn+1,0 and Hn = Gn,1, so that

the usual ramification groups in the classical case, as in Serre [7], are the Gn. We have

H0 = G, and Gn ⊂ Hn.

The inertia group of L over K is G0. In other words, the field of invariants T = LG0

is the maximal subfield of L that is unramified over K, so T is the separable closure

of K in L, and G/G0
∼= Gal(T/K), which has order fsep. The tame ramification group,

corresponding to the maximal tamely ramified subfield of L, is H1∩G0 (see e.g. [2]), which

is just H1 by the next proposition. The group G0/H1 is cyclic, as it maps injectively to

Aut
L
(pL/p2

L) ∼= L
∗
, and its order is etame. Finally, H1 is a p-group of order ewildfinsep.

For n, i ∈ Z≥0 we define Bn
i = pi

L/pi+n
L , so that Bn =

⊕

i≥0 Bn
i becomes a graded

AK-algebra with the obvious multiplication map. The action of G on each Bn
i induces

an AK-algebra action on Bn. Note that Bn is isomorphic to the tensor algebra of the

Bn
0 -module Bn

1 , and that the isomorphism is canonical (in particular, it preserves the

G-action). An element σ ∈ G lies in Gn,i if and only it acts trivially on Bn
i .

2.2 Proposition. For all n ≥ 1 and i ≥ 0 we have Hn ⊂ Gn,i ⊂ Gn−1.

Proof. The induced action of an element σ ∈ Gn,i on the ring Bn
0 is compatible with the

trivial action of σ on the Bn
0 -module Bn

i . As Bn
i is a faithful Bn

0 -module it follows that σ

operates trivially on Bn
0 , so σ ∈ Gn−1, which proves the inclusion on the right.

Now let σ ∈ Hn, then we see that σ ∈ Gn−1, and σ operates trivially on Bn
0 as well

as on Bn
1 . Therefore, σ acts trivially on the tensor algebra Bn, and in particular on the

homogeneous part of degree i, so σ ∈ Gn,i. This proves the other inclusion.
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2.3 Proposition. If n > 1 in the proposition above then we have equality on the left if

pi and on the right if p | i. In the case n = 1, the quotient group G1,i/H1 is the i-torsion

of G0/H1, which is cyclic of order gcd(etame, i).

Proof. Let σ ∈ Gn−1, so that σ operates trivially on Bn
0 . The Bn

0 -module Bn
1 is free

of rank 1, so the Bn
0 -automorphism of Bn

1 induced by σ is multiplication by a unit u of

Bn
0 . Consequently, σ induces multiplication by ui on the i-th tensor power Bn

i of the

Bn
0 -module Bn

1 , and it follows that σ ∈ Gn,i ⇔ ui = 1 ⇔ σi ∈ Hn. In particular G1,i/H1

is the kernel of multiplication by i on the cyclic group G0/H1.

Now suppose that n > 1. As σ acts trivially on Bn−1
1 ⊂ Bn

0 , we must have u ∈

1 + p
n−1
L /pn

L ⊂ Bn
0 , so that up = 1. It follows that we have σ ∈ Gn,i if and only if p | i or

u = 1, and the first statement of the proposition follows at once.

We thus have a filtration of G as in Zariski-Samuel [8, ch. V, §10, theorem 25]:

G = H0 ⊃ G0 ⊃ H1 ⊃ G1 ⊃ H2 ⊃ G2 ⊃ · · ·

and every ramification group Gn,i with n > 1 occurs in this sequence, in the sense that it

equals Gn−1 or Hn.

In the classical case (finsep = 1) we have Hn = Gn for n ≥ 1, so we do not have a

strict refinement of the usual chain of ramification groups. This can be shown as follows.

Let T = LG0 be the inertia field. Then we have AL = AT + pL as T = L. If σ ∈ Hn

with n ≥ 1, then σ operates trivially on pL/pn+1
L and on AT (as Hn ⊂ G0), so it must act

trivially on AL/pn+1
L which shows that σ ∈ Gn.

If ewild = 1, then we have Gn = Hn+1 for n ≥ 1, because multiplication by a prime

element of the tame ramification field is an isomorphism of Bn
0 to Bn

1 , that preserves the

action of H1.

We now derive some simple properties of the ramification groups by embedding the

quotient groups Gn/Gn+m and Hn/Hn+m in groups of homomorphisms for m ≤ n.

2.4 Proposition. Let n,m ∈ Z with 0 ≤ m ≤ n. The map φ : Gn → HomAK
(AL, pn+1

L )

defined by φ(σ)(x) = σx − x induces an injective homomorphism of groups

Gn/Gn+mHomAK
(Bm+1

0 , Bm
n+1).

Proof. As Gn ⊂ Gn,m+1, the image of p
m+1
L under φ(σ) is contained in p

n+m+1
L for

all σ ∈ Gn, so we obtain a mapping Gn → HomAK
(Bm+1

0 , Bm
n+1). In order to show

that this is a homomorphism of groups, note that for σ, τ ∈ Gn and x ∈ AL we have

φ(στ)(x) − φ(σ)(x) − φ(τ)(x) = φ(σ)(φ(τ)(x)) ∈ p
2n+1
L , because φ(τ)(x) ∈ p

n+1
L and

σ ∈ Gn ⊂ Gn,n+1. Finally, the kernel of this homomorphism is clearly Gn+m.
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Analogously, we have a canonical injection of groups Hn/Hn+mHomAK
(Bm

1 , Bm
n+1). It

follows that the groups Gn/G2n and Hn/H2n are abelian, which is also shown in [8].

Furthermore, the groups Gn/Gn+1 and Hn/Hn+1 are annihilated by p for all n ≥ 1, and

if char K = p, then the same holds for Gn/G2n and Hn/H2n.

2.5 Proposition. For all n,m ≥ 0 we have [Gn, Gm] ⊂ Gn+m and [Hn, Hm] ⊂ Hn+m.

Proof. We may assume that m ≤ n. Recall that G acts on the set of homomorphisms f

from a G-module M to a G-module N by (σf)(x) = σ(f(σ−1x)) for x ∈ M . Letting G

act on Gn/Gn+m by conjugation, it is easy to check that the embedding in 2.4 preserves

the action of G. But as Gm acts trivially on Bm+1
0 and on Bm

n+1, it follows that Gm acts

trivially on Gn/Gn+m, so [Gn, Gm] ⊂ Gn+m. The second statement can be deduced in the

same way.

3. Derivations and commutators.

Let m and n be non-negative integers with m ≤ n. The image of Gn/Gn+m under the

embedding in proposition 2.4 lies in the subgroup DerAK
(Bm+1

0 , Bm
n+1) of AK-derivations

of Bm+1
0 to Bm

n+1. This follows from the fact that for x, y ∈ AL and σ ∈ Gn we have

σ(xy) − xy = x(σy − y) + y(σx − x) + (σy − y)(σx − x),

and the last term on the right hand side lies in p
2n+2
L ⊂ p

n+m+1
L .

The following proposition shows that the image of Hn/Hn+m in HomAK
(Bm

1 , Bm
n+1)

is contained in a subgroup that can be described as a group of graded derivations. If B

is a graded algebra over a ring A, the A-module Dern
A(B) of graded derivations of degree

n from B to B consists of those graded A-endomorphisms d of degree n of B for which

d(xy) = xd(y) + yd(x) for all x, y ∈ B.

3.1 Proposition. For all n,m ∈ Z with 1 ≤ m ≤ n we have a canonical embedding

φn : Hn/Hn+mDern
AK

(Bm)

given by φn(σ)(x) = σx − x mod p
i+n+m
L for σ ∈ Hn/Hn+m with representative σ ∈ Hn,

and x ∈ Bm
i with representative x ∈ pi

L.

The straightforward proof is left to the reader. We may view Dern
AK

(Bm) as a subgroup

of HomAK
(Bm

1 , Bm
n+1) as it is easy to check that the restriction map from the first to the

second is injective. Furthermore, an AK-homomorphism d1 : Bm
1 → Bm

n+1 lies in its image

if and only if there exists a d0 ∈ DerAK
(Bm

0 , Bm
n ) such that ∀x ∈ Bm

0 ∀y ∈ Bm
1 : d1(xy) =

d0(x)y + xd1(y) (cf. Bourbaki [1, ch. III, §10, proposition 14]).

The direct sum
⊕

i≥0 Deri
AK

(Bm) has a structure of a graded Lie-algebra over AK ,

with Lie-brackets [·, ·] defined by [d1, d2] = d1 ◦ d2 − d2 ◦ d1. From 2.5 we know that we
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have a commutator mapping Ha × Hb → Ha+b defined by (σ, τ) 7→ [σ, τ ] = στσ−1τ−1.

These two bracket operations are compatible in the sense of the following theorem.

3.2 Theorem. If m ≥ 0 and a, b ≥ m, then the commutator map induces a Z-bilinear

map Ha/Ha+m × Hb/Hb+m → Ha+b/Ha+b+m, and the following diagram commutes:

Ha/Ha+m × Hb/Hb+m

[·,·]
−→ Ha+b/Ha+b+m





y

φa×φb





y

φa+b

Dera
AK

(Bm) × Derb
AK

(Bm)
[·,·]
−→ Dera+b

AK
(Bm)

Proof. Let x ∈ Bm
i and let x be a representative of x in pi

L. For σ ∈ Ha and τ ∈ Hb we

have φa(σ)(φb(τ)(x)) = x− τx− σx + στx mod p
i+m+a+b
L . Subtracting the same equality

with σ and τ interchanged gives

[φa(σ), φb(τ)](x) = στx − τσx mod p
i+m+a+b
L = φa+b([σ, τ ])(τσx) = φa+b([σ, τ ])(x),

as both σ and τ operate trivially on Bm. The bottom horizontal map in the diagram

is AK-bilinear and the vertical maps are injective. It now follows immediately that the

diagram is commutative and that the top horizontal map is well-defined and Z-bilinear

(which can also be shown by suitable identities with commutators).

4. Jumps.

In this section we apply the ideas of the previous section to the case m = 1, in order

to get results on where the jumps in the double filtration can occur. Consider the map

φn : Hn/Hn+1 → Dern

K
(B1). The preimage of the set Dern

L
(B1) of those derivations that

are zero on B1
0 = L is clearly Gn/Hn+1. Such a derivation must be multiplication by some

x ∈ B1
n in degree 1, and then it is easy to deduce that it is multiplication by ix in degree

i. In other words, we have an isomorphism α : B1
n

∼
−→Dern

L
(B1) defined by α(x)(y) = ixy

for x ∈ B1
n and y ∈ B1

i . We thus get a canonical map θn : Gn/Hn+1 → B1
n that can be

given explicitly by σ 7→ σπ−π
π

mod p
n+1
L , where π is any prime element of L. This can be

summarized in the following commutative diagram in which the rows are exact and the

vertical maps are injections.

0 −→ Gn/Hn+1 −→ Hn/Hn+1 −→ Hn/Gn −→ 0




y

θn





y

φn





y

κn

0 −→ B1
n

α
−→ Dern

K
(B1)

res
−→ Der

K
(L,B1

n) −→ 0

First we look at the action of the tame ramification group. Denote the canonical map

G0/H1L
∗

by θ0, so that σ ∈ G0 induces multiplication by θ0(σ) on pL/p2
L = B1

1 .
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4.1 Proposition. For σ ∈ G0 and τ ∈ Hn, we have κn(στσ−1) = θ0(σ)nκn(τ), and for

σ ∈ G0 and τ ∈ Gn we have θn(στσ−1) = θ0(σ)nθn(τ).

Proof. The mapping φn : Hn/Hn+1 → Dern

K
(B1) respects the action of G0/H1, where

σ ∈ G0 acts on Hn/Hn+1 by conjugation, and on Dern

K
(B1) by conjugation with the

automorphism of B1 induced by σ, which multiplies an element x ∈ B1
i by θ0(σ)i. So for

σ ∈ G0, τ ∈ Hn and x ∈ B1
0 we get κn(στσ−1)(x) = σ(κn(τ)(σ−1x)) = θ0(σ)nκn(τ)(x).

For σ ∈ G0, τ ∈ Gn, and x ∈ B1
1 we similarly obtain θn(στσ−1) · x = φn(στσ−1)(x) =

σ(φn(τ)(σ−1x)) = θ0(σ)n+1θn(τ)θ0(σ)−1 · x = θ0(σ)nθn(τ) · x.

4.2 Corollary. If G0 is abelian, then Hn = Gn = Hn+1 for all n ∈ Z>0 that are not

divisible by the tame ramification index.

Proof. If G0 is abelian, then στσ−1 = τ for all σ, τ ∈ G0, so if θn or κn are not identically

zero, this implies that θ0(σ)n = 1 for all σ ∈ G0. The statement therefore follows from the

fact that G0/H1 is a cyclic group whose order is the tame ramification index.

Next, we look at commutators from higher ramification groups, and again we get some

conditions on where the jumps can be in the filtration.

4.3 Proposition. Let n,m ∈ Z≥1. If σ ∈ Gn and τ ∈ Hm, then

κn+m(στσ−1τ−1) = mθn(σ)κm(τ),

and if in addition τ ∈ Gm, then θn+m(στσ−1τ−1) = (m − n)θn(σ)θm(τ).

Proof. Using the fact that φn+m(στσ−1τ−1) = φn(σ) ◦ φm(τ) − φm(τ) ◦ φn(σ), and

φn(σ)(x) = α(θn(σ))(x) = iθn(σ) · x for x ∈ B1
i , it follows that for all x ∈ B1

0 we have

κn+m(στσ−1τ−1)(x) = mθn(σ) · κn(τ)(x) − φm(τ)(0θn(σ) · x) = mθn(σ)κm(τ)(x).

For τ ∈ Gm and x ∈ B1
1 we similarly obtain θn+m(στσ−1τ−1)·x = [φn(σ), φm(τ)](x) =

φn(σ)(θm(τ) · x) − φm(τ)(θn(σ) · x) = (m − n)θn(σ)θm(τ) · x, as required.

4.4 Corollary. If G is abelian then all n > 0 with Gn 6= Hn+1 are congruent modulo p,

and if there exists such an n, then all m with Hm 6= Gm are divisible by p.

The following proposition shows that the first statement of 4.4 remains true in the not

necessarily abelian case. For the second statement an additional condition seems necessary.

4.5 Proposition. Denote the set of n > 0 with Gn 6= Hn+1 by T , and the set of m > 0

with Hm 6= Gm by S. Then all elements of T are congruent modulo p, and for n ∈ T and

m ∈ S with pm we have n + m ∈ T . Furthermore, we have S ⊂ pZ whenever T ∩ pZ 6= ∅.

Proof. Suppose that T 6= ∅. As T is a finite set, it contains a maximal element n, so that

θn+n′ is the zero map for all n′ > 0. It now follows from the second equality in 4.3 that

every n′ ∈ T must be congruent to n modulo p.
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Now let n ∈ T and m ∈ S with pm. Then the first equality in 4.3 shows that n+m ∈ S.

For the last statement, assume that S 6⊂ pZ, and let n ∈ T with p | n. Let m be the biggest

element of S that is not divisible by p, then m + n ∈ S and pm + n, contradicting the

choice of m.

4.6 Corollary. For all n,m ≥ 1 we have [Gn, Gm] ⊂ Hn+m+1 and if S ⊂ pZ then

[Gn, Hm] ⊂ Gn+m for n,m > 1.

Proof. It follows from 4.5 that at least one of the factors on the right in the second

equation of 4.3 is zero, and if S ⊂ pZ then the same holds for the first equation.
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