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Notation

In this entire talk:

A is a complete d.v.r. with char A = 0.
K it’s fraction field.
m it’s maximal ideal
K it’s residue field with p = char K 6= 0
f : K → A the system of multiplicative representatives
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Ramification

Since Z ∈ A and pZ ⊆ m we have Zp ⊆ A and Qp ⊆ K .

Definition (absolute ramification index)

e = v(p) is the absolute ramification index.
if e = 1 we say A is absolutely unramified.

Note if Qp ⊆ K is a finite extension, then this is just the
ramification of Qp ⊆ K
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The Absolute Unramified Case
Unramified d.v.r. are completely determinded by their residue field

Theorem (3)
Let k be a perfect field with char k 6= 0 then there is an absolute
unramified d.v.r. W (k) with residue field k. This W (k) is unique
up to a unique isomorphism.
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The Ramified Case
Ramified d.v.r.’s are finite extensions of unramified ones

Theorem (4)
Let A be a d .v .r . of char 0 then there is a unique f such that:

W (K ) A

K

f

commutes. This f is injective and makes A into a W (K ) module
of degree e over W (K ).
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The Definition of p-Rings
A generalisation of the p − adic′s

Definition (Filtration)
Let R be a ring then a chain of ideals a0 ⊇ a1 ⊇ . . . is a filtration
if aiaj ⊆ ai+j

Definition (p-Ring)

A ring R with filtration is a p-Ring if:
R is complete and hausdorf
R/a0 is a perfect ring

and a strict p-Ring if an = pnR
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Example of a p ring

Let Xa be a family of indeterminates.
Define S = Z

[
X p−∞

a

]
Take Ŝ = Ẑ

[
X p−∞

a

]
the completion w.r.t. piS.

Ŝ is a p-ring.
It’s residue field is Fp

[
X p−∞

a

]
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Discription of ×, +,− in terms of representatives

Let X0,X1, . . . ,Y0,Y1, . . . be indeterminates, and Ŝ as before.
Define x :=

∑
Xipi , y :=

∑
Yipi

For ∗ ∈ {×,+,−} there Q∗i ∈ Fp

[
X p−∞

i ,Y p−∞
i

]
such that

x ∗ y =
∑

f (Q∗i )pi .

Proposition (9)

Let A be a p-Ring α = {αi} and β = {βi} be two sequinces of
elements of K . and define γi = Q∗i (α, β) then:∑

f (αi)pi ∗
∑

f (βi)pi =
∑

f (γi)pi

Define θ : Ẑ
[
X p−∞

i ,Y p−∞
i

]
→ A by θ(Xi) = f (αi), θ(Yi) = f (βi)

then
∑

f (αi)pi ∗
∑

f (βi)pi = θ(x ∗ y) =
∑
θ(f (Q∗i ))pi =∑

f (θ(Q∗i ))pi =
∑

f (γi)pi
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The residue field gives all info

Proposition (10)

Let A,A′ be p-rings and A strict. Then for all φ : K → K ′ there is
a unique g such that the following commutes

A A′

K K ′

g

φ

Proof: take a =
∑

f (αi)pi ∈ A and use
g(a) =

∑
g(fA(αi))pi =

∑
f ′A(φ(αi))pi

Corollary
Strict p-rings with isomorphic residue fields are isomorphic.
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A lemma for constucting W (k)

Lemma (2)

Let φ : K → K ′ be a surjective homomorphism of perfect rings.
Then every strict p ring A over K gives rise to a strict p ring A′

over K ′

Sketch of proof: Define A′ as a quotient of A by defining
a :=

∑
f (αi)pi ∼ b :=

∑
f (βi)pi if and only if φ(ai) = φ(bi).

Proposition 9 shows that A′ is ring. Now verify that A′ is a p-ring
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A generalization of theorem 3

Theorem (5)

For every perfect ring k there exists a unique strict p-ring W (k)
with residue ring k.

Proof: unicity is the corrolarry of proposition 10. Existence:
Every perfect ring of char p is of the form A/I with
A = Fp

[
X p−∞

a

]
A is the residue ring of Ŝ = Ẑ

[
X p−∞

a

]
. Apply

the lemma to get the theorem.
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The Theorem
Just to refresh your memory

Theorem (4)
Let A be a d .v .r . of char 0 then there is a unique f such that:

W (K ) A

K

f

commutes. This f is injective and makes A into a W (K ) module
of degree e over W (K ).
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The Proof

Existence and uniqueness are essentially proposition 10. To
see that it’s a module of degree e = v(p) over W (K ) take π ∈ A
a uniformizer and any a ∈ A
Define aij recursively as follows.
Suppose a ≡

∑
i+j≤k f (aij)π

ipj mod πk then take amn s.t.
m < e and a ≡

∑
i+j≤k+1 f (aij)π

ipjmodπk+1.
This shows a =

∑
i+j≤k f (aij)π

ipj mod πk hence
1, π, π2, . . . , πe−1 generate A as a W (K ) module.
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Summary

Absolute unramified complete d.v.r.’s are determined by
their residue field.
Ramified complete d.v.r.’s are finite extensions of the
above.
Residue field’s say a lot about complete d.v.r.’s

Next Time:
Witt Vectors: A discription of the Q∗

i
Begin of chapter III: Discriminant and Different
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