Structure of Complete Discrete Valuation Rings II, Unequal charasteristic case.

Maarten Derickx

Mathematisch Instituut Universiteit Leiden

21-02-2011 / Local Fields

- The two main theorem's
 - Prerequisite Definitions
 - The Structure Theorems
- Ingredients for the proof
 - p-Rings
 - Usefull Propositions
- Proof of the Structure Theorems
 - The Unramified Case
 - The Ramified Case

- 1 The two main theorem's
 - Prerequisite Definitions
 - The Structure Theorems
- Ingredients for the proof
 - p-Rings
 - Usefull Propositions
- Proof of the Structure Theorems
 - The Unramified Case
 - The Ramified Case

Notation

In this entire talk:

- A is a complete d.v.r. with char A = 0.
- K it's fraction field.
- m it's maximal ideal
- \overline{K} it's residue field with $p = \operatorname{char} \overline{K} \neq 0$
- $f: \overline{K} \to A$ the system of multiplicative representatives

Ramification

Since $\mathbb{Z} \in A$ and $p\mathbb{Z} \subseteq m$ we have $Z_p \subseteq A$ and $Q_p \subseteq K$.

Definition (absolute ramification index)

e = v(p) is the absolute ramification index. if e = 1 we say A is absolutely unramified.

Note if $Q_p \subseteq K$ is a finite extension, then this is just the ramification of $Q_p \subseteq K$

- The two main theorem's
 - Prerequisite Definitions
 - The Structure Theorems
- Ingredients for the proof
 - p-Rings
 - Usefull Propositions
- Proof of the Structure Theorems
 - The Unramified Case
 - The Ramified Case

The Absolute Unramified Case

Unramified d.v.r. are completely determinded by their residue field

Theorem (3)

Let k be a perfect field with char $k \neq 0$ then there is an absolute unramified d.v.r. W(k) with residue field k. This W(k) is unique up to a unique isomorphism.

The Ramified Case

Ramified d.v.r.'s are finite extensions of unramified ones

Theorem (4)

Let A be a d.v.r. of char 0 then there is a unique f such that:

$$W(\overline{K}) \xrightarrow{f} A$$

commutes. This f is injective and makes A into a $W(\overline{K})$ module of degree e over $W(\overline{K})$.

The two main theorem's Ingredients for the proof Proof of the Structure Theorems Summary

Prerequisite Definitions
The Structure Theorems

- The two main theorem's
 - Prerequisite Definitions
 - The Structure Theorems
- Ingredients for the proof
 - p-Rings
 - Usefull Propositions
- Proof of the Structure Theorems
 - The Unramified Case
 - The Ramified Case

The Definition of p-Rings

A generalisation of the p - adic's

Definition (Filtration)

Let R be a ring then a chain of ideals $a_0 \supseteq a_1 \supseteq ...$ is a filtration if $a_i a_j \subseteq a_{i+j}$

Definition (p-Ring)

A ring R with filtration is a p-Ring if:

- R is complete and hausdorf
- R/a₀ is a perfect ring

and a strict p-Ring if $a_n = p^n R$

Example of a p ring

Let X_a be a family of indeterminates.

Define
$$S = \mathbb{Z}\left[X_a^{p^{-\infty}}\right]$$

Take
$$\widehat{S} = \widehat{\mathbb{Z}} \left[X_a^{p^{-\infty}} \right]$$
 the completion w.r.t. $p^i S$.

$$\widehat{S}$$
 is a *p*-ring.

It's residue field is
$$\mathbb{F}_p\left[X_a^{p^{-\infty}}\right]$$

- The two main theorem's
 - Prerequisite Definitions
 - The Structure Theorems
- Ingredients for the proof
 - p-Rings
 - Usefull Propositions
- Proof of the Structure Theorems
 - The Unramified Case
 - The Ramified Case

Discription of \times , +, - in terms of representatives

Let $X_0, X_1, \ldots, Y_0, Y_1, \ldots$ be indeterminates, and \widehat{S} as before. Define $x := \sum X_i p^i, \ y := \sum Y_i p^i$ For $* \in \{\times, +, -\}$ there $Q_i^* \in \mathbb{F}_p\left[X_i^{p^{-\infty}}, Y_i^{p^{-\infty}}\right]$ such that $x * y = \sum f(Q_i^*)p^i$.

Proposition (9)

Let A be a p-Ring $\alpha = \{\alpha_i\}$ and $\beta = \{\beta_i\}$ be two sequinces of elements of \overline{K} . and define $\gamma_i = Q_i^*(\alpha, \beta)$ then: $\sum f(\alpha_i)p^i * \sum f(\beta_i)p^i = \sum f(\gamma_i)p^i$

Define
$$\theta : \widehat{\mathbb{Z}}\left[X_i^{p^{-\infty}}, Y_i^{p^{-\infty}}\right] \to A$$
 by $\theta(X_i) = f(\alpha_i), \theta(Y_i) = f(\beta_i)$ then $\sum f(\alpha_i)p^i * \sum f(\beta_i)p^i = \theta(x * y) = \sum \theta(f(Q_i^*))p^i = \sum f(\theta(Q_i^*))p^i = \sum f(\gamma_i)p^i$

The residue field gives all info

Proposition (10)

Let A, A' be p-rings and A strict. Then for all $\phi : \overline{K} \to \overline{K'}$ there is a unique g such that the following commutes

$$\begin{array}{ccc} A & \xrightarrow{g} & A' \\ \downarrow & & \downarrow \\ \overline{K} & \xrightarrow{\phi} & \overline{K'} \end{array}$$

Proof: take
$$a = \sum f(\alpha_i)p^i \in A$$
 and use $g(a) = \sum g(f_A(\alpha_i))p^i = \sum f'_A(\phi(\alpha_i))p^i$

Corollary

Strict p-rings with isomorphic residue fields are isomorphic.

A lemma for constucting W(k)

Lemma (2)

Let $\phi: \overline{K} \to \overline{K'}$ be a surjective homomorphism of perfect rings. Then every strict p ring A over \overline{K} gives rise to a strict p ring A' over $\overline{K'}$

Sketch of proof: Define A' as a quotient of A by defining $a:=\sum f(\alpha_i)p^i\sim b:=\sum f(\beta_i)p^i$ if and only if $\phi(a_i)=\phi(b_i)$. Proposition 9 shows that A' is ring. Now verify that A' is a p-ring

- The two main theorem's
 - Prerequisite Definitions
 - The Structure Theorems
- Ingredients for the proof
 - p-Rings
 - Usefull Propositions
- Proof of the Structure Theorems
 - The Unramified Case
 - The Ramified Case

A generalization of theorem 3

Theorem (5)

For every perfect ring k there exists a unique strict p-ring W(k) with residue ring k.

Proof: unicity is the corrolarry of proposition 10. Existence:

Every perfect ring of char p is of the form A/I with

$$A = \mathbb{F}_p\left[X_a^{p^{-\infty}}\right] A$$
 is the residue ring of $\widehat{S} = \widehat{\mathbb{Z}}\left[X_a^{p^{-\infty}}\right]$. Apply the lemma to get the theorem.

- The two main theorem's
 - Prerequisite Definitions
 - The Structure Theorems
- Ingredients for the proof
 - p-Rings
 - Usefull Propositions
- Proof of the Structure Theorems
 - The Unramified Case
 - The Ramified Case

The Theorem

Just to refresh your memory

Theorem (4)

Let A be a d.v.r. of char 0 then there is a unique f such that:

$$W(\overline{K}) \xrightarrow{f} A$$

commutes. This f is injective and makes A into a $W(\overline{K})$ module of degree e over $W(\overline{K})$.

The Proof

Existence and uniqueness are essentially proposition 10. To see that it's a module of degree e = v(p) over $W(\overline{K})$ take $\pi \in A$ a uniformizer and any $a \in A$

Define a_{ij} recursively as follows.

Suppose $a \equiv \sum_{i+j \le k} f(a_{ij}) \pi^i p^j \mod \pi^k$ then take a_{mn} s.t.

$$m < e$$
 and $a \equiv \sum_{i+j \le k+1} f(a_{ij}) \pi^i p^j mod \pi^{k+1}$.

This shows $a = \sum_{i+j \le k} f(a_{ij}) \pi^i p^j \mod \pi^k$ hence

$$1,\pi,\pi^2,\ldots,\pi^{e-1}$$
 generate A as a $W(\overline{K})$ module.

Summary

- Absolute unramified complete d.v.r.'s are determined by their residue field.
- Ramified complete d.v.r.'s are finite extensions of the above.
- Residue field's say a lot about complete d.v.r.'s
- Next Time:
 - Witt Vectors: A discription of the Q_i*
 - Begin of chapter III: Discriminant and Different

