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A field k is called real closed if it satisfies the following three conditions:

(1) each f ∈ k[X ] of odd degree has a zero in k;

(2) the group k∗/k∗2 has order 2, with generator −k∗2;

(3) for any a, b ∈ k there exists c ∈ k with a2 + b2 = c2.

Exercise 118 (preferred). (a) Let Q̄ be an algebraic closure of Q. Prove that Q̄ has a

subfield k with
√
−2 ∈ k and

√
−1 /∈ k such that for every field extension l 6= k of k in Q̄

one has
√
−1 ∈ l.

(b) Let k be as in (a). Prove that k is not real closed, but that it does satisfy conditions

(1) and (2) above.

Exercise 119. Let p be a prime number, n a positive integer, k a field, ζ ∈ k∗ an element

of order p, and l a Galois extension of k with a cyclic Galois group of order pn. Prove: l is

contained in some Galois extension m of k with Gal(m/k) cyclic of order pn+1 if and only

if there exists α ∈ l∗ with Nl/k(α) = ζ. (In the case pn = 2, this was proved in class.)

Exercise 120 (preferred). (a) Let k be a real closed field. Prove that the group of roots

of unity in k∗ has order 2.

(b) Let Ω be an algebraically closed field, and let σ ∈ AutΩ be of order 2. Prove that

for each root of unity ζ ∈ Ω∗ one has σ(ζ) = ζ−1.

Exercise 121. Let k be a field, let k̄ be a separable closure of k, and put G = Gal(k̄/k).

Let H ⊂ G be the closure of the subgroup of G generated by {σ ∈ G : σ2 = 1}. Prove that
k̄H is the intersection of all real closed subfields l ⊂ k̄ that contain k. (This intersection is

defined to be k̄ if no such l exist.)

Exercise 122. Let G be a profinite group, and let γ ∈ G. The order of γ is defined to

be the unique Steinitz number s such that the closure of the subgroup generated by γ is

isomorphic to Ẑ/sẐ (cf. Exercise 95).

Suppose that G is the Galois group of a Galois extension k ⊂ l of fields, and let γ ∈ G.

Prove that all cycle lengths of γ in its action on l are finite, and that the least common

multiple of all these cycle lengths equals the order of γ.

Exercise 123. A group G is called dihedral if there are σ, τ ∈ G of order 2 such that

G = 〈σ, τ〉. Prove that for every n ∈ Z>0 there is, up to isomorphism, exactly one dihedral

group of order 2n, and that there is, up to isomorphism, exactly one infinite dihedral group.
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Exercise 124 (preferred). A prodihedral group is a profinite group D that contains

elements σ, τ of order 2 such that D is the closure of the subgroup generated by σ and τ ;

in that situation we define sD to be the order of στ (as defined in Exercise 122).

(a) Prove that sD is well-defined in the sense that it depends only on D and not on

the choice of σ and τ .

(b) Prove that there is a bijection from the set of isomorphism classes of prodihedral

groups to the set S of Steinitz numbers that maps the isomorphism class of D to sD.

(c) With D, σ, τ , sD as above, prove that σ and τ are conjugate in D if and only if

sD is not divisible by 2.

A field k is called Pythagorean if for any a, b ∈ k there exists c ∈ k with a2 + b2 = c2.

(This is condition (3) above.)

Exercise 125. (a) Prove that every field of characteristic 2 is Pythagorean.

(b) Let k be a field with char k > 2. Prove: k is Pythagorean if and only if every

element of k is a square in k.

Let k be a field with char k 6= 2, and let S ⊂ k be defined by S = {
∑n

i=1
x2
i : n ∈ Z>0,

xi ∈ k∗ (1 ≤ i ≤ n)}. It is a theorem, which may be proved in class, that S is the set of

elements of k that are positive under every ordering of k. You may assume this theorem

in the following exercise.

Exercise 126 (preferred). Let k be a field with char k 6= 2, let k̄ be a separable closure

of k, and put G = Gal(k̄/k). Write G[2] = {σ ∈ G : σ2 = 1} and G2 = {σ2 : σ ∈ G}.
(a) With S as defined above, prove that for x ∈ k∗ one has x ∈ S if and only if for all

σ ∈ G[2] one has σ(
√
x) =

√
x.

(b) Prove: k is Pythagorean if and only if the closure of the subgroup of G generated

by G[2] ∪G2 equals G itself.

Exercise 127 (preferred). Let k be a field, let k̄ be a separable closure of k, and put

G = Gal(k̄/k).

(a) Suppose that D ⊂ G is a closed subgroup that is prodihedral. Prove that there

is a set T of prime numbers such that the Steinitz number sD defined in Exercise 124 is

equal to
∏

l∈T l∞.

(b) Suppose that the number of orderings of k is greater than 1. Prove that G has a

closed prodihedral subgroup D with sD = 2∞.

Exercise 128 (preferred). Prove that there exists a field k such that the absolute Galois

group of k is a prodihedral group D with sD = 2∞, with sD as in Exercise 124. (You may

use the result of Exercise 127(b).) Prove also that any such k satisfies conditions (1) and

(3) stated above, but not condition (2).
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