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Let M be a module over a ring R. We say that M satisfies the descending chain condition,

or the descending chain condition on submodules, if for every chain M0 ⊃ M1 ⊃ M2 ⊃ . . .

of submodules of M there exists n such that for all m > n one has Mm = Mn. We say that

M satisfies the ascending chain condition, or the ascending chain condition on submodules,

if for every chain M0 ⊂ M1 ⊂ M2 ⊂ . . . of submodules of M there exists n such that for

all m > n one has Mm = Mn. We say that M is of finite length if it satisfies both the

ascending and the descending chain condition. We say that M is simple if the number of

submodules of M equals 2. We say that M is indecomposable if for any two R-modules L

and N with M ∼= L⊕N we have either L = 0, N 6= 0 or L 6= 0, N = 0.

Exercise 85. Let M be a module over a ring R. Prove: M is of finite length if and only

if there exists, for some n ∈ Z≥0, a chain 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mn = M of submodules

of M such that for every i ∈ {0, 1, . . . , n− 1} the R-module Mi+1/Mi is simple.

Exercise 86. In class it was shown that each module that satisfies the descending chain

condition can be written as the direct sum of finitely many indecomposable modules. Prove

that the same is true for modules that satisfy the ascending chain condition.

Exercise 87. A ring E is called local if the set of non-units of E is an additive subgroup

of E. Prove that a ring E is local if and only if the set of non-units is a two-sided ideal

of E.

Exercise 88 (preferred). Let k be a field, let A = k[[x, y]] be the ring of power series in

two variables x and y over k, and put m = Ax+ Ay.

(a) Prove that A is a commutative local ring with maximal ideal m.

(b) Prove that for each n ∈ Z≥0 the A-module m
n/mn+2 is an indecomposable A-

module of finite length.

Exercise 89 (preferred). Is, for every finite ring R, the number of isomorphism classes

of finite indecomposable R-modules finite as well? Give a proof or a counterexample.

Exercise 90. Let G be a group, and let G2 be the subgroup of G that is generated by

{σ2 : σ ∈ G}.

(a) Prove that G2 is a normal subgroup of G and that G/G2 is abelian.

(b) Suppose that G is finite of 2-power order and that G/G2 has order 2. Prove that

G is cyclic.
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A field k is called real closed if it satisfies the following three conditions:

(1) each f ∈ k[X ] of odd degree has a zero in k;

(2) the group k∗/k∗2 has order 2, with generator −k∗2;

(3) for any a, b ∈ k there exists c ∈ k with a2 + b2 = c2.

Exercise 91. Prove that there are infinitely many pairwise non-isomorphic real closed

fields.

Exercise 92 (preferred). Prove that there exists a field that satisfies conditions (2) and

(3) above, but that does not satisfy condition (1).

Exercise 93 (preferred). Construct a field satisfying conditions (1) and (3), but not (2).

Can you make an example that is not algebraically closed?

A Steinitz number is a function from the set of prime numbers to the set Z≥0 ∪ {∞}; a

Steinitz number s is usually denoted as
∏

l l
s(l), with l ranging over the set of prime numbers

(Ernst Steinitz, German mathematician, 1871–1928). Through unique prime factorization,

each positive integer is viewed as a Steinitz number. We write S for the set of Steinitz

numbers. For s, t ∈ S, we say that s divides t if for all l one has s(l) ≤ t(l). Clearly, each

set of Steinitz numbers has a least common multiple and a greatest common divisor in S.

Exercise 94. (a) Prove that each Steinitz number s is the least common multiple of the

set of positive integers that divide s.

(b) Let p be a prime number, and let F̄p be an algebraic closure of Fp. Prove that

there is a bijection from S to the set of subfields of F̄p that sends s to the union of all

fields Fpn , with n ranging over the set of positive integers that divide s.

Exercise 95 (preferred). Let Ẑ be as in Exercise 10(b), and for each s ∈ S, write

sẐ =
⋂
nẐ, with n ranging over the set of positive integers that divide s. Prove that there

is a bijection S → {closed subgroups of Ẑ} sending s to sẐ.

Exercise 96. (a) Prove that for each profinite group G and each γ ∈ G there is a unique

group homomorphism Ẑ → G that sends 1 to γ, that this group homomorphism is contin-

uous, and that its image is the closure of the subgroup generated by γ.

(b) A profinite group G is called procyclic if there exists γ ∈ G such that G is the

closure of the subgroup generated by γ. Prove that for each s ∈ S the group Ẑ/sẐ is

procyclic, and that for each procyclic group G there is a unique s ∈ S such that G ∼= Ẑ/sẐ.
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