Topics in group theory: exercises

Mathematisch Instituut, Universiteit Leiden, Fall 2012
Bart de Smit \& Hendrik Lenstra

Exercise 121. Let G be a group. The lower central series $\Gamma_{0} \supset \Gamma_{1} \supset \Gamma_{2} \supset \ldots$ of G is, as in Exercise 51, defined by $\Gamma^{(0)}=G$ and $\Gamma^{(i+1)}=\left[G, \Gamma^{(i)}\right]$. We put $G^{\infty}=\bigcap_{i \geq 0} \Gamma^{(i)}$.

Now let N be a normal subgroup of G.
(a) Prove: G / N is nilpotent $\Rightarrow G^{\infty} \subset N$.
(b) Suppose that G is finite. Prove: $G^{\infty} \subset N \Rightarrow G / N$ is nilpotent.

Exercise 122. (a) Let n be a positive integer, and let $D_{n}=C_{n} \rtimes C_{2}$, where C_{n} is cyclic of order n and the non-trivial element of C_{2} acts on C_{n} by $x \mapsto x^{-1}$. Compute the group D_{n}^{∞} defined in Exercise 121.
(b) Construct a group G for which G / G^{∞} is not nilpotent.

Exercise 123. Let G be a group, let S be a subnormal subgroup of G (see Exercise 38), and let N be a nilpotent normal subgroup of G. Prove that, with the notation of Exercise 121, one has $(S \cdot N)^{\infty}=S^{\infty}$. (In class this was proved for finite G.)

Exercise 124. Let n be a positive integer, let H be a Sylow-2-subgroup of $\operatorname{Sym}\left(2^{n}\right)$, and put $S=H \cap \operatorname{Sym}\left(2^{n}-1\right)$, where $\operatorname{Sym}\left(2^{n}-1\right)$ is naturally embedded in $\operatorname{Sym}\left(2^{n}\right)$. Prove that S is a subnormal subgroup of H, and that the least non-negative integer t for which there is a chain $S=S_{0} \subset S_{1} \subset \ldots \subset S_{t-1} \subset S_{t}=H$ of subgroups with S_{i} normal in S_{i+1} for each $i<t$, equals n.

Exercise 125. As in Exercise 12, we denote, for each group G, the group homomorphism $G \rightarrow$ Aut $G, a \mapsto\left(x \mapsto a x a^{-1}\right)$, by φ_{G}. A group G is called perfect if $G=[G, G]$.

Let S be a perfect semisimple group, and let $G \subset$ Aut S be a subgroup with $\varphi_{S} S \subset G$.
(a) Prove: φ_{S} is injective, one has $\varphi_{S} S=\operatorname{Soc} G$, and Aut G is isomorphic to the normalizer $N_{\text {Aut } S}(G)$ of G in Aut S.
(b) Prove: $\varphi_{\text {Aut } S}$ is an isomorphism. (Note that for perfect simple S this is the content of Exercise 12(b).)

Exercise 126. Let n be a positive integer, let T be a non-abelian simple group, and let S be the direct sum of n copies of T. We write $B=\operatorname{Aut} T$ and $A=\operatorname{Aut} S$.
(a) Prove that A may be identified with a wreath product B i $\operatorname{Sym}(n)$, with respect to the $\operatorname{Sym}(n)$-set $\{1,2, \ldots, n\}$.
(b) Let H be a subgroup of $\operatorname{Sym}(n)$. Prove that the group $\operatorname{Aut}(B \backslash H)$ is isomorphic to B 亿 $N_{\operatorname{Sym}(n)}(H)$. (You may use the result of Exercise 125(a).)

Exercise 127. Let m be a non-negative integer. Construct a finite group G with trivial centre for which there are exactly $m+1$ non-isomorphic groups in the automorphism tower $G=G_{0} \rightarrow G_{1} \rightarrow G_{2} \rightarrow \ldots$ (with $G_{i+1}=$ Aut G_{i} for each i). (You may use the result of Exercise 126(b).)

Exercise 128. Construct a group G with trivial centre for which all groups $G_{i}(i<\infty)$ in the automorphism tower are pairwise non-isomorphic. (This takes some work. It helps if you did the previous exercises.)

Exercise 129. Let n be a positive integer, let G be a group, and let $S_{0}, S_{1}, \ldots, S_{n}$ be subgroups of G such that, for each $i<n$, the group S_{i} is a normal subgroup of S_{i+1} with $C_{S_{i+1}}\left(S_{i}\right)=\{1\}$. Prove: $C_{S_{n}}\left(S_{0}\right)=\{1\}$.

Exercise 130. Let n be a positive integer, and let G be the semi-direct product $(\mathbf{Z} / n \mathbf{Z}) \rtimes$ $(\mathbf{Z} / n \mathbf{Z})^{*}$, where $(\mathbf{Z} / n \mathbf{Z})^{*}$ acts on $\mathbf{Z} / n \mathbf{Z}$ by multiplication.
(a) Prove: n is odd $\Leftrightarrow \# Z(G)=1 \Leftrightarrow \#[G, G]=n \Rightarrow H^{1}\left((\mathbf{Z} / n \mathbf{Z})^{*}, \mathbf{Z} / n \mathbf{Z}\right)=0$.
(b) Prove: n is odd $\Leftrightarrow G$ is complete (as defined in Exercise 106).

Exercise 131. (a) Prove that there is, up to isomorphism, exactly one infinite group that is generated by two elements of order 2 .
(b) In class we defined, for each group G and each ordinal number α, a group G_{α} by $G_{0}=G, G_{\alpha+1}=\operatorname{Aut} G_{\alpha}, G_{\lambda}=\lim _{\alpha<\lambda} G_{\alpha}($ for a limit ordinal $\lambda)$. Compute all groups G_{α} when G is the group from (a).

Exercise 132. Let $\Phi(G)$ denote the Frattini subgroup of a group G.
(a) Let G be a finite group. Prove: if $G / \Phi(G)$ is nilpotent, then G is nilpotent.
(b) Give an example of a group G that is not nilpotent but for which $G / \Phi(G)$ is nilpotent.

