FP6 Research and Training Network
GTEM
Galois Theory and Explicit Methods
login
Project
Activities

by author | by node | involving several nodes | written by ESRs

20 GTEM publications written by ESRs

M. Aranés, A. Arenas.
Nodes: Barcelona, Warwick
On the defining polynomials of maximal real cyclotomic extensions.
Rev. R. Acad. Cienc. Exactas Fis. Nat. 102 (2) (2008).

B. Baran
Node: Rome
Fitting ideals and the Gorenstein property,
Accepted to appear in Archiv der Mathematik

B. Baran
Node: Rome
Normalizers of non-split Cartan subgroups, modular curves and the class number one problem
Submitted

B. Baran
Node: Rome
A modular curve of level 9 and the class number 1 problem
Accepted Journal of Number Theory, vol. 129 (2009), 715-728

H. Cohen, A. Morra
Node: Bordeaux
Counting cubic extensions with given quadratic resolvent
Accepted Journal of Algebra

H. Cohen, A. Morra
Node: Bordeaux
Exact counting of cubic number fields with given quadratic resolvent
Preprint

A. Fehm
Node: Tel Aviv
Subfields of ample fields. Rational maps and definability.
Accepted Journal of Algebra

A. Fehm and E. Paran
Node: Tel Aviv
Galois theory over rings of arithmetic power series
Submitted

A. Fehm and E. Paran
Node: Tel Aviv
Non ample complete valued fields
Accepted IMRN

A. Fehm, W.-D. Geyer
Nodes: Essen, Tel Aviv
A note on defining transcendentals in function fields
Accepted Journal of Symbolic Logic

A. Fehm, M. Jarden, and S. Petersen
Node: Tel Aviv
Kuykian fields
Accepted Forum Mathematicum

A. Fehm, S. Petersen
Node: Tel Aviv
On the rank of Abelian varieties over ample fields
Accepted International Journal of Number Theory

F. Heiderich
Node: Barcelona
Galois Theory of Module Fields
PhD Thesis, Universitat de Barcelona, 2010.

A. Montes, M. Wibmer
Node: Heidelberg
Gröbner Bases for Polynomial Systems with Parameters
Journal of Symbolic Computation 45, no. 12 (2010), pp. 1391-1425

Rühl, K.-T.
Node: Lausanne
Annihilating polynomials of excellent quadratic forms
Arch Math. (Basel), 90 (2008), no. 3, 217-222

Rühl, K.-T.
Node: Lausanne
Annihilating ideals of quadratic forms over local and global fields
Accepted Int. J. Number Theory 6 (2010), no. 3, pp. 603–624

J. Tuitman
Node: Leuven
A refinement of a mixed sparse effective nullstellensatz
Int Math Res Notices (2010) doi: 10.1093/imrn/rnq127

M. Wibmer
Node: Heidelberg
Gröbner bases for families of affine or projective schemes
Journal of Symbolic Computation 42, Issue 8, 803-834, 2007.

M. Wibmer
Node: Heidelberg
Geometric difference Galois theory
? PhD thesis, Heidelberg, 2010.

M. Wibmer, L. Smith
Node: Heidelberg
On the dimension of coinvariants of permutation representations
Monatshefte für Mathematik 151, Number 1, 75-81, 2007

Partners