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1. Introduction

Let G be a finite group that acts on a number field K by field automorphisms. By a

G-set we mean a finite set with a left-action of G. For a G-set X the set KX of G-

equivariant maps X → K has the structure of a finite étale Q-algebra, i.e., a product

of number fields. If F is a finite product of number fields, then we write h(F ) and

R(F ) for the products of the class numbers and of the regulators of the components of

F , and w(F ) for the order of the torsion subgroup µ(F ) of F ∗.

Throughout this paper X and Y will denote two G-sets so that every g ∈ G has

the same number of fix points on X and on Y . Such G-sets are said to be linearly

equivalent. In this note we present a purely algebraic proof of the equality

(1.1)
h(KX)R(KX)

w(KX)
=

h(KY )R(KY )

w(KY )
,

which is commonly referred to as “Brauer’s class number relations.” The main ingredi-

ents of the proof are the description of the second Galois cohomology group of the idele

class group due to Nakayama and Hochschild, and a result in integral representation

theory known as Conlon’s induction theorem.

A much easier proof of this result has been available for nearly 40 years already:

Brauer [2] and Kuroda [13] showed independently how Artin’s formalism of L-functions

implies that KX and KY have the same zeta-function. Using the formula for the residue

at s = 1 of zeta-functions of number fields, it is not hard to derive (1.1).

The search for an algebraic proof, i.e., a proof not relying on the residue formula

for the zeta function, has a long tradition as well, starting with Hilbert’s algebraic

proof [10] in 1894 of a special case of (1.1) shown analytically by Dirichlet in 1842
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[7]. For the case that G = V4 algebraic proofs have been published by Kubota [12]

in 1953 when the base field is Q and by Lemmermeyer [15] in 1994 for arbitrary base

fields. The present paper grew out of [5] where an algebraic proof is given for nilpotent

groups G.

The algebraic approach used in this paper actually gives rise to more detailed

results about the relation between the group structures of the class groups of KX and

KY , and not just the orders of these groups. See [8, 1] for precise results. The present

paper is devoted only to giving an algebraic proof of (1.1).

2. Outline of the proof

For a commutative ring R with 1 we denote the group ring of G over R by RG or R[G],

and for any G-set T we define the left RG-module RT = R[T ] as the free R-module

generated by T with G permuting T . The fact that X and Y are linearly equivalent

implies that QX is isomorphic to QY as a QG-module; see [14, Chap. XVIII, Th. 2.3].

This means that we can choose an injective ZG-linear homomorphism

ϕ: ZX −→ ZY

with a finite cokernel.

Suppose that M → N is a ZG-module homomorphism. We define CokN
M (X) to

be the cokernel of the induced homomorphism HomG(ZX,M) → HomG(ZX,N). The

homomorphism ϕ induces a group homomorphism CokN
M (ϕ): CokN

M (Y ) → CokN
M (X).

Thus, we have the following diagram with exact rows:

HomG(ZY,M) → HomG(ZY,N) → CokN
M (Y ) → 0





y





y





y
CokN

M (ϕ)

HomG(ZX,M) → HomG(ZX,N) → CokN
M (X) → 0.

If CokN
M (ϕ) has finite kernel and cokernel, then we write

χN
M (ϕ) =

#Cok CokN
M (ϕ)

#Ker CokN
M (ϕ)

.

In may instances where we use this notation, the map M → N in inclusion map. For

example, µ(KX) = Cok
µ(K)
0 (ZX), so χ

µ(K)
0 (ϕ) = w(KX)/w(KY ).

To obtain a map between class groups is a bit more subtle: one can write the class

group of K as the cokernel of the canonical map J → C where J = J(K) is the group

of ideles of K whose coordinates at finite primes are local units, and C = C(K) is the

idele class group of K. Since for any subgroup H of G the canonical maps J(KH) →
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J(K)H and C(KH) → C(K)H are isomorphisms, we have CokC
J (ZX) = Cl(KX), and

ϕ induces a homomorphism CokC
J (ϕ): Cl(KY ) → Cl(KX). This map between class

groups is not the map we will use in the proof because we do not want to separate the

class group and the units.

We write U for the group of finite unit ideles, i.e., the subgroup of J consisting

of those ideles whose coordinates at finite primes are units, and whose coordinates at

infinite primes are 1. This group U is the unit group of the profinite completion of the

ring of integers of K. We will call the cokernel of the map U → C the padded Picard

group P (K) of K. Writing S for the maximal compact subgroup of (K⊗R)∗, the usual

Picard group of K is the cokernel of U ×S → C, and it is the standard algebraic object

to consider when one wants to study the unit group and class group in an integrated

fashion (see e.g. [16, Chap. III, §1]). We use the padded Picard group in this paper

because it has slightly better cohomological properties.

We define padded Picard groups of finite étale algebras over Q by taking prod-

ucts over the components, and with this definition one see that there is a canoni-

cal isomorphism P (KX) ∼= CokC
U (ZX). In particular, ϕ induces a homomorphism

CokC
U (ϕ): P (KY ) → P (KX). We will show that CokC

U (ϕ) has finite kernel and cok-

ernel. Thus, χC
U (ϕ) is a well-defined positive rational number, and the proof of (1.1)

essentially consists of two different ways to compute this number.

We write L(F ) = h(F )R(F )/w(F ) for any finite étale Q-algebra F , and we let d

be the degree of KG over Q. We first state three propositions which will be proved

independently.

(2.1) Proposition. Let E be the cokernel of ϕ. The homomorphism CokC
U (ϕ) has

finite kernel and cokernel and we have

L(KX)

L(KY )
=

(#E)d

#(EG)
· χC

U (ϕ).

This result implies that the left-hand side, which is a priori only a positive real number,

is in fact a rational number. The proof of (2.1), which is mostly an exercise with

regulators, is the subject of Section 3.

(2.2) Corollary. If p is a prime number for which ZpX and ZpY are isomorphic as

ZpG-modules, then ordp(L(KX)/L(KY )) = 0.

To see how this follows from (2.1) note that under the condition of (2.2) we can choose ϕ

so that E has order coprime to p. Then ϕ and therefore CokC
U (ϕ) become isomorphisms

when localized at p, so that CokC
U (ϕ) has kernel and cokernel of order coprime to p.

Applying (2.1) with this choice of ϕ gives (2.2).
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The next result will allow us to replace U by a finite index subgroup with much

better cohomological properties. Recall that a Z[G]-module M is said to be cohomo-

logically trivial if the Tate cohomology group Ĥi(H,M) vanishes for all subgroups H

of G and all i ∈ Z; see [3, p. 111].

(2.3) Proposition. There is a G-stable subgroup V of finite index in U so that

(1) V is cohomologically trivial;

(2) χC
V (ϕ) = χC

U (ϕ).

The proof is given in Section 4. It uses the conductor discriminant product formula in

the form of a result of Fröhlich that says that as a Z[G]-module the ring of integers of

K is “factor equivalent” to a free module [9, 6].

From now on, let V be as in (2.3). For any finite ZG-module M the homomorphism

V → C induces homomorphisms

f0
M = HomG(M,V ) → HomG(M,C), f1

M = Ext1G(M,V ) → Ext1G(M,C).

We will show in Section 4 that these maps have finite kernel and cokernel and we define

ψ(M) =
#Cok f1

M

#Ker f1
M

·
#Ker f0

M

#Cok f0
M

.

Thus, ψ(M) is a positive rational number built up from primes dividing #M . We will

see in Section 4 that the fact that V is cohomologically trivial easily implies the next

Proposition.

(2.4) Proposition. For E = Cok ϕ the homomorphisms f0
E and f1

E have finite kernels

and cokernels, and we have χC
V (ϕ) = ψ(E).

Combining the three Propositions, it follows that

(2.5)
L(KX)

L(KY )
=

(#E)d

#(EG)
· ψ(E).

In particular L(KX)/L(KY ) only depends on K and the finite ZG-module E = Cok ϕ

obtained from ϕ, but not on X and Y themselves.

By considering a maximal filtration of E with sub-ZG-modules and applying ho-

mological algebra and the description of the second Galois cohomology group of C, we

will deduce the following special case of (1.1) in Section 5. For a prime number p we

say that a finite group H is cyclic modulo p if it has a normal subgroup N so that the

quotient H/N is cyclic and N is a p-group.
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(2.6) Proposition. If p is a prime number and G is cyclic modulo p, then we have

ordp

(

L(KX)

L(KY )

)

= 0.

It turns out that this Proposition, together with Conlon’s theory of permutation rep-

resentations suffice to obtain the general result (1.1). This is the subject of Section 6.

3. Regulator computations

The goal of this section is to prove (2.1). For a G-set T we define

j(T ) =
∏

O∈G\T

#G/#O,

where G\T denotes the set of G-orbits of T .

(3.1) Lemma. We have

(1) χZG
0 (ϕ) = #E;

(2) χZ
0 (ϕ) = #(EG);

(3) j(X)/j(Y ) = #(EG)/#(EG).

Proof. We will use homology, cohomology and Tate-cohomology groups as in [3,

p. 102]. We have a commutative diagram

0 → (ZX)G → (ZY )G → EG → 0




y





y





y
t

0 → (ZX)G → (ZY )G → EG → 0,

where the vertical maps are given by the action of the trace element t =
∑

g∈G g ∈

ZG. Since H1(G,E) is a torsion group, and (ZX)G is torsion free, the top row is of

the diagram is exact. The two left most vertical maps are injective with cokernels

Ĥ0(G, ZX) and Ĥ0(G, ZY ). Since H1(H, Z) = 0 for any finite group H, Shapiro’s

lemma [3, p. 99] implies that H1(G, ZX) = 0, so the bottom row is also exact. Since

j(T ) = #Ĥ0(G, ZT ) for any G-set T , we see with the snake lemma that

#(EG)

#(EG)
=

#Ker t

#Cok t
=

#Ĥ0(G, ZX)

#Ĥ0(G, ZY )
=

j(X)

j(Y )
.

This shows (3). Note that CokZG
0 (ϕ) is Z-dual of ϕ, so that it is injective with cokernel

of order #E. It remains to show (2). The map CokZ
0 (ϕ) is the Z-dual of the homo-

morphism (ZX)G → (ZY )G of free abelian groups, which we just saw is injective with

cokernel EG. Thus, (2) follows. ¤
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Let us recall the definition of the regulator. Let F be a finite étale Q-algebra with ring

of integers OF . By an infinite prime p of F we mean an infinite prime p of a component

F0. Such a prime p defines a map || · ||p: F → R≥0 which is defined by first projecting

to F0 and then taking the normalized absolute value. Let S(F ) be a set of infinite

primes of F which for every component F0 of F contains all but exactly one infinite

prime of F0. The traditional definition of the regulator R(U)of a subgroup U of O∗
F of

finite index is the following: take ǫ1, . . . , ǫr ∈ U that generate U/Utors, and let R(U)

be the absolute value of the determinant of the real r × r-matrix (log ||ǫi||pj
)i,j , where

S(F ) = {p1, . . . , pr}.

Throughout this section will will write (M,N) for HomG(M,N) when M and N

are ZG-modules. For any G-set T and G-stable subgroup U of finite index in O∗
K we

write

R̃(T,U) =
R((ZT,U))

#(ZT,U)tors
,

where the regulator is computed in the étale Q-algebra KT = (Z[T ],K).

(3.2) Proposition. Let U be a G-stable subgroup of finite index in O∗
K . Then

Cok
(K⊗R)∗

U (ϕ) has finite kernel and cokernel and we have

χ
(K⊗R)∗

U (ϕ) =
#(EG)

(#E)d
·

R̃(Y,U)

R̃(X,U)
.

Proof. The first step of the proof is to show that the validity of (3.2) does not depend

on the choice of U . Suppose that V ⊂ U is a sub-ZG-module of finite index. For any

subgroup H of G we have We have R(VH)/R(UH) = [VH/VH
tors : U/UH

tors], which by

the snake lemma implies that

R(VH)

#VH
tors

= [UH : VH ]
R(UH)

#UH
tors

.

For any G-set T we deduce that

(3.3) R̃(T,V) = [(ZT,U) : (ZT,V)] R̃(T,U).

We have a commutative diagram with exact rows

0 → (ZY,V) → (ZX,V) → • → 0

∩ ∩




y
CokU

V
(ϕ)

0 → (ZY,U) → (ZX,U) → • → 0.
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By first using (3.3) for T = X and for T = Y , and then the snake lemma for the

diagram above, we see that

R̃(Y,V)

R̃(X,V)
χ

(K⊗R)∗

V (ϕ) =
R̃(Y,U)

R̃(X,U)

[(ZY,U) : (ZY,V)]

[(ZX,U) : (ZX,V)]
χ

(K⊗R)∗

V (ϕ)

=
R̃(Y,U)

R̃(X,U)

χ
(K⊗R)∗

V (ϕ)

χU
V (ϕ)

=
R̃(Y,U)

R̃(X,U)
χ

(K⊗R)∗

U (ϕ).

This shows that (3.2) holds for all U if and only if it holds for U = O∗
K .

It remains to show (3.2) for a single choice of U , and we will take U = (O∗
K)2w(K).

Then U is G-stable and we have

(1) U has no torsion;

(2) for every field embedding σ: K → C we have σ(U) ∩ R ⊂ R>0.

To see that (2) holds, note that squaring gives and isomorphism (O∗
K)w(K) ∼

−→U and

take invariants under complex conjugation.

The exponential map K ⊗R → (K ⊗R)∗ is given by x 7→
∑∞

n=0 xn/n!. This map

is a homomorphism of groups, whose image is the set of elements of (K ⊗ R)∗ which

are positive on all real components of K ⊗ R. In particular, its cokernel has order 2s,

where s is the number of real primes of K.

Define logU to be the inverse image in K ⊗R of the subgroup U of (K ⊗R)∗. The

fact that U is torsion free and totally positive in the sense of (2) above, implies that

the map (logU)H → UH is surjective for every subgroup H of G. One deduces that for

every G-set T the group CokK⊗R
logU (T ) embeds as a subgroup of Cok

(K⊗R)∗

U (T ) of index

2s(T ) where s(T ) is the number of real primes of KT . Since s(X) = s(Y ) it follows that

(3.4) χ
(K⊗R)∗

U (ϕ) = χK⊗R
logU (ϕ).

Viewing Z as a subring of K ⊗ R we define a lattice

W = Z ⊕ logU ⊂ K ⊗ R,

which is discrete and cocompact in K ⊗ R. We will compare the lattice W to a

standard lattice Λ ⊂ K ⊗ R which is defined as follows. For an infinite prime p of K

let Λp = Z ⊂ R = Kp when p is real, and let Λp = Z ⊕ 1+2πi
2 Z ⊂ C ∼= Kp when p

is complex (this does not depend on the choice of the topological field isomorphism

C ∼= Kp). Setting Λ =
∏

p
Λp ⊂

∏

p
Kp = K ⊗ R we obtain a G-stable discrete

cocompact lattice in K ⊗R. It is easy to check that Λ is free as a Z[G]-module of rank

d = [KG : Q].
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For any Haar measure on K ⊗ R we now claim that

covol W

covol Λ
= [K : Q]R(U).

To see this, consider the kernel of the exponential map

I =
⊕

p complex

2πiZ ⊂
⊕

p|∞

Kp = K ⊗ R,

which is contained in both W and in Λ. Clearly, Λ/I is torsion free, and since U has

no torsion, W/I is also torsion free. In order to compare the covolumes of W and Λ we

can therefore do an orthogonal projection onto the subspace
∏

p
R ⊂

∏

p
Kp = K ⊗ R.

Suppose that K has r1 real primes and r2 complex primes, and choose some numbering

p1, . . . , pr of them with the real primes first and r = r1 +r2. Then the projection of the

lattice Λ is Zr1 ⊕ ( 1
2Z)r2 . For an infinite prime p of K let | · |p be the absolute value of

Kp extending the usual abolute value on R, and let || · ||p = | · |
[Kp:R]
p . The image of W

is generated by the vector (1, . . . , 1), and the vectors (log |ǫi|pj
)r
j=1 where ǫ1, . . . , ǫr−1

is a Z-basis for U . By some row operations and the product formula
∑

p|∞ log ||ǫ||p = 0

for ǫ ∈ O∗
K , we deduce that

covol W

covol Λ
= 2r2

∣

∣

∣

∣

∣

∣

∣

∣

1 log |ǫ1|p1 · · · log |ǫr−1|p1

...
...

...

1 log |ǫ1|pr
· · · log |ǫr−1|pr

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

[Kp1 : R] log ||ǫ1||p1 · · · log ||ǫr−1||p1

...
...

...

[Kpr
: R] log ||ǫ1||pr

· · · log ||ǫr−1||pr

∣

∣

∣

∣

∣

∣

∣

∣

= (r1 + 2r2)

∣

∣

∣

∣

∣

∣

∣

∣

log ||ǫ1||p1 · · · log ||ǫr−1||p1

...
...

log ||ǫ1||pr−1
· · · log ||ǫr−1||pr−1

∣

∣

∣

∣

∣

∣

∣

∣

= [K : Q] R(U).

The next step is to obtain a version of this result for the étale algebras KX and KY .

If H is a subgroup of G then the standard isomorphism (K ⊗R)H = KH ⊗R identifies

the standard lattice ΛH with the standard lattice for KH in KH ⊗ R. Moreover, it

identifies WH = (Z ⊕ (logU)H) with Z ⊕ log(UH), where this second “log” is the one

for the field KH . The equality above, applied now to KH rather than K therefore

gives

covol(WH)

covol(ΛH)
= [KH : Q] R(UH) =

[K : Q]

j(G/H)
R(UH).
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It follows that for any G-set T we have

covol(ZT,W )

covol(ZT, Λ)
=

R(ZT,U) · [K : Q]#(G\T )

j(T )

for any Haar measure on the real vector space (ZT,K ⊗ R), where we define j′(T ) to

be [K : Q]#(G\T )/j(T ). Now consider the diagram

(ZY,W ) ⊂ (ZY,K ⊗ R) ⊃ (ZY,Λ)




y
CokW

0
(ϕ)





y

∼=





y
CokΛ

0
(ϕ)

(ZX,W ) ⊂ (ZX,K ⊗ R) ⊃ (ZX, Λ).

Choose a Haar measure on (ZX,K ⊗ R) and consider the four lattices as lattices in

this real vector space. Then we have

χW
0 (ϕ) =

covol(ZY,W )

covol(ZX,W )
=

j(X)[K : Q]#(G\Y )R(ZY,U)

j(Y )[K : Q]#(G\X)R(ZX,U)

covol(ZY,Λ)

covol(ZX, Λ)

=
j(X)R(ZY,U)

j(Y )R(ZX,U)
χΛ

0 (ϕ).

For the last equality we used that X and Y have the same number of G-orbits. Since

Λ is a free ZG-module of rank d, and W = Z⊕ logU , we can deduce with Lemma (3.1)

that

χlogU
0 (ϕ) =

χW
0 (ϕ)

χZ
0 (ϕ)

=
(χZG

0 (ϕ))d

χZ
0 (ϕ)

j(X)

j(Y )

R(ZY,U)

R(ZX,U)
=

#Ed

#EG

R(ZY,U)

R(ZX,U)
.

We have χK⊗R
logU (ϕ)χlogU

0 (ϕ) = χK⊗R
0 (ϕ) = 1. With (3.4) this completes the proof of

(3.2). ¤

Proof of (2.1). For every G-set T we have a short exact sequence

0 → Cok
(K⊗R)∗

O∗

K
(T ) → CokC

U (T ) → CokC
J (T ) → 0.

Using (3.2) with U = O∗
K and the fact that CokC

J (T ) is the class group of KT , we see

that CokC
U (ϕ) has finite kernel and cokernel and that

χC
U (ϕ) = χ

(K⊗R)∗

O∗

K
(ϕ)χC

J (ϕ) =
#(EG)

(#E)d

L(KX)

L(KY )
.

This shows (2.1).
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4. A cohomological expression

The goal of this section is to prove (2.3) and (2.4). Let p be a prime number, let

Op = OK ⊗Z Zp =
∏

p|p Op, where p runs over the primes of K lying over p. Let

n = np ≥ 0 be an integer which is big enough to ensure that the exponential map

defines an isomorphism

expp: pnOp
∼
−→ 1 + pnOp x 7→

∑

k≥0

xk/k!.

Since Op ⊗ Q is a free module of finite rank over QpG the ZpG-module Op has a free

sub-ZpG-module Λp of finite index.

(4.1) Lemma. We have χ
O∗

p

1+pnOp
(ϕ) = 1 and χ

Op

Λp
(ϕ) = 1.

Proof. The index of 1 + pnOp(F ) in Op(F )∗ is p(n−1)[F :Q] times the product over all

primes p of F lying of p of (1− 1
Np

). But for every integer q the algebras KX and KY

have the same number of primes q with Nq = q. See [6, p. 391] for a proof. Thus,

Cok
O∗

p

1+pnOp
(ϕ) is a map between finite groups of the same cardinality.

The second statement is a reformulation of Fröhlich’s result that as a ZG-module

the ring of integers OK is “factor equivalent” to a free module; see [9, 6]. More

specifically, the map Cok
Op

Λp
(ϕ) is a map between finite groups of the same cardinality

by [6, Thm. 3.1]. ¤

Proof of (2.3). We define V to be the product over all prime numbers p of groups Vp,

where we take Vp = O∗
p if p is unramified in K, and Vp = expp(p

npΛp) for finitely many

p that are ramified in K. Then V is a sub-ZG-module of U of finite index. By using

the fact that taking cohomology commutes with taking products, Shapiro’s lemma, and

the fact that in the local unramified case the group of local units is cohomologically

trivial [3, p. 131], one sees that V is cohomologically trivial. By Lemma (4.1) we have

χU
V (ϕ) = 1 which gives χC

V (ϕ) = χC
U (ϕ). This proves (2.3). ¤

(4.2) Lemma Let M be a finite Z[G]-module and let i be a non-negative integer.

Then the homomorphism

f i
M : Exti

G(M,V ) → Exti
G(M,C)

has finite kernel and cokernel.

Proof. Let n be a positive integer annihilating M . Recall that C/U is the padded

Picard group P , which fits in an exact sequence

0 → (K ⊗ R)∗/O∗
K → P → Cl(K) → 0.
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Thus, P has finite n-torsion, and P/nP is also finite and we have short exact sequences

0 → F1 → P → nP → 0

0 → nP → P → F2 → 0,

where the composite map P → nP → P is multiplication by p, and F1 and F2 are finite

Z[G]-modules. Note that Exti
G(M,F ) is finite if F is finite: if A• is a resolution of M

by finitely generated projective ZG-module, then Exti
G(M,F ) is the ith cohomology

group of the complex HomG(A•, F ), which consists of finite groups. If we apply the

functors Exti
G(M,−) to the two short exact sequences, then we obtain two long exact

sequences and we see that the maps Exti
G(M,P ) → Exti

G(M,nP ) and Exti
G(M,nP ) →

Exti
G(M,P ) both have a finite kernel and a finite cokernel. Therefore, the composition

Exti
G(M,P ) → Exti

G(M,P ) has a finite kernel and a finite cokernel. But this is the

multiplication-by-n-map, and since nM = 0 it is the zero map. Thus, Exti
G(M,P ) is

finite. By writing down the long exact sequence for 0 → U/V → C/V → C/U → 0,

and using that Exti
G(M,U/V ) is finite, we see that Exti

G(M,C/V ) is finite for every i.

With the long exact sequence associated to 0 → V → C → C/V → 0 the lemma now

follows. ¤

Proof of (2.4). Since V is cohomologically trivial, we have Ext1G(ZX,V ) = 0. It

is a general result in idele cohomology that idele class groups have trivial first Galois

cohomology, so we also have Ext1G(ZX,C) = 0. We now have the following diagram

with exact rows and columns.

0 0




y





y

HomG(E, V )
f0

E−→ HomG(E,C)




y





y

0 −→ HomG(ZY, V ) −→ HomG(ZY,C) −→ χC
V (Y ) −→ 0





y





y





y
CokC

V (ϕ)

0 −→ HomG(ZX,V ) −→ HomG(ZX,C) −→ χC
V (X) −→ 0.





y





y

Ext1G(E, V )
f1

E−→ Ext1G(E,C)




y





y

0 0

We just saw that f0
E and f1

E have finite kernels and cokernels. The snake lemma implies

that χC
V (ϕ) has a finite kernel and cokernel as well, and we see that

ψ(E) =
#Cok f1

E

#Ker f1
E

#Ker f0
E

#Cok f0
E

= χC
V (ϕ).

11



Combining this result with (2.3) one sees that (2.4) holds. ¤

5. Homological algebra and class field theory

The purpose of this section is to prove (2.6). Throughout this section, p denotes a

prime number, and we assume that G is cyclic modulo p.

(5.1) Proposition. Let G be a group that is cyclic modulo p and of order divisible

by p, and let E be a simple ZpG-module. Then we have

Ext2G(E, V ) = 0 and Ext2G(E,C) ∼= EG.

Proof. First consider the special case that E = Fp, the cyclic group of order p with

trivial G-action. By computing the long exact sequence of Ext-groups associated to

the short exact sequence

0 −→ Z −→ Z −→ E −→ 0,

we find a short exact sequence

0 −→ H1(G,M) ⊗ Fp −→ Ext2G(Fp,M) −→ H2(G,M)[p] −→ 0

for every ZG-module M . Here the notation [p] means that we take the p-torsion

subgroup. Since V is cohomologically trivial, we see that Ext2G(Fp, V ) = 0. A result of

Nakayama and Hochschild, which is a corner stone of cohomological class field theory,

tells us that H2(G,C) is cyclic of order #G. See [11] or [3, p. 196/197] for details. Since

G is assumed not to be cyclic, p divides the order of G, and we see that H2(G,C)[p] has

order p. We have H1(G,C) = 0, so the special case of (5.1) where E = Fp is proven.

Let N be a p-Sylow subgroup of G. Then N is normal in G and G/N is cyclic

of order coprime to p. A simple Fp[G/N ]-module is simple as a Zp[G]-module, and in

fact all simple Zp[G]-modules arise this way. To see this, note first that by Nakayama’s

lemma such simple modules are annihilated by p, and then use [4, Prop. (17.16)]. The

ring Fp[G/N ] is a product of finite fields E1 × E2 × · · · × Es. Thus, Fp[G/N ] is the

direct sum of the system of representatives {E1, E2, . . . , Es} of the isomorphism classes

of all simple Zp[G]-modules. For every Z[G]-module M we therefore have

s
⊕

i=1

Ext2G(Ei,M) = Ext2G(Fp[G/N ],M) = Ext2N (Fp,M).

By combining the special case we did already for the groups G and N , we see that

Ext2G(Ei, V ) = 0 for all i and that Ext2G(Ei, C) = 0, when Ei does not have trivial

G-action. This completes the proof of (5.1). ¤
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We now proceed to compute ψ(E) for simple ZpG-modules E.

(5.2) Lemma. Suppose that G is cyclic module p, and that E is a finite ZpG-module

which is either simple, or has trivial G-action. Then

(1) there exists a G-set T and a short exact sequence of ZpG-modules

0 −→ ZpT −→ ZpT −→ E −→ 0;

(2) we have ψ(E) = #(EG)/(#E)d.

Proof. To show (1), first note that we can take a set T with trivial G-action when

the G-action on E is trivial. We can therefore assume that E is simple. Let N be the

normal p-Sylow subgroup of G. We saw in the previous proof that N acts trivially on

E, so E is a module for the commutative ring R = Zp[G/N ]. But since G/N is cyclic

of order coprime to p, this ring R is a finite product of discrete valuation rings, and in

particular, R is a principal ideal ring. Since E is the residue field of a maximal ideal

of R, this implies that we can make a short exact sequence as in (1) with T = G/N .

This proves (1).

To show (2) note first that the canonical map

Zp ⊗Z HomZG(ZT, ZT ) −→ HomZpG(ZpT, ZpT )

is an isomorphism. Since E is finite, one sees from this and part (1) that there is an

exact sequence of ZG-modules

0 −→ ZT −→ ZT −→ E′ −→ 0,

so that E′ is finite and E′ ⊗Z Zp is isomorphic as a ZpG-module to E. From the

definition of ψ(E) one sees that ordp(ψ(E)) = ordp(ψ(E′)). Applying (2.5) we see that

ψ(E′) = #(E′G)/(#E′)d, and (5.2) follows by taking p-parts. ¤

(5.3) Proposition. If E is a finite ZpG-module, and G is cyclic modulo p, but not

cyclic, then ψ(E) is an integral multiple of #(EG)/(#E)d.

Proof. We use induction on the length of E. Note that EG is a sub-ZG-module of

E, and that (5.3) holds for EG. If E 6= EG then there is a short exact sequence of

ZpG-modules

0 −→ D −→ E −→ S −→ 0

with S simple and EG contained in the image of D. For ZG-modules M and N and

i ∈ Z≥0 let us write Exti
G(M,N) = M iN as shorthand. Since S2V = 0 by Lemma

(5.1) we obtain the following diagram with exact rows

0 −→ S0V −→ E0V −→ D0V −→ S1V −→ E1V −→ D1V −→ 0




y





y





y





y





y





y





y

0 −→ S0C −→ E0C −→ D0C −→ S1C −→ E1C −→ D1C
δ

−→ S2C.
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The kernels and cokernels of the vertical maps are finite by (4.2), and since the ho-

mology groups of the complex of kernels are isomorphic to the homology groups of the

complex of cokernels (shifted by 2), it follows with the definition of ψ that

ψ(E) = ψ(D)ψ(S)/#Im δ.

By induction, (5.3) holds for D and S, so

ψ(E) =
#(DG)

(#D)d

#(SG)

(#S)d

#Cok δ

#(S2C)
=

#(EG)

(#E)d
#Cok δ.

This last equality follows from the fact that #EG = #DG and that #(SG) = #(S2C)

by (5.1). This proves (5.3). ¤

Proof of (2.6). If G is cyclic, then X ∼=G Y and the statement follows from (2.5). So

assume that G is not cyclic, so that (5.3) applies.

Let E be the cokernel of ϕ, and let Ep be its p-part. Using (2.4) we see that

ordp

(

L(KX)

L(KY )

)

= ordp

(

ψ(E)
#Ed

#EG

)

= ordp

(

ψ(Ep)
#Ed

p

#EG
p

)

≥ 0,

where the inequality follows from (5.3). But switching the role of X and Y gives the

opposite inequality, so we have equality.

(5.4) Remark. It follows from the argument above that the map δ in the proof of

(5.3) is in fact surjective. We know of no direct way (i.e., no way not using (2.4)) to

show this.

6. Conlon induction

In this section we show that (2.6) implies (1.1) by purely representation theoretic

arguments. Let G be a finite group, and let C be a set of representatives of the

conjugacy classes of cyclic subgroups of G. By character theory (see [14, Chap. XVIII,

Thm. 2.3]) it follows that the isomorphism class of the QG-module QT for any G-set

T is determined by the vector vT = (#TC)C∈C ∈ QC . For each C ∈ C the vector vG/C

has a non-zero coordinate at C ∈ C, and all other non-zero coordinates occur at C ′ ∈ C

with #C ′ < #C. By induction on n it follows that for each n ∈ Z the vectors vG/C

with C ∈ C and #C < n are linearly independent. Comparing dimensions we see that

the vectors vG/C with C ∈ C generate QC as a Q-vector space. This implies that for

any G-set T there is a positive integer r and two G-sets Z and Z ′ for which all point

stabilizers are cyclic, so that there is an isomorphism of QG-modules

(QT )r ⊕ QZ ∼= QZ ′.
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We write this as rT ∪ Z ∼ Z ′. This is a special case of Artin’s induction theorem [4,

§15A].

We will need a p-adic analog of this result known as Conlon’s induction theorem

[4, §81B]. Conlon’s induction theorem says the following. For each G-set T and each

prime number p there is a positive integer r and two G-sets Z and Z ′ for which all

point stabilizers are cyclic modulo p, so that there is an isomorphism of ZpG-modules

(ZpT )r ⊕ ZpZ ∼= ZpZ
′.

Let us write this as rT ∪ Z ∼p Z ′.

We are now ready to prove (1.1) in the general case. It follows from (2.1) that

L(KX)/L(KY ) is a positive rational number. Let p be a prime number. By Conlon

induction there are G-sets T , T1, T2 for which all point stabilizers are cyclic modulo p,

and there is a positive integer r, so that

T1 ∼p T ∪ rX ∼ T ∪ rY ∼p T2.

By applying (2.2) to the outer two linear equivalences, we see that

ordp(L(KX)/L(KY )) =
1

r
ordp(L(KT1

)/L(KT2
)).

For every component F of KT1
or KT2

the group H = Gal(K/F ) is cyclic modulo p.

We now apply Artin induction to the extension F ⊂ K for all these components F :

this gives G-sets Z, Z1, Z2 for which all point stabilizers are cyclic, and a positive

integer s, so that Z ∪ sT1 ∼ Z1 and Z ∪ sT2 ∼ Z2. What is special about these linear

equivalences is that they arise from only applying Artin induction to groups which are

cyclic modulo p, and this means by (2.6) that we have

s ordp(L(KT1
)/L(KT2

)) = ordp(L(KZ1
)/L(KZ2

)).

But now Z1 and Z2 are linearly equivalent G-sets with cyclic point stabilizers. Since the

vectors vG/C above are linearly independent when C ranges over a representative set

of conjugacy classes of cyclic subgroups of G, this implies that Z1 and Z2 are isomor-

phic as G-sets. This implies that L(KZ1
) = L(KZ2

), so that ordp(L(KX)/L(KY )) =

ordp(L(KT1
)/L(KT2

)) = 0. Since p was arbitrary, it follows that L(KX) = L(KY ).

This completes the proof of (1.1).
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