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Abstract. Let K be a complete field with respect to a discrete valuation and let L be a finite Galois

extension of K. If the residue field extension is separable then the different of L/K can be expressed in

terms of the ramification groups by a well-known formula of Hilbert. We will identify the necessary correction

term in the general case, and we give inequalities for ramification groups of subextensions L′/K in terms of

those of L/K. A question of Krasner in this context is settled with a counterexample. These ramification

phenomena can be related to the structure of the module of differentials of the extension of valuation rings.

For the case that [L:K]=p2, where p is the residue characteristic, this module is shown to determine the

correction term in Hilbert’s formula.
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1. Introduction.

By a local field we mean a complete field with respect to a discrete valuation. In this
note we study ramification groups, the different and differentials for finite separable
extensions of local fields with inseparable residue class field extensions.

For the case that the residue class field extension is separable, which we will call
the classical case, there is a beautiful theory of ramification groups for which we refer
to Serre [11, ch. III, IV]. The classical results, such as Hilberts formula for the different
in terms of ramification groups, do not hold in general. In the classical case one has the
“upper numbering” of ramification groups [11, ch. IV, §3], which is preserved under
restriction to subextensions, but the examples in (3.7) below show that no such re-
numbering exists in our context.

Known results on the non-classical case include Kato’s class field theory for “n-
dimensional complete discrete valuation fields,” see [6] and [4]. In Zariski-Samuel [12,
vol. I, ch. V, §10] two intertwined filtrations with ramification groups are defined, and
some classical results on where the jumps can be, have been generalized to this double
filtration [2]. Krasner [7] focuses on the different, and some of the present results can
be inferred from his paper.

For any local field K we denote the prime ideal by pK and the residue class field
by K. Let vK be the normalized valuation on K and let the valuation of a fractional
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ideal of K be the valuation of a generator, so that vK(pK) = 1. In this introduction
the results will be formulated for Galois extensions L/K with Galois group G. With
the exception of section 5, all results will be shown for non-Galois extensions too.

In the classical case, the different DB/A can be expressed in terms of ramification
groups by the following formula that is due to Hilbert

(1) vL(DB/A) =
∞∑

i=0

(#Gi − 1).

Recall that the ramification groups Gi are defined by Gi = {σ ∈ G : iG(σ) ≥ i + 1}
where iG(σ) = inf{vL(σx − x) : x ∈ B}. Hilbert’s formula holds under the weaker
condition that B is monogenic over A, i.e., that B = A[α] for some α ∈ B. For the
non-monogenic case we will show that one needs to add a term on the left hand side
of (1), namely the smallest integer n for which there is an α ∈ B with pn

L ⊂ A[α]. We
call the ideal pn

L the monogenity conductor of B over A.
Suppose L′ is an intermediate field of the extension L/K corresponding to a normal

subgroup H of G. In the classical case, the ramification numbers iG/H(τ) of L′/K can
be computed from the iG(σ) by the well-known formula

(2) iG/H(τ) =
1
e′

∑
σ 7→τ

iG(σ),

where e′ is the ramification index of L over L′. Again, the same formula holds if B

is monogenic over A. We can only give inequalities for the general case (see (3.6)),
and examples showing that they are optimal if one only wants to take the ramification
groups into account. It follows that the ramification groups of L′ over K are not in
general determined by those of L over K.

Krasner [7] raises a question which in our terminology asks whether an extension
for which the monogenity conductor is multiplicative in towers, is necessarily mono-
genic. We give an example that shows that this is not the case (see (3.5) below).

In section 4 we look at the module ΩB/A of A-differentials of B. Using derivations
rather than differentials, Moriya [10] showed that the length of the B-module ΩB/A is
vL(DB/A). Such a statement holds in the much more general ring theoretic context of
locally complete intersections [8, prop. 10.17]. We will give an alternative proof, and
we show that for any ring homomorphism Λ → A, there is a canonical short exact
sequence of B-modules:

0 → ΩA/Λ ⊗A B → ΩB/Λ → ΩB/A → 0.

Like Moriya’s proof, our proof is a reduction to the monogenic case. The module ΩB/A

contains more information than the different, namely its structure as a B-module. We
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will show that the number of elements needed to generate ΩB/A as a B-module is
equal to the number of elements needed to generate B as an algebra over A if B is not
unramified over A.

One can hope that there is some relation between the correction terms needed in
(1) and (2) and the B-module structure of ΩB/A. In section 5, we give such results
under the assumption that L is Galois over K of degree p2, where p is the residue
characteristic.

2. The different and the monogenity conductor.

Let L/K be a finite separable extension of local fields with valuation rings A ⊂ B.
We recall the definition and some basic properties of the different DB/A of B over A.
For any subset S of L its complementary set S† is defined by S† = {x ∈ L : ∀y ∈ S :
TrL/K(xy) ∈ A}. The different DB/A of L over K is the inverse ideal of the fractional
ideal B†. Let α ∈ B with L = K(α). It is a well-known result due to Euler, that
A[α]† = f ′(α)−1A[α], where f ′ is the derivative of the minimal polynomial f of α over
K. We say that B is monogenic over A if there is an α with B = A[α]. The different
can then be computed easily, namely DB/A = f ′(α)B.

In the classical case, i.e., if L is separable over K, then B is monogenic over A.
See [11, ch. III, §6, prop. 12] for a proof. Without the separability condition this need
not hold. However, we always have a monogenic extension of rings of integers if [L : K]
is prime, because then the ring-generator can be taken to be either a prime element or
a representative of a generator of the residue field extension.

(2.1) Notation. Fix a Galois extension M of K that contains L, and let C be
the valuation ring of M . By a K-embedding we mean a K-algebra homomorphism
between extension fields of K. For any K-embedding σ:L → M let aL(σ) be the C-
ideal generated by the elements x − σx with x ∈ B. If L/K is normal we may take

M = L and then aL(σ) = p
iG(σ)
L . Thus the ideals aL(σ) provide an easy way to consider

“ramification numbers” for non-normal extensions (cf. Deligne [1]). The monogenity

conductor rB/A of B over A is defined as the largest ideal of B that is contained in
A[α], for some α ∈ B. Note that A[α] is open in L if L = K(α), so rB/A 6= 0.

(2.2) Theorem. We have

DB/ArB/A · C =
∏
σ 6=1

aL(σ),

where the product ranges over all K-embeddings of L in M that are not the inclusion.
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Proof. Let α ∈ B with L = K(α). Define the conductor rα of A[α] in B as the largest
ideal of B that is contained in A[α], so rα = {x ∈ B : xB ⊂ A[α]}. As in [11, ch. III
§6], we show that rα ·DB/A = f ′(α)B, where f is the minimal polynomial of α over K:

x ∈ rα ⇐⇒ xB ⊂ A[α] ⇐⇒ f ′(α)−1xB ⊂ A[α]†

⇐⇒ TrL/K(f ′(α)−1xB) ⊂ A ⇐⇒ f ′(α)−1x ∈ D−1
B/A.

Since rB/A = rα for some α, one inclusion of the theorem now follows from

f ′(α) =
∏
σ 6=1

(α− σ(α)) ∈
∏
σ 6=1

aL(σ).

To finish the proof, we need to show that there is an α ∈ B for which the ideal on
the right is generated by f ′(α), for it then follows from the inclusion that we showed
already, that rα = rB/A. Such an element α is provided by the following lemma.

(2.3) Lemma. There is an element α ∈ B such that for all K-embeddings σ:L → M

we have aL(σ) = (α− σα)C.

Proof. If B is monogenic, then we may take α to be a generator of the ring extension,
because for any C-ideal a the question whether σ and the inclusion induce the same
A-algebra homomorphism B → C/a, then depends only on the two images of α.

Now assume that B is not monogenic over A. Then K is imperfect and in particular
infinite, because the residue field extension must be inseparable. For each σ:L → M

that is not the inclusion, the mapping from V = B/pKB to aL(σ)/pMaL(σ) induced
by 1−σ is a non-zero K-linear map, and for each α ∈ B the element (α mod pKB) lies
in the kernel Vσ of this map if and only if (1− σ)(B) 6⊂ (α− σα)C. It follows from the
well-known fact that a vector space over an infinite field is not a finite union of strict
subspaces, that there always exists an element x ∈ V that is not contained in Vσ for
any σ. Any representative α of x in B satisfies our conditions. �

(2.4) Remark. For a Galois extension L/K with Galois group G the theorem says

vL(DB/A) + n =
∑
σ 6=1

iG(σ) =
∞∑

i=0

(#Gi − 1),

where n is the smallest integer for which there is an α ∈ B with pn
L ⊂ A[α].
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3. Ramification groups of subextensions.

Let K ⊂ L′ ⊂ L be finite separable extensions of local fields with valuation rings
A ⊂ B′ ⊂ B. We fix a finite Galois extension M of K that contains L with valuation
ring C and we use the notation aL(σ) as in (2.1).

(3.1) Proposition. For all K-embeddings τ :L′ → M we have

aL′(τ) |
∏
σ 7→τ

aL(σ),

where the product ranges over all K-embeddings σ:L → M with σ|L′ = τ .

Proof. By (2.3) there exists an element α ∈ B such that aL(σ) = (α−σα)C for all σ.
Let f ∈ B′[X] be the minimal polynomial of α over L′, and denote the polynomial that
one obtains from f by applying τ to all its coefficients by τf . Then f =

∏
σ(X − σα)

with σ ranging over all L′-embeddings of L in M , and τf =
∏

σ 7→τ (X − σα). Since
τf − f has coefficients in aL′(τ), we deduce∏

σ 7→τ

aL(σ) =
∏
σ 7→τ

(α− σα) · C = (τf)(α)C = (τf − f)(α)C ⊂ aL′(τ). �

For K-embeddings τ of L′ in M that are not the inclusion, define the ideal d(τ) of C

by d(τ)aL′(τ) =
∏

σ 7→τ aL(σ).

(3.2) Proposition. We have

rB/B′rB′/A

∏
τ 6=1

d(τ) = rB/A · C,

with τ ranging over all K-embeddings of L′ in M that are not the inclusion.

Proof. We can group the factors aL(σ) in (2.2) according to the restriction σ|L′ . Using
(2.2) for L/L′ and K/K ′ and the definition of d(τ) we get

DB/ArB/AC = rB/B′DB/B′rB′/ADB′/A

∏
τ 6=1

d(τ).

Now use the transitivity of the different to cancel all three differents. �

(3.3) Corollary. We have rB/B′rB′/A | rB/A. If B is monogenic over A, then B′ is

monogenic over A, equality holds in (3.1), and d(τ) = (1),

Proof. The first statement follows from the fact the ideals d(τ) are integral. If B is
monogenic over A then rB/A = (1), and as monogenity conductors are integral ideals
too, it then follows that all ideals on the left-hand side of (3.2) are all equal to (1). �
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(3.4) Corollary. If L′/K is unramified then equality holds in (3.1) and rB/A = rB/B′ .

Proof. We can choose α ∈ L′ with minimal polynomial f ∈ A[X] such that L′ = K(α),
and f mod pK is separable. Let τ :L′ → M be a K-embedding which is not the inclusion.
Since the zeros of f in M are distinct in M , the map L′ → M induced by τ , is not the
inclusion. Therefore, aL′(τ) is the unit ideal, and d(τ) = (1). The valuation ring of L′

is monogenic over A, so it follows from (3.2) that rB/A = rB/B′ . �

(3.5) A question of Krasner. Krasner [7] defines the “arithmetic different” δB/A

as the B-ideal generated by the elements f ′α(α), where α ranges over the elements of
B that generate L as a field extension of K, and fα is the minimal polynomial of α

over K. It follows from the proof of (2.2) that δB/A = DB/ArB/A, and with (3.1) it
follows that δB/B′δB′/A | δB/A (cf. [7, thm. 9]). In Krasner’s terminology, the extension
L/K is said to be “Dedekindian” if δB/A = DB/A, and it is called “Hilbertian” if
δB/A = δB/B′δB′/A for all intermediate fields L′. Krasner asks the question whether
all “Hilbertian” extensions are “Dedekindian.” The answer is no, and to show this we
will construct a non-monogenic extension without intermediate fields.

Suppose k is a field of characteristic p > 0 with elements a, b ∈ k such that
k(a1/p, b1/p) has degree p2 over k. For instance, one may take k = Fp(U, V ) with
a = U and b = V . Let K = k((t)) be the local field of Laurent series with valuation
vK(

∑
ait

i) = inf{i : ai 6= 0}, and valuation ring A = k[[t]]. Consider the separable
polynomial

f(X) = Xp2
+ tp

2
Xp − tp

2
X − tpb− ap ∈ K[X]

and let L = K(α) where α is a zero of f in the separable closure Ksep of K. Then α

is integral and αp ≡ amod pL. Put β = (αp + tpα − a)/t, then βp = tp
2−pα + b, so

that β is integral and βp ≡ b mod pL. It follows that L ⊃ k(a1/p, b1/p), so that f is
irreducible, and B is not monogenic over A.

To answer Krasner’s question we still need to show that there are no intermediate
fields of L/K. Let α′ be a zero in Ksep with x = α − α′ 6= 0. Since f is an additive
polynomial, x is a zero of

Xp2
+ tp

2
Xp − tp

2
X = X(Xp2−1 + tp

2
Xp−1 − tp

2
).

One first sees that v(x) > 0 and then deduces that v(xp2−1) = v(tp
2
), so that K(x)/K

is a totally ramified extension of degree p2 − 1. This implies that K(α, α′) = K(α, x)
has degree p2(p2 − 1) over K. If there was an intermediate field L′ of L/K, then α′

could be taken to be conjugate with α over L′, and the degree of K(α, α′) over K would
be at most p2(p− 1).
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(3.6) Inequalities. In addition to the bound on aL′(τ) in (3.1) one has an obvious
bound on the other side: choose an extension σ of τ to L, then aL(σ) | aL′(τ).

We can reformulate this if L is Galois over K with group G and L′ corresponds
to a normal subgroup H of G. If e′ is the ramification index of L over L′, then the
restriction of vL to L′ is e′vL′ , so (3.1) and the bound given above can be stated as

1
e′

sup
σ 7→τ

iG(σ) ≤ iG/H(τ) ≤ 1
e′

∑
σ 7→τ

iG(σ).

By (3.3) we have equality on the right in the monogenic case.

(3.7) Examples. To conclude this section, we give examples that show that these are
the best bounds possible if one only wants to consider the ideals aL(σ). Furthermore,
we will show that contrary to the classical case, the ramification numbers of L/K do
not determine those of L′/K.

Let k be an imperfect field of characteristic p, and let K be the field k((t)) of Laurent
series in t with coefficients in k. Fix an integer s ∈ {1, . . . , p} and let L′ = K(π) where
πp− ts(p−1)π = t. Then L′ is a Galois extension of K of degree p, and the Galois group
is generated by the automorphism τ of L′ over K defined by π 7→ π + ts. Note that L′

is wildly ramified over K with prime element π, so its valuation ring is B′ = A[π].
Suppose that a ∈ k with a 6∈ kp, and define the local field L as L = L′(α), where

αp − t2(p−1)α = a + tp−s(1− tp−1)π.

Then L is a Galois extension of L′ of degree p, and the Galois group H of L over L′

is generated by the map σ : α 7→ α + t2. By construction, L = L′(α) is a purely
inseparable extension of L′ = K of degree p, and B = B′[α]. We can extend τ to
L by α 7→ α + t, which shows that L is normal over K, and that G = Gal(L/K) is
elementary abelian of order p2 generated by σ and τ . The filtration with ramification
groups is as follows:

G = G0 = · · · = Gp−1 6= Gp = 〈σ〉 = Gp+1 = · · · = G2p−1 6= G2p = {1}.

Note that the first trivial ramification group of L′ over K is (G/H)ps, so the ramification
groups of L′ over K are not determined by those of L over K alone. With the given
definition of τ , the inequalities in (3.6) read p ≤ ps ≤ p2. In particular, we have
equality on the right if s = p (the monogenic case), and on the left if s = 1.

Using the fact that B′ = A[π] and B = B′[α] we see that

DB/A = DB/B′DB′/A = t2(p−1)ts(p−1)B = t(s+2)(p−1)B.

By (2.2) we have rB/A = t(p−s)(p−1)B. We return to the case of Galois extensions of
degree p2 in section 5.
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4. Differentials.

Let L/K be a finite separable extension of local fields with valuations rings A ⊂ B. In
this section we study the B-module ΩB/A of Kähler differentials of B over A, and its
relation to the different and to questions about monogenity. See [9, ch. 9] for definitions
and fundamental properties of differentials.

The B-module ΩB/A is finitely generated, because B is a finitely generated A-
algebra. Since L is separable over K we have ΩB/A⊗B L = ΩL/K = 0, so the B-module
ΩB/A has finite length.

(4.1) Theorem.

(1) The length of the B-module ΩB/A is vL(DB/A).
(2) For any ring homomorphism Λ → A there is an exact sequence of B-modules:

0 → ΩA/Λ ⊗A B → ΩB/Λ → ΩB/A → 0.

Proof. For (2) we only need to show injectivity of the map ΩA/Λ ⊗A B → ΩB/Λ,
because exactness at the other places holds for arbitrary ring homomorphisms Λ →
A → B [9, thm. 25.1].

Suppose A is generated as an Λ-algebra by a set S ⊂ A. We have a surjection of
the polynomial algebra Λ[Xs : s ∈ S] onto A sending a variable Xs to s ∈ A. Let R be
a set of ideal generators of its kernel. Denoting the free A-module on a set X by A(X),
we can describe ΩA/Λ as the cokernel of the A-linear map A(R) → A(S), with matrix
(∂r/∂Xs)r∈R,s∈S .

Let us assume first that B is monogenic over A, so that B = A[α] ∼= A[X]/(f),
where f ∈ A[X] is the minimal polynomial of α over K. Then the above argument for
B over A instead of A over Λ implies that ΩB/A

∼= B/f ′(α)B. We already knew that
DB/A = f ′(α)B, so this shows (1). If we add the element α to S we find generators
for B over Λ, and one more relation given by lifting f to a polynomial in Λ[Xs][X]. It
follows that we have a diagram with exact rows and columns:

0y
0 −→ B(R) −→ B(R) ⊕B −→ B −→ 0y y y·f ′(α)

0 −→ B(S) −→ B(S) ⊕B −→ B −→ 0y y y
ΩA/Λ ⊗A B −→ ΩB/Λ −→ ΩB/Ay y y

0 0 0
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Statement (2) now follows from the snake lemma. This proves the theorem for the
monogenic case.

We now show that the theorem is “transitive in towers”, i.e., we show that the
theorem holds for B over A, if it holds for B over A′ and for A′ over A, for some
intermediate complete discrete valuation ring A′. Since the different is multiplicative
in towers, statement (1) for B over A follows from (1) for each of the steps and (2) for
B over A′ with Λ = A. Furthermore, if (2) holds for each of the steps, then the map
ΩA/Λ ⊗A B′ → ΩB′/Λ is injective, so after tensoring with the flat B′-algebra B we get
injections

ΩA/Λ ⊗A B � ΩB′/Λ ⊗B′ B � ΩB/Λ,

which implies (2) for B over A. This proves “transitivity”.
It follows that (4.1) holds if L/K is a tower of monogenic extensions. Not all

extensions are of this type (cf. (3.5)), but Galois extensions L/K are. To see this, first
note that the tame part T/K is monogenic. Furthermore, L is Galois over T of prime
power degree. Every p-group has a chain of subgroups with steps of index p, and every
extension of local fields of degree p is monogenic. This shows (4.1) for Galois extensions
L/K.

For the general case, let M be a finite Galois extension of K containing L, and
let C be its valuation ring. Then the theorem holds for C over A and for C over
B. To get statement (1) for B over A we apply (2) for C over B by taking Λ = A

and using transitivity of the different. It remains to show (2) for B over A. Given a
ring-homomorphism Λ → A, we let N be the kernel of the map ΩA/Λ ⊗A B → ΩB/Λ.
Since C is flat over B, the C-module N ⊗B C is the kernel of the canonical map
ΩA/Λ ⊗A C → ΩB/Λ ⊗B C. We know that ΩA/Λ ⊗A C and ΩB/Λ ⊗B C both inject to
ΩC/Λ, so N ⊗B C = 0. But C is free over B, so we must have N = 0. �

The kernel ΥB/A/Λ of the map ΩA/Λ ⊗A B → ΩB/Λ is called the module of imperfec-

tion. Each of the reduction steps to the monogenic case in the above proof is an easy
consequence of the following result, which has been proved by Grothendieck [3, ch. 0,
(20.6.18)]: for any flat B-algebra C there is a canonical exact sequence

0 → ΥB/A/Λ ⊗B C → ΥC/A/Λ → ΥC/B/Λ → ΥC/B/A → 0.

Kähler differentials are often used in commutative algebra to linearize ring theo-
retic problems. For instance, if the B-module ΩB/A of Kähler differentials is not cyclic,
then B is not monogenic over A. By the next proposition the converse holds too.

(4.2) Proposition. Suppose that L is not unramified over K. Then the smallest

number of elements generating ΩB/A as a B-module is equal to the smallest number of

elements that generate B as an A-algebra.
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Proof. One inequality is clear: if B = A[α1, . . . , αk] then ΩB/A =
∑

i Bdαi.
Now let n be the smallest number of elements that generate ΩB/A as a B-module.

We want to show that B is an A-algebra generated by n elements. The L-vector
space ΩB/A ⊗B L has dimension n by Nakayama’s lemma. It has a basis of the form
dα1⊗ 1, . . . , dαn ⊗ 1 for suitable α1, . . . , αn ∈ B, and the elements dαi generate ΩB/A.
Put S = A′[α1, α2, . . . , αn], where A′ is the valuation ring of the inertia field K ′ of L

over K. We first show that B = S. It follows from the exact sequence

ΩS/A ⊗S B → ΩB/A → ΩB/S → 0

that ΩB/S = 0, so B has no derivations that are trivial on S. Since L is purely

inseparable over K ′, and every inseparable extension of fields has a non-zero derivation,
it follows that the reduction map S → L is surjective. If S contains no prime element
of B, then S ∩ pL ⊂ p2

L, and we can construct a derivation of B over S by writing an
element x ∈ B as x = r + y, with r ∈ S and y ∈ pL, and mapping x to the class of y in
pL/p2

L. So let π ∈ S be a prime element of B and choose representatives x1, . . . , xf in
S of a basis of L over K ′. Then the elements xiπ

j of S with 1 ≤ i ≤ f and 0 ≤ j < e

form a basis of B as an A′-module, and therefore B = S.
Since L/K is not unramified, n is at least 1. We may assume that K is imperfect

because otherwise B would be monogenic over A. We are done if we can find an element
β ∈ A′ for which A′[α1] = A[α1 + β], because we then have B = A[α1 + β, α2, . . . , αn].
By the primitive element theorem (see Jacobson [5, ch. I, §11]) we can find an element
β ∈ A′ such that K ′ = K(β) and K(α1 + β) = K(α1, β). We then have A′ = A[β],
and in order to deduce that A′[α1] = A[α1 + β], we still need to show that the ring
R = A[α1 + β] contains the element β.

The ring R is a local ring, because B is a local ring that is integral over R (see
[12, ch. V, §2, thm. 3]). Let m be the maximal ideal of R. The m-adic topology on R is
the same as the pK-adic topology of the A-module R, and since R is a free A-module
of finite rank, it is complete. Therefore, Hensel’s lemma holds for R (see [12, ch. VIII,
§7]). Let h be the minimal polynomial of β over K, then the reduction of h mod pK

has a simple zero β in R/m. By Hensel’s lemma, h has a zero in R whose residue class
is β, so β ∈ R. �

The following gives a generalization and an alternative proof for the fact from (3.3)
that a subextension of a monogenic extension is monogenic.

(4.3) Corollary. Let K ⊂ L ⊂ M be finite separable extensions of local fields, with

rings of integers A ⊂ B ⊂ C. Then the number of elements needed to generate B as

an algebra over A is at most the number of elements needed to generate C over A.

10
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Proof. Assume that C can be generated as an A-algebra by n elements. By (4.2) the
C-module ΩC/A can be generated by n elements. By (4.1) we see that ΩB/A ⊗ C is a
submodule. Looking at the pM -torsion, we deduce that the C-module ΩB/A ⊗ C can
also be generated by n elements, and then the same holds for the B-module ΩB/A. If L

is unramified over K, then n ≤ 1, and the statement is obvious. If L is not unramified
over K, then (4.2) implies that B can be generated as an A-algebra by n elements. �

5. Galois extensions of degree p2.

In this section we suppose that L/K is a Galois extension of degree p2 with p = charK.
We will show that the defect in the classical formulas (1) and (2) in the introduction
can be expressed in terms of the module structure of ΩB/A.

Put G = Gal(L/K), let L′ be an intermediate field of degree p over K and let
B′ be the valuation ring of L′. Each of the steps in the extension A ⊂ B′ ⊂ B is
monogenic, so the outer two modules in the exact sequence

0 → ΩB′/A ⊗B′ B → ΩB/A → ΩB/B′ → 0

are cyclic. The B-module ΩB/A is therefore isomorphic to B/pa
L ⊕ B/pb

L, for unique

integers a, b with 0 ≤ a ≤ b. By (4.1) we have DB/A = pa+b
L .

In (2.1) the monogenity conductor rB/A was defined. For τ ∈ Gal(L′/K) with
τ 6= 1, the B-ideal d(τ) was given in §3 by

∏
σ 7→τ aL(σ) = aL′(τ) · d(τ).

(5.1) Theorem. We have d(τ) = pa
L and rB/A = p

a(p−1)
L .

Proof. It is easy to check that d(τ) does not depend on the choice of τ ∈ Gal(L′/K),
as long as τ 6= 1, and we will just write d for d(τ). Furthermore, we have rB/A = dp−1

by (3.2), so the first statement implies the second. It also follows that d does not
depend on the choice of the intermediate field L′.

First we give an explicit description of the A-algebra B in order to compute ΩB/A.

We can write B′ = A[α], where either α is a prime element of L′ (if [L′ : K] = 1), or
the image of α in L′ generates the residue class field extension (if [L′ : K] = p). Let
f ∈ A[X] be the minimal polynomial of α over A. Now choose a generator β for B

over B′ in the same way, so that β is a prime element of B or β has degree p over L′.
Let

g = Y p + cp−1Y
p−1 + · · ·+ c0 ∈ B′[Y ]

be the minimal polynomial of β over L′. Then each coefficient ci can be written as
gi(α) for some polynomial gi ∈ A[X] of degree less than p. It follows that the kernel of

11
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the surjective A-algebra homomorphism A[X, Y ] → B that maps X to α and Y to β, is
the ideal generated by f and Y p + gp−1Y

p−1 + · · ·+ g0. Putting δ =
∑p−1

i=0 g′i(α)βi, we
can now compute ΩB/A as the cokernel of the B-linear map B2 → B2 with the matrix

(
f ′(α) δ

0 g′(β)

)
.

The smallest invariant factor a of ΩB/A is the largest integer for which the image of
this map lies in pa

L ·B2. In other words,

pa
L = gcd(f ′(α), δ, g′(β)) = δB +DB′/A ·B +DB/B′ .

Since d does not depend upon the choice of L′, we may assume that H = Gal(L/L′)
lies in the highest non-trivial ramification group of L over K (in other words, take L′

to be an intermediate field of degree p with vL(DB′/A) minimal). In particular this
means that there is a B-ideal b such that aL(σ) = b for all σ 6∈ H, and b | aL(σ) for
σ ∈ H.

The theorem follows from the following three statements, which are proved below.

(i) d | DB/B′ and d | DB′/A ·B;
(ii) d | δB;
(iii) d = δB or d = DB′/A ·B.

In order to show (i), note that for τ ∈ Gal(L′/K) with τ 6= 1 we have

d = aL′(τ)−1
∏
σ 7→τ

aL(σ) | aL′(τ)−1aL′(τ)p = DB′/A ·B.

If σ0 is any lift of τ to L, our choice of L′ implies that

d | aL′(τ)aL(σ0)−1d =
∏
σ 7→τ
σ 6=σ0

aL(σ) |
∏
σ∈H
σ 6=1

aL(σ) = DB/B′ .

This proves statement (i). To prove (ii) we will use the following lemma.

(5.2) Lemma. Let h ∈ A[X] be a polynomial of degree less than p and suppose that

L′ is not unramified over K. Then h(α) − τ(h(α)) and h′(α)(α − τα) have the same

valuation k in L′, and they are congruent modulo pk+1
L′ .

Proof. First consider the case that h = Xi for some i ∈ {1, 2, . . . , p− 1}. From

αi − ταi = (α− τα)(αi−1 + αi−2τα + · · ·+ ταi−1),

12
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and from αB′ = ταB′, it is easy to infer that

αi − ταi ≡ iαi−1(α− τα) modαi−2(α− τα)2B′.

If e(L′/K) = 1, then α ∈ B′∗ and α ≡ τα mod pL′ (as L′ is not unramified over K), and
the required congruence follows. Assume e(L′/K) = p, so that α is a prime element of
B′. We claim that α 6≡ 0 mod (α− τα). To see why this holds, note that the extension
is not tamely ramified. This means that the tame ramification group of L′ is the full
group Gal(L′/K) and therefore α − τα ∈ p2

L′ = α2B′, This shows the claim, and the
lemma follows for h of the special form Xi with i < p.

For the general case, write h =
∑

biX
i with bi ∈ K. Our choice of α ensures that

vL′(h′(α)) = infi vL′(ibiα
i−1). The lemma now follows from the next lemma, whose

proof is left to the reader.

(5.3) Lemma. For i = 1, 2, . . . , n let ai and bi be elements of a local field F , such

that ai ≡ bi mod aipF . Put a =
∑

i ai and b =
∑

i bi. If vF (a) = infi vF (ai), then we

have a ≡ b mod apF , and in particular vF (a) = vF (b). �

This proves (5.2). We return to the proof of (5.1). If L′ is unramified over K then
B is monogenic over A by (3.4), and (ii) and (iii) are trivial, so let us assume that L′

is not unramified over K. We have δ =
∑p−1

i=0 aiβ
i where ai = g′i(α). By (5.2), we

have ai(α − τα) ≡ bi mod pLbi, where the bi = gi(α) − τ(gi(α)) are the coefficients of
g − τg. Our choice of β implies that vL(δ) = infi vL(aiβ

i). We can now apply (5.3) to
get δ(α− τα)B = εB, where ε =

∑
biβ

i. We have (α− τα)B = aL′(τ), and repeating
the argument of the proof of (3.1) we get

δaL′(τ) = εB = (τg − g)(β)B = (τg)(β)B

=
∏
σ 7→τ

(β − σβ)B ⊂
∏
σ 7→τ

aL(σ) = daL′(τ).

In particular this gives δ ∈ d, which shows statement (ii).
Finally, we show (iii). If aL(σ) = (β − σβ)B for all σ ∈ Gal(L/K) with σ|L′ = τ ,

then the inclusion above is an equality, and we have δB = d. Alternatively, suppose
aL(σ) 6= (β − σβ)B for some σ ∈ G with σ|L′ = τ . Since every element of B = A[α, β]
is an A-linear combination of elements of the form αiβj it follows by an argument
similar to the first paragraph of the proof of (2.3) that aL(σ) = (α − σα)B = aL′(τ).
By our choice of L′, we then have aL(σ) = aL′(τ) for all σ ∈ G with σ|L′ = τ . The
definition of d and (2.2) now give d = aL′(τ)p−1 = DB′/A ·B. This concludes the proof
of (iii) and of (5.1). �
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