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Abstract. Let A be a ring, and let B be a finite A-algebra. If B is of the form A[X1,...,Xn]/(f1,...,fn) then
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1. Introduction

A finite algebra is a complete intersection if it can be given with the same number of
generators and relations. To make this definition precise, one can use polynomial rings or
power series rings. The main result of this paper identifies, over a noetherian base ring,
the latter type of complete intersections as a subclass of the former; see Theorem (1.3).

Finite complete intersection algebras play a key role in Wiles’s recent proof of Fermat’s
Last Theorem [10, Appendix]. Wiles works in the power series setting, and his base ring
is a complete discrete valuation ring. Two basic results in this context are that a finite
complete intersection is projective as a module over the base ring, and that it has the
Gorenstein property (cf. [7, Lemma 1]). We prove, more generally, that the same results
are valid in the polynomial setting, over an arbitrary base ring; see Proposition (1.1).

All rings and algebras in this note are supposed to be commutative with identity
element. Let A be a ring, and let B be a A-algebra. Assume that B is a finite A-algebra,
i. e., that B is finitely generated as an A-module. We say that B is a complete intersection

over A if there exist a non-negative integer n and f1, . . . , fn ∈ A[X1, . . . , Xn] such that B
is isomorphic to A[X1, . . . , Xn]/(f1, . . . , fn) as an A-algebra.

For any A-module M let M† = HomA(M,A) be its A-linear dual. There is a B-module
structure on B† given by (bϕ)(x) = ϕ(bx) for b, x ∈ B and ϕ ∈ B†. Now suppose that B is
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projective as an A-module. Then we have a natural isomorphism B ⊗A B† ∼−→ EndA(B)
sending b⊗ϕ to the endomorphism x 7→ bϕ(x) of B, and we define the trace map TrB/A ∈
B† to be the composite map B → EndA(B) ∼= B ⊗A B† → A; here the first map sends
b ∈ B to the endomorphism x 7→ bx and the last map is given by b⊗ ϕ 7→ ϕ(b).

(1.1) Proposition. Let A be a ring, let n be a non-negative integer, and let f1, . . . , fn ∈
A[X1, . . . , Xn]. Assume that B = A[X1, . . . , Xn]/(f1, . . . , fn) is a finite A-algebra. Then

(1) B is projective as an A-module;

(2) B† is free of rank 1 as a B-module;

(3) there is a generator λ of B† as a B-module such that TrB/A = det(∂fi/∂Xj)ij ·λ.

In Section 2 below we prove (1), and we indicate how (2) and (3) follow with an argument
of Tate. Our main tool is the Koszul complex, which is defined in Section 2. A finite algebra
satisfying (1) is Gorenstein if B† is projective of rank 1 as a B-module [6, E.16], so (2)
implies that B is Gorenstein over A.

By a power series complete intersection over A we mean a finite A-algebra of the form
A[[X1, . . . , Xm]]/(g1, . . . , gm). We claim that under the condition that A is noetherian,
(1.1) remains true when we replace the polynomial ring by a power series ring. To prove
this, one can go through the proof of (1.1) and adjust the arguments to power series rings;
this is done in [4]. Here we adopt a different approach. For noetherian A we will show, in
Section 4, that a finite A-algebra B = A[[X1, . . . , Xm]]/(g1, . . . , gm) is in fact a complete
intersection over A, so that (1.1) applies. Thus, (1) and (2) of (1.1) hold for B, and a short
argument, also given in Section 4, shows that statement (3) with f1, . . . , fn replaced by
g1, . . . , gm is also true.

In order to identify which complete intersections over a noetherian ring A are power
series complete intersections, one is led to consider the completeness radical cr(A) of A,
which is defined as the largest A-ideal with respect to which A is complete. We will show
in Section 3 that this ideal is well-defined (Theorem (3.1)). It is easy to see that cr(A)
contains the nilradical nil(A) =

√
(0) of A, and that it is contained in the Jacobson radical.

Furthermore, it has the following properties, which are standard requirements in theories
of radicals [5].

(1.2) Proposition. If A is a noetherian ring and a is an A-ideal, then we have

(1) cr(A) =
√

cr(A);

(2) a ⊂ cr(A) ⇒ cr(A/a) = cr(A)/a;

(3) cr(A/a) = 0 ⇒ cr(A) ⊂ a.

This result is proved in Section 3. Note that (2) implies that cr(A/cr(A)) = 0.
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Our main result, which we now formulate, identifies the class of power series com-
plete intersections over a noetherian ring A as a certain subclass of the class of complete
intersections over A. For any ring R we let Rred = R/nil(R).

(1.3) Theorem. Let A be a noetherian ring and let B be a finite A-algebra. Then B is a

power series complete intersection over A if and only if these two conditions hold:

(1) B is a complete intersection over A;

(2) the structure homomorphism A→ (B/cr(A)B)red is surjective.

The proof of this theorem is given in Section 4.
If (1) holds, with A connected and B 6= 0, then it follows with (1.1)(1) and (1.2)(1)

that the map in (2) has kernel cr(A). For example, take A = Z, so that cr(A) = 0. Then
we conclude that a non-zero power series complete intersection B over Z is the same as a
complete intersection satisfying Bred = Z. As an example of a different nature, consider
the case that A is a complete noetherian local ring. Then cr(A) is the maximal ideal of A,
and (2) is equivalent to the condition that B, if non-zero, is local with the same residue
field as A.

2. Ring-theoretic properties of complete intersections

In this section we prove (1.1). We first recall the definition of the Koszul complex.
Let R be a ring and let M be an R-module. Let V = Rn for a positive integer n, and

let f = (f1, f2, . . . , fn) ∈ V . We define the Koszul complex

K(f,M): 0→ Kn(f,M) d−→ · · · d−→ K1(f,M) d−→ K0(f,M)→ 0

as follows: we take Kk(f,M) = HomR(
∧k

R V,M) and for ϕ ∈ Kk(f,M) we define dϕ ∈
Kk−1(f,M) by (dϕ)(x) = ϕ(f ∧x). The kth homology group of this complex is denoted by
Hk(f,M). Let I be the R-ideal generated by the fi. Then we have a canonical isomorphism
H0(f,M) ∼= M/IM .

We will use in the sequel that each Hk(f,M) is annihilated by I. To see this, let
ϕ ∈ Kk(f,M) satisfy dϕ = 0. For each generator fi of I we need to produce an element
ψ ∈ Kk+1(f,M) with dψ = fiϕ. Write V = Rei ⊕ V ′, where ei is the ith standard basis
vector of V over R, and where V ′ is spanned by the other standard basis vectors. We can
write any x ∈

∧k+1
V as x = ei ∧ x′ + x′′ for unique x′ ∈

∧k
V ′ and x′′ ∈

∧k+1
V ′. Now

define ψ by ψ(x) = ϕ(x′). One deduces from dϕ = 0 that dψ = fiϕ.
We need one lemma about Koszul complexes, which can also be found in [3, Theorem

1.6.16]. We will say that a sequence p1, p2, . . . , pn in R is weakly M -regular if for all i with
1 ≤ i ≤ n multiplication by pi on the R-module M/(p1, . . . , pi−1)M is an injection.
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(2.1) Lemma. Let f1, . . . , fn be a sequence in a ring R, and let M be an R-module. If the

R-ideal I = (f1, . . . , fn) contains a weakly M -regular sequence of length n, then K(f,M)
is exact in positive dimension, i. e., Hi(f,M) = 0 for i > 0.

Proof. Suppose p1, . . . , pn is a weakly M -regular sequence in I. We prove for j with
0 ≤ j ≤ n and all i > j that Hi(f,M/(p1, . . . , pj)M) = 0. For j = n this is trivial, and for
j = 0 this is our lemma. We proceed by induction, decreasing j by 1 in each step.

Put M ′ = M/(p1, . . . , pj−1)M . By our regularity assumption we have a short exact
sequence of R-modules

0→M ′ pj−→ M ′ →M ′/pjM
′ → 0.

For each k we apply the functor HomR(
∧k

V,−), which is exact because
∧k

V is a free
R-module. Thus we get a short exact sequence of complexes

0→ K(f,M ′)
pj−→ K(f,M ′)→ K(f,M ′/pjM

′)→ 0.

Since the homology groups of K(f,M ′) are annihilated by I and in particular by pj , the
long exact sequence of homology groups gives us short exact sequences

0→ Hi(f,M ′)→ Hi(f,M ′/pjM
′)→ Hi−1(f,M ′)→ 0

for i ≥ 0. The induction hypothesis implies that the middle group is zero for i ≥ j, and
we deduce that Hi(f,M ′) = 0 for i ≥ j− 1. This completes the induction step, and proves
the lemma. �

We now prove part (1) of (1.1). Denote the polynomial ring A[X1, . . . , Xn] by R. Note that
B is integral over A, so that the image αi of Xi in B satisfies a relation pi(αi) = 0 with
pi ∈ A[Xi] monic. The sequence p1, . . . , pn lies in (f1, . . . , fn) and it is weakly R-regular,
i.e., we have short exact sequences

0→ R/(p1, . . . , pi−1)
pi−→ R/(p1, . . . , pi−1)→ R/(p1, . . . , pi)→ 0

for i = 1, 2, . . . , n. Note that the modules in this sequence are free (but not necessarily
finite) over A. Hence exactness is preserved when we tensor over A with any A-module M ,
and we deduce that p1, . . . , pn is weakly (R ⊗A M)-regular. By (2.1) this implies that
Hi(f,R⊗A M) = 0 if i > 0.

Let us now show that B is flat as an A-module by proving that the functor B ⊗A −
is exact. Suppose we have a short exact sequence of A-modules

0→M ′ →M →M ′′ → 0.
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Since R is free over A, tensoring with R over A preserves exactness. Subsequent application
of the exact functors HomR(

∧k
V,−) then gives a short exact sequence of complexes

0→ K(f,R⊗A M ′)→ K(f,R⊗A M)→ K(f,R⊗A M ′′)→ 0.

Since H0(f,N) = N/IN = B ⊗R N for any R-module N , the long exact sequence of
homology groups gives an exact sequence

H1(f,R⊗A M ′′)→ B ⊗A M ′ → B ⊗A M → B ⊗A M ′′ → 0.

We already saw that the H1 vanishes, so indeed the functor B ⊗A − is exact, and B is
flat over A. (Alternatively, one can deduce this from the fact that K(f,R) is an A-flat
resolution of B, so that Tori

A(B,M) = Hi(f,R⊗A M) = 0 for i > 0.)
Since finitely presented flat modules are projective [8, §7], it remains to show that

B is finitely presented as an A-module. To see this consider the surjection of the finitely
generated free A-module R0 = R/(p1, . . . , pn) to B. Its kernel W is finitely generated over
R0, and since R0 is finite over A this implies that W is finitely generated as an A-module.
Thus B is finitely presented over A. This proves part (1) of (1.1).

Next, we quote a theorem of Tate, which given (1) in (1.1) will show (2) and (3).

(2.2) Theorem (Tate). Let A be a ring, let R be an A-algebra, and let I = (f1, . . . , fn)
be an R-ideal. Suppose that the quotient ring B = R/I is finitely generated and projective

as an A-module. Suppose further that the kernel of the composite ring homomorphism

ψ:S = B ⊗A R → B ⊗A B → B is as an S-ideal generated by n elements g1, . . . , gn, and

that Hi(f,R) = Hi(g, S) = 0 for all i > 0. Write 1 ⊗ fi =
∑

j bijgj with bij ∈ S and let

d = det(bij) ∈ S. Define the map t:B† → B by t(ϕ) = (ϕ′(d) mod I), where ϕ′:S → R is

the R-linear map ϕ⊗ 1. Then t is a B-linear isomorphism and t(TrB/A) = ψ(d).

For the proof of (2.2) we refer to [9, Appendix A]. It is assumed there that B is free
over A. One reduces to this case by noting that (2.2) can be verified locally on A. The
regularity assumption in [9, (A.3)] is only used to show that the Koszul complexes satisfy
the hypothesis of (2.2).

Using that H1(g, S) = 0 one can show that the isomorphism t in (2.2) does not depend
on the choice of the bij , for given fi and gj .

To show (2) and (3) of (1.1), we apply (2.2) with R = A[X1, . . . , Xn] and gi =
1 ⊗ Xi − αi ⊗ 1 ∈ S = B ⊗A R, where αi is the image of Xi in B. We already saw in
the proof of part (1) of (1.1) that Hi(f,R) = 0 for i > 0. We have Kerψ = (g1, . . . , gn)
and since the sequence g1, . . . , gn is weakly S-regular, we also have Hi(g, S) = 0 for i > 0.
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Thus, the conditions of (2.2) are met, and (2) follows. To see that (3) holds one checks
that ψ(bij) = (∂fi/∂Xj mod I).

Note that the argument above provides us with an explicit B-module isomorphism
B† → B, but that the isomorphism depends on the chosen presentation of B as an A-
algebra with generators αi and relations fi.

3. The completeness radical

In this section we show that the completeness radical cr(A) is well-defined, we prove (1.2),
and we determine the behavior of the completeness radical under finite flat extensions.

Throughout this section, A is a noetherian ring, M is a finitely generated A-module,
and a and b are A-ideals. The a-adic completion M̂ of M is defined to be the projective
limit M̂ = lim←−M/anM . There is a canonical map M → M̂ , and M is said to be a-
complete if this map is an isomorphism. Since M is finitely generated and A is noetherian,
the completion M̂ is canonically isomorphic to M ⊗A Â (see [1, 10.13]). Completion of
finitely generated A-modules preserves exactness [1, 10.12].

(3.1) Theorem. Let A be a noetherian ring, and let M be a finitely generated A-module.

Then there is a unique A-ideal c with the following property: if a is an A-ideal, then M is

a-complete if and only if a is contained in c.

In the case M = A we write cr(A) for the ideal c from Theorem (3.1), and we call it the
completeness radical of A. We begin the proof of (3.1) with a few lemmas.

(3.2) Lemma. Suppose 0 → M ′ → M → M ′′ → 0 is an exact sequence of A-modules.

Then M is a-complete if and only if both M ′ and M ′′ are a-complete.

Proof. Since A is noetherian and M is finitely generated, M ′ and M ′′ are also finitely
generated. We have a commutative diagram with exact rows

0 −→ M ′ −→ M −→ M ′′ −→ 0yf ′
yf

yf ′′

0 −→ M̂ ′ −→ M̂ −→ M̂ ′′ −→ 0.

By the snake lemma, f is an isomorphism if f ′ and f ′′ are isomorphisms. Conversely,
suppose that f is an isomorphism. Then Ker f ′ and Coker f ′′ are zero, and Ker f ′′ ∼=
Coker f ′. Every element y of Ker f ′′ is annihilated by some element 1 + x with x ∈ a (see
[1, 10.17]), and since Ker f ′′ is finitely generated one can choose x independently of y. But
1 + x acts as a unit on every Â-module [1, 10.15 (iv)], and in particular on M̂ ′, so 1 + x

acts surjectively on Coker f ′. This shows that Ker f ′′ = Coker f ′ = 0. �
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(3.3) Lemma. The A-module M is a-complete if and only if there exists an Â-module

structure on M that is compatible with its A-module structure.

Proof. Note that M̂ is a module over Â and that the map M → M̂ is A-linear. This shows
“only if”. For the “if” part, suppose that M has a compatible Â-module structure. Since
Â is noetherian [1, 10.27], there is an exact sequence

0→ K → Ân →M → 0

of finitely generated Â-modules. But Â is complete at aÂ (see the proof of [1, 10.15]),
so by (3.2), now applied to Â-modules, M is aÂ-complete, which is the same as being
a-complete. �

(3.4) Lemma. If M is a-complete, and M/aM is b-complete, then M is b-complete.

Proof. We first show by induction that M/anM is b-complete for all n ≥ 0. For n = 0 this
is trivial. To make the induction step suppose that n ≥ 1 and consider the exact sequence
of A-modules

0→ an−1M/anM →M/anM →M/an−1M → 0.

If an−1 is generated as an A-ideal by a1, . . . , ak, then there is a surjection (M/aM)k →
an−1M/anM sending (mi)k

i=1 to
∑

i aimi. With (3.2) one sees that an−1M/anM is b-
complete, and by applying (3.2) to the sequence above we can make the induction step.

By (3.3) we know that M/anM has a compatible module structure over the b-
completion of A. Then the projective limit of M/anM has such a structure too. But
this projective limit is M so M is b-complete. �

The special case M = A of the following lemma can be found in [8, §8, Exercises 1, 2]; the
“if”-part can be deduced from [1, Chapter 10, Exercise 5].

(3.5) Lemma. The A-module M is (a + b)-complete if and only if it is both a-complete

and b-complete.

Proof. Suppose that M is a-complete and b-complete. Then (3.2) implies that M/aM is
also b-complete, and therefore (a + b)-complete. By (3.4) we then see that M is (a + b)-
complete.

Conversely, let Ã be the (a + b)-completion of A and let Â be the a-completion of A.
We have canonical maps A → Â → Ã, so a compatible Ã-module structure induces a
compatible Â-module structure on M . If M is (a + b)-complete then one deduces with
(3.3) that it is a-complete, and by symmetry it is b-complete as well. This shows (3.5). �

Proof of (3.1). Take c to be the sum of all A-ideals a for which M is a-complete. It follows
from (3.5) that c has the stated property, since A is noetherian and M is (0)-complete. �
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Proof of (1.2). To see (1), note that for any k ≥ 1 completeness at ak is the same as
completeness at a. For a ⊂ cr(A) we see from (3.2) and (3.4) that A/a is a b-complete
A-module if and only if A is b-complete, and this implies property (2) of (1.2). To see (3),
one infers from (3.2) that A/a is a cr(A)-complete A-module for all A-ideals a, so that
cr(A/a) ⊃ (cr(A) + a)/a. This shows (1.2). �

(3.6) Remark. The ideal cr(A) also occurs in Brewer [2, Theorems 50 and 59]. He writes
Ic(A) for the set of elements x in A for which there is an A-algebra homomorphism
A[[X]] → A sending X to x. Let us show that Ic(A) = cr(A) for noetherian A. Sup-
pose that an A-algebra homomorphism A[[X]] → A sends X to x. Applying (3.2) to the
A[[X]]-modules M = A[[X]] and M ′′ = A, with a = (X), we see that A is (x)-complete,
so (x) ⊂ cr(A). Conversely, if x ∈ cr(A) then A is (x)-complete. Completing the A-algebra
homomorphism A[X] → A that maps X to x at the ideal (X) one then gets a map
A[[X]]→ A sending X to x, so that x ∈ Ic(A).

(3.7) Proposition. Let A be a noetherian ring and let B be a finite A-algebra that is

projective as an A-module. Then we have cr(B) =
√

cr(A)B.

The proof depends on a lemma. Let, as before, M be a finitely generated A-module, and
let b be an A-endomorphism of M . We say that M is b-complete if the natural map
M → lim←−M/bnM is an isomorphism; or, equivalently, if it is (X)-complete as an A[X]-
module, with X acting as b.

(3.8) Lemma. Suppose that cr(A) = 0 and that M can be embedded in a free A-module.

If b is an A-endomorphism of M , then M is b-complete if and only if bn = 0 for some

n ≥ 0.

Proof. The “if” part is clear. For the “only if” part, we first show that ifM is (a)-complete,
with a ∈ A, then aM = 0. Suppose that M is (a)-complete, and let f :M → A be any
A-linear map. Then the A-ideal I = f(M) is (a)-complete by (3.2), so A/I and I are both
aI-complete. Hence by (3.2) the ring A is aI-complete, and therefore aI ⊂ cr(A) = 0.
Embedding M in a free A-module, we see that for any m ∈ M all coordinates of am are
zero. Therefore aM = 0, as required.

Now assume that M is b-complete. Since M is finitely generated over A, the endomor-
phism b satisfies a relation of the form bn + a1b

n−1 + · · · + an = 0, with a1, . . . , an ∈ A.
We prove by induction on n that we then have bn = 0. For n = 0 this is clear. Next let
n > 0, and put c = bn−1 +a1b

n−2 + · · ·+an−1. Then cb+an = 0, so M is cb+an-complete.
Since by hypothesis it is b-complete, we see from (3.5) (applied with A[X] as the base ring)
that it is an-complete. By what we just proved, this implies that anM = 0. Therefore cb
annihilates M , and c annihilates bM . Hence the restriction of b to bM satisfies a monic
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equation of degree n − 1. Since bM can be embedded in a free A-module, the induction
hypothesis implies that bn−1 annihilates bM , so bnM = 0. �

The condition on M in (3.8) is equivalent to the condition that the canonical map M →
M†† be injective.

Proof of (3.7). First assume that cr(A) = 0. Since B is projective, it is a direct summand
of a free A-module. An element b ∈ B belongs to cr(B) if and only if B is complete with
respect to the A-endomorphism x 7→ bx. By (3.8), this occurs if and only if b is nilpotent.
Hence cr(B) =

√
(0) =

√
cr(A)B, as required.

In general we pass to the ring A′ = A/cr(A), which by (2) of (1.2) satisfies cr(A′) = 0.
By the case just treated, the A′-algebra B′ = B ⊗A A′ = B/cr(A)B has cr(B′) =

√
(0).

Also, (3.2) implies that B is cr(A)-complete as an A-module, so cr(A)B ⊂ cr(B), and (3)
of (1.2) gives cr(B′) = cr(B)/cr(A)B. Thus we have cr(B)/cr(A)B =

√
(0), as required. �

The proposition may break down for general finite algebras, even when they are assumed
to be faithful and connected. This is shown by the following example. Take A = Zp[X],
where p is a prime number and Zp denotes the ring of p-adic integers, and put B =
{(f, x) ∈ A × Zp : f(0) ≡ xmod pZp}. Let the A-algebra structure map A → B be given
by f 7→ (f, f(0)). Then B is reduced and cr(B) = {0} × pZp, while cr(A) = 0.

4. Power series complete intersections

In this section we show (1.3). Let R = A[X1, . . . , Xn] and let a be the R-ideal (X1, . . . , Xn).
Then the a-completion R̂ is the ring A[[X1, . . . , Xn]].

We first prove “if”. Suppose that B = R/(f1, . . . , fn) is a finite A-algebra. Denote
the image of Xi in B by αi. Assuming (2) of (1.3) we perform a translation of the Xi by
elements of A so that αi ∈

√
cr(A)B. Any finitely generated A-module is cr(A)-complete

by (3.2), so cr(B) ⊃ cr(A)B. Since cr(B) is a radical ideal we see that αi ∈ cr(B) and that
B is complete at (α1, . . . , αn). Now consider the exact sequence of R-modules

Rn (fi)−→ R −→ B −→ 0.

Since R is noetherian, completion at a preserves exactness. But B is a-complete, so B =
R̂/(f1, . . . , fn). This proves the “if” part of (1.3). Note that we showed that a complete
intersection satisfying condition (2) can be written as a power series complete intersection
with the same number of generators.

We now show “only if”. Suppose that f1, . . . , fn ∈ R̂ are such that B = R̂/(f1, . . . , fn)
is a finite A-algebra. We know that R is noetherian and that B is finitely generated over R,
so it follows from (3.3) that B is an a-complete R-module. By exactness of completion, the
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cokernel of the natural map π: R→ B has trivial a-completion. But by (3.2) this cokernel
is also complete, so that π is surjective. Put J = Kerπ. The a-completion Ĵ of J is the R̂-
ideal (f1, . . . , fn), so J/aJ can be generated as an A-module by the images of n elements
g1, . . . , gn ∈ J . Since aR̂ lies in the Jacobson radical of R̂, Nakayama’s lemma implies
that (g1, . . . , gn)R̂ = (f1, . . . , fn). Let D = R/(g1, . . . , gn). Completing the canonical map
D

ϕ−→ B at a we get an isomorphism D̂ → B, so the D-ideal H = J/(g1, . . . , gn) = Kerϕ
satisfies Ĥ = 0. We now have H/H2 = H ⊗D (D/H) = H ⊗D D̂ = Ĥ = 0, so H = H2. By
the “determinant trick” [1, 2.5] this implies that (1− e)H = 0 for some e ∈ H, so H = eD

and e2 = e. But then D[X]/((1−e)X−e) ∼= D/H = B, so by lifting e to an element ẽ ∈ R
we have B = A[X1, . . . , Xn+1]/(g1, . . . , gn+1), where gn+1 = (1− ẽ)Xn+1 − ẽ. This shows
statement (1) of (1.3).

Choosing gi ∈ fi + aĴ , for 1 ≤ i ≤ n, one sees that the image of the (n+ 1)× (n+ 1)-
determinant det(∂gi/∂Xj) in B lies in 1 + aB times the image of the n × n-determinant
det(∂fi/∂Xj) in B. Since 1 + aB consists of units in B, this shows our claim in the
introduction that the polynomial ring in (1.1) can be replaced by the power series ring if
A is noetherian.

It remains to show that statement (2) of (1.3) holds. We know that B is a-complete
so the images of the Xi in B lie in cr(B). This implies that the structure homomorphism
A→ B/cr(B) is surjective. We already know that B is a complete intersection over A, so
by (1.1) we see that B is projective as an A-module. Statement (2) of (1.3) now follows
from (3.7). �
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