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Abstract. In this note we consider the index in the ring of integers of an

abelian extension of a number field K of the additive subgroup generated by

integers which lie in subfields that are cyclic over K. This index is finite, it

only depends on the Galois group and the degree of K, and we give an explicit

combinatorial formula for it. When generalizing to more general Dedekind

domains, a correction term can be needed if there is an inseparable extension

of residue fields. We identify this correction term for abelian extensions of

type (p, p).

1. Introduction

We first give the main result in some special cases. Let A be the ring of integers
in an abelian extension of Q of type (p, p), where p is a prime number. Then the
additive subgroup generated by all integers in A with degree p over Q has index
pp(p−1)/2 in A. For p = 2 this seems to be well-known, and for p = 3 this has
been shown by Parry [11, Lemma 5]. It was proved by A. Fajardo Mirón [6] that
for a Galois extension of Q with abelian Galois group of order 2k and exponent 2,
the index in the ring of integers of the subgroup generated by quadratic integers

is 2(k−2)2
k−1+1. In this paper we give such an explicit formula for any abelian

extension of number fields, and we consider generalizations to more general abelian
extensions of quotient fields of Dedekind domains.

In order to state the full result, we first introduce some notation. Let G be a
finite abelian group of order n and let Z[G] be the group ring of G with coefficients
in Z. For any Z[G]-module M we let Mcyc be the additive subgroup

∑

H MH of M ,
where H ranges over all subgroups of G for which G/H is cyclic, and MH denotes
the set of H-invariants of M . We let c(G) be the index

c(G) = [Z[G] : Z[G]cyc].

We will first compute this integer explicitly.

Theorem 1. Let n =
∏

p p
ap be the prime factorization of n and for d ≥ 1 let

Od(G) be the number of elements of G of exact order d. Then the prime factoriza-

tion of c(G) is given by

c(G) =
∏

p|n

pcp with cp =
np−ap

2

(

app
ap − pap − 1

p− 1
−
∑

m≥1

mOpm(G)
)

.

It is easy to see that cp = 0 if and only if the p-Sylow subgroup of G is cyclic.
Let A be a Dedekind domain and let B be its integral closure in a finite abelian

extension of the quotient field of A with Galois group G. Then B is a Dedekind
domain as well [13, Ch. I, §4, Prop. 8, 9] and Bcyc is the sub-A-module of B
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generated by all integers in B that generate a cyclic extension of the quotient field
of A.

The results and arguments will depend strongly on the following condition, which
may or may not hold:

(∗) for all maximal ideals q of B the q-adic completion of B is generated

by a single element as a ring extension of the completion of A.

The condition (∗) seems to be the natural condition under which the traditional
results of ramification theory [13, Ch. III, IV] hold. It is satisfied if all residue field
extensions of B over A are separable [13, Ch. III, §6, Prop. 12]. In particular, (∗)
holds for rings of integers in number fields. It also holds when G is cyclic of prime
order. One can show in general that condition (∗) is equivalent to the condition
that the module of differentials ΩB/A, which is a B-module of finite length, is cyclic
as a B-module, i.e., it can be generated as a B-module by a single element; see [3].

For an inclusion M ⊂ N of finitely generated modules over a Dedekind domain
A we let the A-index [N : M ]A be the Fitting ideal of the A-module N/M . If N/M
has finite length as an A-module, then we can write N/M ∼= A/a1 ⊕ · · · ⊕A/at for
non-zero ideals a1, . . . , at of A, and [N : M ]A is equal the A-ideal a1 · · · at. If N/M
does not have finite length then [N : M ]A = 0. Note that the usual index of M in
N is given by [N : M ] = [A : [N : M ]A].

Theorem 2. Let A be a Dedekind domain and let B be its integral closure in a

finite Galois extension of the quotient field of A with an abelian Galois group G. If
condition (∗) holds, then we have

[B : Bcyc]A = c(G) ·A.
In the number field case one can deduce Theorem 2 from the theorem of Fröhlich [7]
that says thatB is “factor equivalent” to the group ringA[G], and a characterization
of factor equivalence by Burns [1, Prop. (1)]. Conversely, the proof of Theorem 2
given below gives rise to an alternative approach to Fröhlich’s result; see [4]. See
[5] for applications in a slightly different context.

The situation is much more cumbersome if condition (∗) does not hold. It was
shown in [3] that in the case that G is of type (p, p) there is a single B-ideal d which
can be used to extend some ramification theoretic results, notably [13, Ch. IV, §1,
Prop. 3, 4], to the case where (∗) does not hold. This ideal d measures the degree
to which ΩB/A is non-cyclic. It is given by d = FitB(Ω

2
B/A) and it is the smallest

B-ideal for which there exists a B-module epimorphism ΩB/A → B/d×B/d.

Theorem 3. Let A be a Dedekind domain and let B be its integral closure in a

Galois extension of the quotient field of A with an abelian Galois group G of type

(p, p) for some prime number p. Then we have

[B : Bcyc]A ·B = c(G) · dp(1−p)/2 = (pB/d)p(p−1)/2.

The proofs of the Theorems are given in Section 3. They use some general properties
of modules over abelian groups which are given in the next section.

2. Modules over abelian groups and the lemma of De Bruijn-Rédei

For a positive integer m we let Φm ∈ Z[X] be the mth cyclotomic polynomial. We
will need a basic lemma about these polynomials, which was first stated by Rédei
[12] and proved by De Bruijn [2]. Gillard [8] and Gras [9] attribute it to Martinet.
We include a different proof for completeness.

We first introduce some notation from [10, §2] that will be used throughout the
paper. If C is a cyclic group of order m, then the Q-algebra Q(C) will be the
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quotient of the group ring Q[C] by the ideal generated by Φm(g) with g a generator
of C. Note that this ideal does not depend on the choice of g and that Q(C) is
isomorphic to the field of mth roots of unity.

Lemma 4 (De Bruijn-Rédei). Let n > 1 be an integer. The ideal of Z[X] generated
by the polynomials (Xn − 1)/(Xn/p − 1), where p ranges over the prime factors of

n, is the principal ideal generated by Φn(X).

Proof. Note that Z[X]/(Xn − 1) is the group ring Z[Cn] of the cyclic group Cn of
order n generated by the image of X. Let In be the image in Z[Cn] of the ideal
generated by the polynomials (Xn − 1)/(Xn/p − 1) where p ranges over the prime
factors of n.

For every m ≥ 1 we have
∏

d|m Φd(X) = Xm − 1, and since Q[X] is a unique

factorization domain this implies that (Z[Cn]/In)⊗ZQ is isomorphic to the cyclo-
tomic field Q(Cn). It suffices to show that Z[Cn]/In is a torsion free abelian group
because it then follows that In is the kernel of the map Z[Cn]→ Q(Cn).

If n is a prime power then this is trivial. We proceed by induction on the
number of prime factors of n. Suppose n = mk with m and k coprime and smaller
than n. We have Z[Cn]∼=Z[Cm]⊗Z[Ck], and under this isomorphism In maps to
Im⊗Z[Ck] + Z[Cm]⊗Ik. It follows that Z[Cn]/In∼=(Z[Cm]/Im)⊗(Z[Ck]/Ik), which
is torsion free, because by the induction hypothesis it is a tensor product of torsion
free abelian groups. ¤

Let G be a finite abelian group, and let C be the set of cyclic quotients of G. The
canonical maps Q[G] → Q(ρ) for ρ ∈ C give rise to a canonical isomorphism of
Q-algebras:

Q[G]
∼−→

∏

ρ∈C

Q(ρ).

See [10, §2] for a short proof. It follows that every Q[G]-module V decomposes as
a product V =

∏

ρ V
(ρ), where V (ρ) = V⊗Q[G]Q(ρ).

For any Z[G]-module M and ρ = G/H ∈ C we let Mρ = MH be the submodule

of H-invariants of M . For a Q[G]-module V we have Vρ =
∏

σ≤ρ V
(σ), where the

partial order on C is defined by G/H ′ ≤ G/H ⇐⇒ H ⊂ H ′. Note that for v ∈ V
we have v ∈ V (ρ) if and only if v ∈ Vρ and Φ#ρ(g)m = 0 for some generator g of ρ.

Now let M be a Z[G]-module which is torsion free as an abelian group. Viewing
M as a subgroup of the Q[G]-module M⊗Q =

∏

ρ∈C(M⊗Q)(ρ), we let M (ρ) be the

image of Mρ under the projection on the factor (M⊗Q)(ρ).

Lemma 5. The kernel of the projection map Mρ
π−→M (ρ) is

∑

σ<ρMσ.

Proof. Note that Ker(π) = Mρ ∩
∏

σ<ρ(M⊗Q)(σ). The inclusion
∑

σ<ρMσ ⊂
Ker(π) is clear. Suppose g is a generator of ρ and let m = #ρ. Put Ψm =
(Xm − 1)/Φm =

∏

σ<ρ Φ#σ. Since (M⊗ZQ)(σ) is annihilated by Φ#σ(g) for every

σ < ρ, we have Ψm(g)x = 0 for all x ∈ Ker(π).
By the previous lemma, the polynomials Pp = Ψm/(X

m/p − 1), with p a prime
divisor of m, generate the unit ideal in Z[X]. By writing 1 =

∑

p|mQp in Z[X]

with Qp ∈ PpZ[X], we see that every x ∈ Ker(π) can be written as x =
∑

p|m xp

with xp = Qp(g) · x ∈ Mρ. Using that Ψm(g)x = 0 one sees that gm/p fixes xp, so
that x ∈

∑

σ<ρMσ. ¤

In the next lemma we follow an argument that Gillard [8, §4] gives in the context
of cyclotomic units.



appeared in: J. Théor. Nombres Bordeaux 12 (2000), 209–218

4 B. DE SMIT

Lemma 6. Let A be a Dedekind domain of characteristic 0, and let N ⊂M be an

inclusion of finitely generated A[G]-modules, which are torsion free as A-modules.
If [M : N ]A 6= 0 then

[Mcyc : Ncyc]A =
∏

ρ∈C

[M (ρ) : N (ρ)]A.

Proof. For a subset D of C, denote ∑

σ∈DMσ by MD. We claim that for every
subset D of C, for which σ ∈ D whenever σ < ρ and ρ ∈ D, we have

[MD : ND]A =
∏

ρ∈D

[M (ρ) : N (ρ)]A.

Taking D = C the Lemma will follow. We prove this claim by induction to #D. If D
is empty, then there is nothing to prove. Assume D is non-empty, choose a maximal
element ρ ∈ D, and put E = D\{ρ}. It is clear that ME is contained in MD ∩
(M⊗Q)E , which in turn lies in the kernel of the projection map MD

π−→(M⊗Q)(ρ).
This implies that π(MD) = π(Mρ) = M (ρ). By Lemma 5 one sees that the kernel
of π is equal to ME . By applying the same argument to N one gets a diagram with
exact rows in which the vertical maps are injective:

0 −−−−→ NE −−−−→ ND −−−−→ N (ρ) −−−−→ 0




y





y





y

0 −−−−→ ME −−−−→ MD −−−−→ M (ρ) −−−−→ 0.

By the snake lemma we get a short exact sequence of the cokernels of the vertical
maps. Over a Dedekind domain, taking the Fitting ideal of a module of finite length
is multiplicative over short exact sequences, so it follows that

[MD : ND]A = [ME : NE ]A[M
(ρ) : N (ρ)]A.

This completes the induction step. ¤

3. Discriminants and conductors

Let A be a Dedekind domain and let B be a commutative A-algebra which is finitely
generated and free as an A-module, with basis ω1, . . . , ωn. The discriminant ∆B/A

is the A-ideal generated by det(TrB/A(ωiωj)i,j), where TrB/A(x) is the trace of the
matrix (aij) with coefficients in A defined by xωi =

∑

j aijωj . If B′ is a sub-A-

algebra which is also free as an A-module of rank n, then ∆B′/A = [B : B′]2A∆B/A.
When A = Z we often identify a Z-ideal such as a discriminant or an A-index
with its unique positive generator. By the discriminant ∆(K) of a number field K
one means the discriminant of its ring of integers as a Z-algebra, and the absolute
discriminant of K is the real number ∆(K)1/d, where d is the degree of K.

Proof of Theorem 1. We identify Q[G] with
∏

ρ Q(ρ), so that the ring N = Z[G]

becomes a subring of the product M =
∏

ρ Z(ρ) of the rings of integers in Q(ρ).

We have c(G) = [N : Ncyc] and M = Mcyc, so with Lemma 6 we get

c(G) =
1

[M : N ]
· [Mcyc : Ncyc] =

∆
1/2
M/Z

∆
1/2
N/Z

·
∏

ρ∈C

[M (ρ) : N (ρ)].

We have ∆N/Z = nn and ∆M/Z =
∏

ρ∆Z(ρ)/Z. If ρ = G/H then Nρ = Z[G]H is

generated as an abelian group by {Sx : x ∈ G/H}, where Sx is the formal sum of
all elements in the coset x of G mod H. Under the projection map, such a sum
Sx is mapped to the element (#H)x of M (ρ) = Z(ρ), so N (ρ) = (#H)M (ρ). The
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Z-rank of M (ρ) is ϕ(#ρ), where ϕ is the Euler phi-function. One deduces that
[M (ρ) : N (ρ)] = (n/#ρ)ϕ(#ρ), so that

c(G) = n−n/2
∏

ρ∈C

(n/#ρ)ϕ(#ρ)∆
1/2
Z(ρ)/Z

.

By duality of finite abelian groups, G has the same number of cyclic subgroups as
cyclic quotients of each order. Using the fact that the mth cyclotomic field has
degree ϕ(m) and that a cyclic subgroup of order m is generated by exactly ϕ(m)
of its elements, we get

c(G) = nn/2
∏

g∈G

d(ord(g))1/2

ord(g)
,

where ord(g) is the order of the cyclic group generated by g, and d(m) denotes the
absolute discriminant of the mth cyclotomic field.

Next, one remarks that for two abelian groups G1 and G2 of coprime order n1
and n2 one has c(G1 ×G2) = c(G1)

n2c(G2)
n1 , and that one has the corresponding

identity for the other side of the equality in Theorem 1. We may therefore assume

that n is a power of a prime number p. With the formula d(pm) = pm−
1

p−1 for
m ≥ 1 (see e.g. [14, Prop. 2.1]) the formula in Theorem 1 now follows easily. ¤

Proof of Theorem 2. Let A and B be as in Theorem 2. Note first that A[G]cyc =

A · Z[G]cyc, which in turn implies that [A[G] : A[G]cyc]A = c(G) ·A.
Let us start with the easy case that A has positive characteristic p. If p - c(G)

then A[G] = A[G]cyc and B = A[G]cyc · B ⊂ Bcyc, so B = Bcyc and we are done.

Now suppose that p | c(G). By the normal basis theorem we can choose an A[G]-
module injection ϕ : A[G] → B. Let us also choose a non-zero element x ∈ A so
that xB is contained in the image of ϕ. Then we have inclusions

xBcyc = (xB)cyc ⊂ ϕ(A[G]cyc) ⊂ ϕ(A[G]) ⊂ B

and since [A[G] : A[G]cyc]A = 0 it follows that [B : xBcyc]A = 0. But we have

[Bcyc : xBcyc]A 6= 0, and therefore [B : Bcyc]A = 0 = c(G) ·A.
Now assume that A has characteristic zero and let n be the A-rank of B. Let K

and L be the quotient fields of A and B. The relative discriminant ∆B/A can be
defined as the A-ideal generated by all determinants det(TrL/K(ωiωj)

n
i,j=1) where

(ωi)
n
i=1 ranges over all sequences of length n in B. It is a non-zero ideal of A. By

induction to the cardinality of ρ we can define for each ρ ∈ C an A-ideal f(ρ), called
the conductor of ρ, such that

(∗∗) ∆Bρ/A =
∏

σ≤ρ

f(σ).

We can write down this definition in one stroke by Möbius inversion:

f(ρ) =
∏

σ≤ρ

∆
µ(#ρ/#σ)
Bσ/A

,

where µ is the Möbius function. The conductor discriminant product formula now
says the following.

Lemma 7. If condition (∗) holds, then ∆B/A =
∏

ρ∈C

f(ρ).

Proof. For g ∈ G let ag be the A-ideal which is the norm of the B-ideal generated by
all x− gx with x in B. For any subgroup H of G Hilbert’s formula and transitivity
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of the different imply that

∆#G
BH/A

=
∏

g∈G
g 6∈H

a[G:H]g =
∏

g∈G

aTr(1−g|Q[G/H])g ,

where Tr(x|V ) denotes the trace of the action of an element x on a Q-vector space V .
For each ρ ∈ C we deduce that

f(ρ)#G =
∏

g∈G

aTr(1−g|Q(ρ))g .

The lemma now follows from the Q[G]-module isomorphism Q[G] ∼=
∏

Q(ρ). ¤

We continue the proof of Theorem 2. Consider the tensor product N = B⊗AB as
a module over the commutative ring M = B[G] by letting B act on the left factor
and G on the right factor. For every subgroup H of G we have NH = B⊗A(B

H)
and MH = B⊗A(A[G]H). This implies that Ncyc = B⊗A(Bcyc) and Mcyc =
B⊗A(A[G]cyc), so that [N : Ncyc]B = [B : Bcyc]A · B and [M : Mcyc]B = c(G) · B.
Since the canonical map from the ideal group of A to the ideal group of B is
injective, it suffices to show that [N : Ncyc]B = [M : Mcyc]B .

The advantage of this base change to B-coefficients is that we now have a canon-
ical B[G]-linear map

ϕ : N →M, x⊗y 7→
∑

σ∈G

xσ(y) · σ−1.

For every subgroup H of G we claim that [MH : ϕ(NH)]2B = ∆BH/A · B. To
see this, let p be a prime of A, let Ap be the p-adic completion of A, put Bp =
Ap⊗AB, and choose a basis ω1, . . . , ωn of Ap⊗AB

H over Ap. The Bp-linear map
Bp⊗BN

H−→Bp⊗BM
H induced by ϕ is then given by the matrix U = (σi(ωj))ij ,

where {σ1, . . . , σn} = G/H. On the one hand, it follows that det(U) is the p-part
of [MH : ϕ(NH)]B . But on the other hand, it is well known that det(U)2 is the
p-part of the discriminant of BH over A; see [13, Ch. III, §3, 4]. This proves the
claim.

For each ρ ∈ C we now get two product expansions of [Mρ : ϕ(Nρ)]
2
B : one

from our definition (∗∗) of the conductor and one from Lemma 6 applied to the
ρ-action on Mρ. By induction to the size of ρ (or Möbius inversion) it follows that

[M (ρ) : ϕ(N (ρ))]2B = f(ρ) · B for all ρ ∈ C. By Lemma 6, applied now to the G-
action onM , we therefore have [Mcyc : ϕ(Ncyc)]

2
B =

∏

ρ∈C f(ρ). One can summarize
this with the following commutative diagram of injections of B-modules, where the
labels of the arrows indicate the square of the B-index of the image

N
∆B/A−−−−→ M

x





x




c(G)2

Ncyc

Q

f(ρ)−−−−→ Mcyc.

Now we use condition (∗) in order to invoke Lemma 7. We obtain

[Mcyc : ϕ(Ncyc)]
2
B =

∏

ρ∈C

f(ρ) ·B = ∆B/A ·B = [M : ϕ(N)]2B .

Since ∆B/A 6= 0 this implies that [M : Mcyc]B = [N : Ncyc]B . ¤

Proof of Theorem 3. Note first that indeed c(G) = pp(p−1)/2 by Theorem 1, so that
the second equality holds.
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The case that A has positive characteristic is again easy: either p = 0 in A, in
which case we saw already that [B : Bcyc]A vanishes, or p 6= 0 in A, in which case
B is tamely ramified over A so that condition (∗) holds and we have d = B.

Thus, we assume that A is of characteristic zero. For each maximal ideal q of
B we need to check that the q-parts of the two B-ideals are the same. Let p be
a maximal ideal of A. Suppose that condition (∗) holds for the primes q of B
extending p. Then the q-part of d is trivial for these q, and by localization and
Theorem 2 we are done. The case that (∗) fails for some q extending p remains.
Since (∗) holds for extensions of degree 1 and p, this can only happen when the
completion Bq has rank p2 over Ap, and p is the residue characteristic. For the
remainder of the proof we may therefore assume that A and B are complete discrete
valuation rings of residue characteristic p. For this case the results in [13, Ch. IV,
§1] have been extended: by Theorem 2.2 of [3] and transitivity of the different we
have

rDB/A =
∏

g∈G
g 6=1

((1− g)(B) ·B) =
∏

ρ∈C
ρ6=1

DB/Bρ = D
p+1
B/A

∏

ρ∈C

D−1Bρ/A.

Here DB/A denotes the different of B over A, and the ideal r, according to Theorem

5.1 of [3], is given by r = dp−1. Dividing by DB/A and raising both sides to the
power p, we deduce with definition (∗∗) that

dp(p−1) = rp = ∆B/A

∏

ρ∈C

f(ρ)−1 ·B.

We now use the same diagram as in the previous proof and find

[B : Bcyc]
2
A ·B = [N : Ncyc]

2
B =

[M : Ncyc]B
[M : N ]B

=
c(G)2

∏

ρ f(ρ)

∆B/A ·B
=

c(G)2 ·B
dp(p−1)

.

This proves Theorem 3. ¤

Example. Let us take p = 2 and let A be a complete discrete valuation ring of
characteristic zero, whose residue field is the field F2(x, y) with x and y algebraically
independent over F2. Lifting x and y to elements x̃ and ỹ of A, we now consider
B = A[

√
x̃,
√
ỹ ]. Then B is Dekekind with an action of an abelian Galois group G

of type (2, 2). We now have B = Bcyc and c(G) ·B = 2B = d 6= B.
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