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Abstract

We show that for each odd prime number p two number fields with the
same zeta-function but distinct p-class numbers have degree at least 2p+2.
Moreover, two such number fields of degree 2p + 2 have a common Galois
closure with Galois group GL2(Fp)/(F∗2

p ).

1. Introduction

Two number fields are said to be arithmetically equivalent if they have the same
zeta-function. Such fields have the same degree, the same normal closure, the
same discriminant and the same product of class number and regulator. Non-
isomorphic arithmetically equivalent fields have degree at least 7. See [7] for more
background, examples and references.

In 1994 arithmetically equivalent fields were found with distinct class numbers.
The first examples had degree 8 and later examples of degree 7 were found as
well [3, 2]. In these examples the odd parts of the two class numbers were always
the same. The question then arose whether for a given odd prime p there exist
two arithmetically equivalent number fields with distinct p-class numbers, and if
so, what the minimal degree of such fields would be.

Fields that could provide examples of this, of degree 2p + 2, were proposed
in [2]: one takes a Galois extension of Q with Galois group Gp = GL2(Fp)/F∗2

p

and considers the fields of invariants of the subgroups Hp = (�
0

∗
∗)/� and H ′

p =
(∗

0
∗
�)/� of Gp. Here “�” denotes the squares in F∗

p. One can find explicit
equations for such fields by considering torsion points on elliptic curves [2]. This
way, examples of arithmetically equivalent fields with distinct p-class numbers
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were found for p = 3 and for p = 5 [5]. For each p ≥ 7 it is presently not known
whether such examples exist.

The goal of this paper is to show that the triple (Gp, Hp, H
′
p) is the unique

Galois configuration of minimal degree for this setting. More precisely, we prove
the following theorem. Throughout the paper p denotes an odd prime number.

Theorem 1. Let K and L be arithmetically equivalent number fields with non-
isomorphic p-class groups. Then [K : Q] is at least 2p+2. If [K : Q] = 2p+2, and
M denotes a Galois closure of K, then there is an isomorphism Gal(M/Q) ∼= Gp

so that K is the fixed field MHp of Hp and L is isomorphic to MH′
p .

The proof of this theorem is by a standard deduction from our main group the-
oretic result, which is formulated below as Theorem 2.

The theorem implies that for arithmetically equivalent fields of degree d and
any prime p > 1

2
d − 1, the p-parts of the two class groups are isomorphic. This

particular statement has a much shorter proof than Theorem 1: it only uses
Section 2 below.

We first introduce the terminology of linear equivalence. If a group G acts (on
the left) on a set X, and R is a commutative ring with 1, then we write R[G] for
the group ring, and R[X] for the free R-module on the basis X. We view R[X]
as an R[G]-module by letting G permute the basis vectors of R[X]. Two finite
sets X and Y which are both endowed with a left action of a group G are said
to be linearly equivalent over R if the permutations modules R[X] and R[Y ] over
R[G] are isomorphic.

To make the passage to group theory, one considers the sets X and Y of field
embeddings of K and L respectively, into Q. These sets have a natural action of
the Galois group Γ = Gal(Q/Q). It is known that K and L are arithmetically
equivalent if and only if the Γ-sets X and Y are linearly equivalent over C.
Moreover, K and L have isomorphic p-class groups when X and Y are linearly
equivalent over Zp. See [7] and [2] for details and examples. Therefore, Theorem 1
is a consequence of the following result.

Theorem 2. Let p be an odd prime number, and let G be a group acting faith-
fully and transitively on two sets X and Y of cardinality at most 2p+2. Suppose
that X and Y are linearly equivalent over C, but not over Zp. Then there is
an isomorphism ϕ : Gp → G so that X and Y , viewed as Gp-sets via ϕ are
Gp-isomorphic to Gp/Hp and Gp/H

′
p respectively.

This paper is devoted to proving Theorem 2. We will use Conlon’s induction
theorem in integral representation theory, Burnside’s theorem on permutation
groups of prime degree, a classification result of Feit about Zassenhaus groups,
and a computation of J. Quer concerning central extensions of PGL(2, Fp) and
PSL2(Fp) by a cyclic group of order 2. We present these results as “Facts” with
references as we need them in the proof.
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In [2] an easy argument is given that shows that the Gp-sets Gp/Hp and
Gp/H

′
p are indeed linearly equivalent over C, but not over Zp. Note that Gp has

an automorphism switching Hp to H ′
p: take the inverse transpose and conjugate

by (0
1

1
0
). This implies that the conclusion of Theorem 2 is symmetric in X and Y .

The notation Cn will always denote a cyclic group of order n.

2. Combinatorial criteria for linear equivalence

We will frequently make use of two elementary properties of linear equivalence.
First, if a group G acts on two finite sets, and these actions are linearly equivalent
over some non-zero ring, then each subgroup H of G has the same number of
orbits on the two sets. One way to see this is to consider the rank of the module
of H-coinvariants of the two permutation modules. Second, if N is a normal
subgroup of G, then the N -orbits of a G-set X form a G-set N\X and if X and
Y are linearly equivalent G-sets over a certain ring, then so are N\X and N\Y .

We only consider linear equivalence over C and over Zp. There are very
explicit group theoretic conditions that determine whether two G-sets are linearly
equivalent over these rings. Over C, character theory implies that two G-sets X
and Y are linearly equivalent if and only if every group element of G fixes the
same number of elements on X and on Y . Over Zp, we use the theory of “Conlon
induction” [1, §81B]. We say that a finite group G is cyclic modulo p if it has a
normal p-subgroup S so that G/S is cyclic.

Fact 1 (Conlon). Let G be a finite group, and let X and Y be finite G-sets.
Then we have Zp[X] ∼=Zp[G] Zp[Y ] if and only if every subgroup H of G which is
cyclic modulo p has the same number of fixed points on X and on Y .

Applying this criterion to the situation of Theorem 2, we see that there is a
subgroup C of G which is cyclic modulo p and for which #XC 6= #Y C .

Consider the normal Sylow-p-subgroup U of C. Since p2 > 2p + 2 all U -
orbits of X have length 1 or p. Note that U 6= 1 because otherwise C would be
cyclic, and the linear equivalence of X and Y over C would imply #XC = #Y C .
The number of U -orbits is the same on X and on Y , so the number of non-
trivial U -orbits is the same on X and on Y . This number is 1 or 2 because
3p > 2p + 2 ≥ #X.

The C-sets U\X and U\Y are linearly equivalent over C, and since C/U is
cyclic they have the same number of fixed points under C. Now #(U\X)C−#XC

is the number of C-closed U -orbits of length p. It is distinct from the number of
C-closed U -orbits of Y , because #XC 6= #Y C . Thus, U has 2 non-trivial orbits
on X and on Y , and after switching X and Y if necessary we can assume that
X contains one C-orbit of length 2p, while Y contains 2 of length p. Switching
X and Y is harmless because, as we mentioned at the end of Section 1, the
conclusion of the theorem is symmetric in X and Y .
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Since C has the same number of orbits on X and on Y , there must be at least
two more points in X and in Y . But #X ≤ 2p+2, so it follows that #X = 2p+2,
and we now know that G has a subgroup C with orbit lengths 2p, 1, 1 on X and
p, p, 2 on Y .

3. The point stabilizer

Let F = {g ∈ G : gx = x for all x ∈ XC}. Then C ⊂ F and F has orbit lengths
2p, 1, 1 on X, so it has 3 orbits on Y also, and they have lengths p, p, 2. We let
Yp be an F -orbit of length p in Y and we let Y2 be the F -orbit of length 2 in Y .

Let us show first that F acts faithfully on Yp. Let K be the kernel of the
action of F on Yp, and let K ′ ⊂ K be the kernel of the action of F on Yp ∪ Y2.
Then K ′ is normal in F , so the number of K ′-orbits on X is 2 plus a divisor of
2p, and on Y it is p + 2 plus a divisor of p. That implies that K ′ = 1, and that
and K acts faithfully on Y2, so #K | 2. Since K is normal in F and of order
coprime to p, it acts trivially on the two F -orbits of length p of Y , so the number
of K-orbits on Y is 2p + 1 or 2p + 2. And on X it is 2 plus a divisor of 2p. So
K = 1 and F acts faithfully on Yp.

We let N be the kernel of the action of F on Y2. Then N is a normal subgroup
of F of index 2. Note that N has either one or two orbits of the same length on
every transitive F -set, and that N has orbit lengths p, p, 1, 1 on Y . Since N has
4 orbits on X as well, it follows that N has orbit lengths p, p, 1, 1 on X as well.
So the F -set X has two blocks of length p which are switched by the elements
g of F that are not in N . Such an element g has exactly 2 odd length orbits on
X, namely the fixed points. Since X and Y are isomorphic over the cyclic group
〈g〉 the same is true on Y . Since #Yp is odd, g has an odd number of odd length
orbits on Yp, so it has a unique fixed point on Yp. If N were 2-transitive on Yp

then there would be an element n ∈ N so that gn would fix at least two elements
of Yp. But gn ∈ F and gn 6∈ N , so the above argument applied to gn instead of
g would give a contradiction. It follows that N is not 2-transitive on Yp.

Fact 2 (Burnside). Every faithful transitive action of a non-solvable group on
a set of p elements is 2-transitive.

See [4, Thm. 3.5B] for a proof. We deduce that N is solvable and that F is
solvable too. By considering a non-trivial elementary abelian normal l-subgroup
of F and the fact that F acts faithfully and transitively on Yp, we see that l = p,
and that F is contained in Cp o F∗

p, where Cp denotes a cyclic group or order p.
Since #C is even, we see that

2p | #F | (p− 1)p.

Note also that N is a characteristic subgroup of F : it is generated by the squares
of elements of F .
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We now show that F is in fact a point stabilizer of the action of G on X. Let
T be the point stabilizer in G of an element x ∈ XF . Then F ⊂ T and T has
orbit lengths 2p+1, 1 or 2p, 1, 1 on X. If it is 2p, 1, 1 then T = F by the definition
of F , and we are done. So let us assume that T has orbit lengths 2p + 1, 1 on
X, so that [T : F ] = 2p + 1. If T has an orbit of length 2 on Y , then the point
stabilizer T ′ within T of any point in this orbit is a normal subgroup of index 2
in T , which must be transitive on the T -orbit of size 2p + 1 of X. But then T ′

has 2 orbits on X and at least 3 on Y , which is a contradiction. It follows that
T has no orbit of length 2 on Y , and that its two orbits on Y have length p and
p + 2. The subgroup N of T has index 2(2p + 1) and it has orbit lengths p, p, 1, 1
on Y , so it is contained in the point stabilizer of a point in the T -orbit of length
p + 2 of Y , which in turn has index p + 2 in T . It follows that p + 2 | 4p + 2,
which implies p + 2 | 6, so we have a contradiction. We therefore have T = F .

4. Block structure and the Borel subgroup

It follows from the previous step that we have an equivalence relation on X with
equivalence classes of size 2, where two points are defined to be equivalent if they
have the same point stabilizer in G. We denote the set of equivalence classes by
X. Let Z be the kernel of the action of G on X. We claim that Z is a central
normal subgroup of G of order 2.

Let B be the point stabilizer in G of the element XF of X. Then F is a normal
subgroup of B of index 2. The subgroup N of F is the subgroup generated by
the squares in F , so it is characteristic in F and it is normal of index 4 in B.

The orbit lengths of B on X are 2p, 2. Thus, F acts on the 4 elements of
N\X as a single two-cycle, and B has two orbits of length 2 on N\X. It follows
that B/N ∼= C2 ×C2. We also deduce that N is the subgroup of B generated by
squares, and that B has exactly 3 subgroups of index 2.

The kernel of the action of F on X̄ is a normal subgroup of 2-power order,
but any F in Cp oF∗

p containing Cp has only a trivial normal subgroup of 2-power

order. It follows that F acts faithfully on X and that Z ∩ F = 1.
The group B has 2 orbits on X, of lengths 1 and p. By the argument in the

previous section, the image of the solvable group B in the symmetric group on
X can be embedded in Cp o F∗

p, so it has a cyclic 2-Sylow subgroup. But B has
a quotient C2 ×C2, so Z is a non-trivial normal subgroup of B. Since Z ∩F = 1
and [B : F ] = 2 we have #Z = 2 and B = F ×Z. It also follows that X = Z\X.
A normal subgroup of order 2 is central, so Z lies in the center of G.

There are three subgroups of B of index 2, and they all contain N . They
are F and NZ and we denote the third by F ′. We know that Z acts without
fixed points on X, so it has no fixed points on Y either. Thus, F and Z both
act non-trivially on Y2. This implies that F ′ fixes two points of Y , so that F ′

is a point stabilizer for the action of G on Y . Moreover, the G-set Y = Z\Y is
G-isomorphic to X: both are isomorphic to G/B.
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We now know that our group G fits in a short exact sequence

0 → Z → G → G → 0,

with #Z = 2. We claim that this extension is not split. Suppose it is split, and
let H be a subgroup of G which under the map G → G maps isomorphically
to G. If H is not transitive on X, then it has two orbits, each H-isomorphic to
X, and X is the G-set induced by the H-set X. But then H also has two orbits
on Y , so Y is the G-set induced by the H-set Y , and since Y ∼=H X, we then
have X ∼=G Y : contradiction. Now suppose that H is transitive on X so that H
is also transitive on Y . The group B ∩H has index 2 in B and it does not meet
Z, so it is either F or F ′. But the point stabilizers H ∩F and H ∩F ′ of H on X
and Y have index 2 in F and F ′ respectively, so we have a contradiction again.
It follows that the sequence is non-split.

5. Zassenhaus groups

The point stabilizer B = B/Z of the action of G = G/Z on X is isomorphic to F ,
and it has orbit lengths p, 1 on X. On the orbit of length p a non-trivial element
of F fixes at most one element. Thus, G acts 2-transitively on X and every
non-trivial element of G has at most 2 fixed points on X. This is the defining
property of Zassenhaus groups in [4] (in [6] there is a slightly stricter definition).
The next result allows us to almost pin down the group G.

Fact 3 (Feit). A 2-transitive group on p + 1 elements in which each non-trivial
group element has at most 2 fixed points is isomorphic as a permutation group,
to one of the following: PGL(2, Fp) on P1(Fp) or PSL(2, Fp) on P1(Fp) or, if
p + 1 = 2l with l prime, F2l o (F∗

2l o Cl) on F2l .

Here Cl denotes the cyclic Galois group Gal(F2l/F2) of order l, and P1(Fp) denotes
the points on the projective line over Fp. See [6, Ch. XI, Thm. 6.9] for a proof.

We show first that we can dismiss the third case for our group G. If p = 3 then
the first and third group are just S4 on 4 elements. For p > 3 with 2l = p + 1
both l and 2l − 1 are odd, so then a point stabilizer of F2l has odd order in
F2l o (F∗

2l o Cl). But we know that F maps injectively to G, and F has even
order, so we are not in this case.

It follows that there is an isomorphism from G to PGL(2, Fp) or to PSL(2, Fp),
for which the image of B is a point stabilizer of the projective line. By applying
an inner automorphism of the projective linear group we can assume that the
image of B is the Borel subgroup (∗

0
∗
∗)/∗ of either PGL(2, Fp) or PSL(2, Fp).

6. Computing a central extension

We showed in Section 4 that G is a non-trivial central extension of G by C2.
Moreover, the restriction of the extension to B is the trivial extension B. This
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means that the extension class of G is a non-trivial element of the kernel of the
restriction map

h : H2(G, C2) → H2(B, C2).

We now use the classification result of the last section, and compute the kernel
of h in the two cases.

Fact 4. We have H2(PGL(2, Fp), C2) ∼= C2 × C2 and H2(PSL(2, Fp), C2) ∼= C2.

We refer to [8] for a proof in a more general setting. Suppose that we have an
isomorphism G ∼= PSL2(Fp) as in the last section. Consider the extension

0 → C2 → SL2(Fp) → PSL2(Fp) → 0.

The Borel subgroup {( t
0

a
t−1 ) : a ∈ Fp, t ∈ F∗

p} of SL2(Fp) has a cyclic 2-Sylow

subgroup, so this extension restricts to a non-trivial element of H2(B, C2). This
implies that the map h defined above is non-trivial, and by Fact 4 it follows that
h is injective. This is a contradiction.

By the classification result in the last section we now know that there is an
isomorphism G → PGL2(Fp) with B̄ mapping to the Borel subgroup (∗

0
∗
∗)/∗.

Consider PGL2(Fp) as a subgroup of PSL2(Fp2) and consider its C2-extension
SL2(Fp2). The induced C2-extension of B is contained in the Borel subgroup
{( t

0
a

t−1 ) : a ∈ Fp2 , t ∈ F∗
p2} of SL2(Fp2), which has a cyclic 2-Sylow subgroup.

This implies that h is not the zero map, and by Fact 4 its kernel has order at
most 2.

In Section 1 it was mentioned that the group Gp acting on Gp/Hp and Gp/H
′
p

satisfies the conditions of Theorem 2. This implies that the short exact sequence

0 → F∗
p/F∗2

p → Gp → PGL2(Fp) → 0

represents the unique non-zero element in the kernel of h. It follows that there
is an isomorphism ϕ : G → Gp mapping Z to the scalar subgroup F∗

p/F∗2
p of Gp,

and B to the Borel group (∗
0

∗
∗)/�.

Recall that F and F ′ are the only two distinct subgroups of B of index 2
that do not contain Z. Note that Hp and H ′

p are the two subgroups of index 2
in (∗

0
∗
∗)/� not containing F∗

p/F∗2
p . By composing ϕ with an automorphism of Gp

that switches Hp and H ′
p if necessary, we therefore find an isomorphism G → Gp

as stated in Theorem 2.
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