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LOCAL GALOIS MODULE STRUCTURE IN POSITIVE
CHARACTERISTIC AND CONTINUED FRACTIONS

BART DE SMIT AND LARA THOMAS

Abstract. For a Galois extension of degree p of local fields of charac-
teristic p, we express the Galois action on the ring of integers in terms
of a combinatorial object: a balanced {0, 1}-valued sequence that only
depends on the discriminant and p. We show that the embedding dimen-
sion edim(R) of the associated order R is tightly related to the minimal
number d of R-module generators of the ring of integers. Moreover, we
show how to compute d and edim(R) from p and the discriminant with
a continued fraction expansion.

1. Main results

By a local field we mean a field which is complete with respect to a discrete
valuation. Let K ⊂ L be a Galois extension of local fields of characteristic
p > 0, whose Galois group G is cyclic of order p. Let A and B be the rings
of integers of K and L. Let p be the maximal ideal of A and k = A/p its
residue field.

Define the multiplier ring, or associated order, of the Galois module B to
be the subring R = {x ∈ K[G] : xB ⊂ B} of the group ring K[G]. This ring
R is a local ring with residue field k which is free of rank p as an A-module,
and which contains A[G]. We denote its maximal ideal by m.

The goal of this paper is to study the ring R and the structure of B as
an R-module. Let d be the minimal number d of R-module generators of
B, and let δL/K be the integer for which pδL/K is the discriminant of B
over A. Our first theorem says that d is closely related to the embedding
dimension edim(R) = dimk(m/m2) of R. In Theorem 3 below we show how
to compute d.

Theorem 1. If p | δL/K then R is isomorphic as an A-algebra to A[X]/(Xp)
and B is free of rank 1 as an R-module. If p - δL/K then edim(R) = 2d+ 1.

Theorem 1 implies that d = 1 and edim(R) = 2 if p | δL/K . This case
includes the unramified case, the case that the residue field extension is
inseparable, and also certain cases where the ramification index is p. We
have R = A[G] if and only if L is unramified over K; see Proposition 3.
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The proof has two basic ingredients: graded rings and balanced sequences.
In section 3 we will give R the structure of a graded ring, and B the structure
of a graded module over R. We will use an Artin-Schreier equation xp−x = y
for L over K where y ∈ K has valuation −t with t ≥ 0 as small as possible.
If the ramification index is p then p - t and δL/K = (p− 1)(t+ 1), and
otherwise p | t and δL/K = (p− 1)t; see section 3 for details. Define the
remainder s = rem(t, p) of t when dividing by p to be the unique integer s
that satisfies 0 ≤ s < p and t ≡ s mod p.

We will give an explicit combinatorial description of the gradings on R
and B in terms of the balanced sequence associated to the fraction s/p. This
sequence and its basic properties are introduced in section 2. The proof
of Theorem 1, which is given in section 4, exploits some slightly subtle
combinatorial properties of this sequence.

The combinatorial description also gives rise to a method to compute d.

Theorem 2. If s = 0 then d = 1. Otherwise, d is the number of times we
pass through the middle oval in the following flow chart.

Start s | p− 1?

(p, s) := (s, rem(−p, s))

Finish
Yes

No

It follows from the two theorems that for s 6= 0 we have

d = 1 ⇐⇒ edim(R) ≤ 3 ⇐⇒ s | p− 1;

d ≤ 2 ⇐⇒ edim(R) ≤ 5 ⇐⇒ s− rem(p, s) | s− 1.

The equivalence d = 1 ⇐⇒ s | p − 1 is essentially the result of Aiba [1],
as pointed out by Byott [5] and Lettl [9]. We include an independent proof
of this in section 3, which does not rely on the combinatorial arguments of
section 4. See [2, 3] for a characteristic zero analog.

We can compute d more efficiently in terms of the continued fraction
expansion of −s/p. If s 6= 0 then we can write

−s
p

= x0 +
1

x1 +
1

. . .
. . .

xm−1 +
1
xm

for unique integers x0, . . . , xm ∈ Z satisfying x1, . . . , xm−1 ≥ 1 and xm ≥ 2.

Theorem 3. If s = 0 or s = p − 1 then d = 1. Otherwise d is the sum of
all xi with i odd and i < m.
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We give the proof in section 4. Since the continued fraction expansion can
be computed quickly, this gives rise to an algorithm that given p and s
computes d in polynomial time, i.e., in time bounded by a polynomial in
log(p). When p > 2 and s = p− 2 we have m = 2 and x1 = (p− 1)/2, so we
immediately get d = (p− 1)/2 by Theorem 3, while the flow chart does not
finish in polynomial time.

2. Balanced sequences

Suppose x is a real number with 0 ≤ x < 1. For i ∈ Z let ai = dixe =
inf{n ∈ Z : n ≥ ix} and put εi = ai − ai−1 ∈ {0, 1}. This means that the
point (i, ai) is on or above the line through the origin with slope x, and
(i, ai − 1) is below it. In the picture below, we give the sequences εi, ai and
mi (defined below) for x = 5/8.

1
1

0
1

1
0

1
0

8

5 ε1, . . . , ε7 = 1, 1, 0, 1, 1, 0, 1
a1, . . . , a7 = 1, 2, 2, 3, 4, 4, 5

m1, . . . ,m7 = 0, 1, 2, 2, 3, 4, 5.

The sequence (εi)i∈Z is balanced, i.e., any two finite blocks in the sequence
of the same length have sums that differ by at most one. Moreover, blocks
starting with ε1 have maximal sum. This is phrased more precisely in the
next lemma.

Lemma 1. For all i, j, n ∈ Z with n ≥ 0 we have

|(εi+1 + εi+2 + . . .+ εi+n)− (εj+1 + εj+2 + . . .+ εj+n)| ≤ 1.

For all n ≥ 0 we have

an = ε1 + ε2 + · · ·+ εn = sup{εi+1 + εi+2 + . . .+ εi+n : i ∈ Z}.

We leave the easy proof to the reader. See [10, Sec. 2.1.2] for further proper-
ties. When x is not rational the balanced sequence is often called a Sturmian
sequence.

In this paper we are only interested in the case that x is rational, so from
now on let us assume that x ∈ Q. Then the sequence ε is periodic that is,
there is an integer p ≥ 1 so that εi = εj for all i, j ∈ Z with i ≡ j mod p. Let
us take p minimal with this property. Then p is the denominator of x. In our
main application, p will be the characteristic of K, but we will need balanced
sequences whose period is not prime as well. Write s for the numerator of x.

Lemma 2. The sequence ε2, ε3, . . . , εp−1 is a palindrome.
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This lemma follows immediately from the fact that ai + ap−i = s+ 1 when
0 < i < p.

We define a third sequence m0,m1,m2, . . . ,mp−1 by

mn = inf{εi+1 + εi+2 + . . .+ εi+n : 0 ≤ i < p− n}.
The range over which we take this infimum is restricted: mn is the smallest
sum of a block of length n within ε1, . . . , εp−1.

Lemma 3. For n ∈ {1, . . . , p − 1} we have an = mn if and only if for all
i, j ∈ {1, . . . , p− 1} with i ≡ j mod n we have εi = εj.

This lemma follows easily from Lemma 1. If n ∈ {1, . . . , p − 1} has the
property in Lemma 3 then we say that n is a sub-period of ε. In our example
with x = 5/8 we see that 3, 6 and 7 are sub-periods.

3. Graded rings

Let the notation be as in the introduction. See [4, Chap. II §11] for basic
concepts of graded rings and modules. Our gradings will be indexed by the
non-negative integers.

For each g ∈ G = Gal(L/K) we have the identity (g − 1)p = gp − 1 = 0
in K[G]. This implies that the group ring K[G] is a local ring with residue
field K. If we choose a generator σ for G, and write X = σ−1 ∈ K[G], then
K[G] is the truncated polynomial ring K[X]/(Xp). Thus, K[G] becomes
a graded ring whose homogeneous part of degree i is non-trivial only if
i = 0, . . . , p− 1, in which case it is the 1-dimensional K-vector space KXi.
For each i ≥ 0 the elements of degree at least i form an ideal, which coincides
with the i-th power of the maximal ideal ofK[G]. Thus, the grading depends
on the choice of a generator of G, but the induced filtration of K[G] by a
chain of ideals is canonical. Note that A[G] =

⊕
iAX

i is a graded subring
of K[G].

For x ∈ L write ℘(x) = xp − x. By Artin-Schreier theory, we have
L = K(α) for some α ∈ L with ℘(α) ∈ K. We use the generator σ of G
with σα = α+ 1 to define a grading on K[G] so that σ − 1 is homogeneous
of degree 1. For i < p the element

(
α
i

)
is the binomial polynomial α(α −

1) · · · (α− i+ 1)/i! where
(
α
0

)
= 1 and

(
α
i

)
= 0 for i < 0. For i < p we have

(σ − 1)
(
α
i

)
=

(
α

i−1

)
. This implies that we can equip L with the structure

of a graded module over K[G]: its homogeneous piece of degree i is 0 for
i = 0 and i > p, and it is the 1-dimensional K-vector space Li = K

(
α

p−i

)
for

i = 1, . . . , p. Note that L is free over K[G] on one homogeneous generator(
α

p−1

)
in degree 1.

We now refine our choice of Artin-Schreier equation to obtain a description
of B, and to show that B is a graded A[G]-submodule of L. Thus, we need
a better choice of α ∈ S = {α′ ∈ L with ℘(α′) ∈ K and α′ 6∈ K}. Let
fL/K be the degree of the residue field extension of L over K. The following
proposition partly goes back to Hasse [6]. We include a proof below for
convenience.
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Proposition 1. The supremum sup{ordp(℘(α′)) : α′ ∈ S} is an integer −t
with t ≥ 0. If p | t then fL/K = p and δL/K = (p− 1)t. If p - t then
fL/K = 1 and δL/K = (p− 1)(t+ 1).

We now choose α ∈ S so that the supremum in the Proposition is attained
at α. Again, the generator σ of G with σα = α + 1 gives rise to a grading
on K[G] for which σ − 1 is homogeneous of degree 1.

Proposition 2. The ring B is a graded A[G]-submodule of L. For i =
1, . . . , p its homogeneous part of degree i is the free A-module of rank 1

Bi = pdt(p−i)/pe
(

α

p− i

)
.

Proof of Propositions 1 and 2. For y ∈ K consider the polynomial f = T p−
T −y ∈ K[T ]. If y ∈ A then (f mod p) ∈ k[T ] is separable which by Hensel’s
lemma implies that f has a zero inK if (y mod p) ∈ ℘(k), and that otherwise
a zero of f generates an unramified degree p extension of K. By applying
this to y = ℘(α′) with α′ ∈ S, we deduce two things. First, we then have
(y mod p) 6∈ ℘(k), and in particular y 6∈ p, so ordp(℘(α′)) ≤ 0. Thus, the
supremum in Proposition 1 is a finite number −t with t ≥ 0. Secondly, we
have t = 0 if L is unramified over K.

Write vK and vL for the valuations on K and L, and let π ∈ K with
vK(π) = 1. Thus, p = πA and vL(π) is the ramification index of L over K.

Suppose that p - t. Then vL(α) < 0, and by the strong triangle inequality
we have pvL(α) = vL(αp) = vL(℘(α)). It follows that p | vL(℘(α)) =
−tvL(π), so vL(π) = p and vL(α) = −t, which implies that vL(

(
α
i

)
) = −it.

Moreover, vL assumes the values {0, 1, . . . , p−1} on the set {πdit/pe(α
i

)
: 0 ≤

i < p}. With Nakayama’s Lemma it follows that this set is an A-basis for
B, as required.

Now suppose that p | t > 0. Then the image u of πt/pα ∈ B in the
residue field of L satisfies up ∈ k. If up = vp for some v ∈ k, then α′ =
α−π−t/pz ∈ S, for any lift z of v to A, would satisfy vK(℘(α′)) > −t which
is a contradiction. Thus, u generates an inseparable degree p extension of k.
Again by Nakayama’s lemma, the set {πit/pαi : 0 ≤ i < p} is an A-basis of
B. It follows that {πit/p

(
α
i

)
: 0 ≤ i < p} is an A-basis of B as well. This

proves Proposition 2.
In order to compute the discriminant in terms of t, first note that

δL/K = vK(∆L/K) = (p− 1)fL/KvL(σx− x)

when x is an A-algebra generator of B; see [11, Ch. IV §1 Prop. 4, Ch. II
§2 Cor. 4]. If in addition x ∈ A

(
α
i

)
with 0 ≤ i < p then σx − x = xi/α, so

vL(σx−x) = vL(x)−vL(α) = vL(x)+t/fL/K . In the case p | t we found such
an x with vL(x) = 0. In the case p - t we have such an x in our A-basis of B
with vL(x) = 1. This gives the discriminant formulas in Proposition 1. �
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We write t = pk + s with k, s ∈ Z and 0 ≤ s < p. Let ε1, ε2, . . . be
the balanced sequence associated to the fraction s/p. Define the integers
m1,m2, . . . ,mp−1 and a0, a1, . . . as in section 2.

Let π be a prime element of K and consider the element ϕ = (σ−1)/πk ∈
K[G], which is homogeneous of degree 1.

Proposition 3. For i = 1, . . . , p we have

Bi = pk(p−i)+ap−i

(
α

p− i

)
, ϕBi = pεp−iBi+1.

The ring R is a graded subring of K[G] with Ri = p−miϕi when 0 ≤ i < p.

Proof. We have ϕ
(

α
p−i

)
=

(
α

p−i−1

)
π−k, and dt(p− i)/pe = dt(p− i− 1)/pe+

k + εp−i. Combining this with the previous Proposition the first statement
follows.

The endomorphism ring of a finitely generated graded module over a
graded ring is itself graded [4, Ch. II §11.6]. In our case, we have a canonical
isomorphism of graded rings K[G] → EndK[G](L) that maps R bijectively
to EndA[G](B). It follows that R is a graded subring of K[G], and that its
homogeneous part of degree i is given by

Ri = {ψ ∈ Kϕi : ψBj ⊂ Bj+i for all j with 1 ≤ j ≤ p− i}.
To compute this we apply the first statement: for i, j ≥ 1 with i + j ≤ p
we have ϕiBj = pwBi+j with w = εp−i−j+1 + · · ·+ εp−j . As j varies with i
fixed, this number w runs over the sums of blocks of length i in the sequence
ε1, . . . , εp−1. The minimal such w is mi. �

Corollary. If s = 0 or s = p− 1 then d = 1 and edim(R) = 2.

To see this, note that R = A[ϕ] if s = 0 and R = A[ϕ/π] if s = p − 1, and
that in both cases B1 generates B as an R-module.

We now formulate the main result of this section. We define the following
two sets:

D = {i : 0 < i < p and aj +mi−j < ai for all j with 0 < j < i};
E = {i : 0 ≤ i < p and mj +mi−j < mi for all j with 0 < j < i}.

Theorem 4. We have d = #D and edim(R) = #E. Moreover, a set of
homogeneous elements in B (resp. m) forms a set of R-module generators
of B (resp. m) if and only if for each i in D (resp E) it contains an A-module
generator of Bi (resp mi).

Proof. The maximal ideal m of R is homogeneous: m =
⊕p−1

i=0 mi with m0 =
p and mi = Ri for i > 0. This implies that mB is a graded submodule of B.
For each i with 1 ≤ i ≤ p we have

(mB)i =
i∑

j=1

mi−jBj .
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It follows that (mB)i = Bi if and only if ap−j −mi−j = ap−i for some j with
1 ≤ j < i. Taking i = p and j = 1 we see that ap−1 −mp−1 = 0 = a0, so
(mB)p = Bp. If 1 ≤ j < i < p then we have ai +ap−i = s+1 = aj +ap−j , so
the condition ap−j −mi−j = ap−i is equivalent to aj +mi−j = ai. It follows
that we have (mB)i = Bi if and only if i 6∈ D.

By Nakayama’s lemma, a subset of B generates B as an R-module if and
only if it generates B/mB as a k-vector space. In particular, the minimal
number of such elements is the k-dimension of B/mB, which is the number
of integers i with Bi 6= (mB)i. The last statement for B also follows.

Similarly, the ideal m2 is homogeneous. We have

m2 =
p−1⊕
i=0

(m2)i with (m2)i =
i∑

j=0

mjmi−j .

Since m0 6= A it follows that (m2)i = mi if and only if mj +mi−j = mi for
some j with 0 < j < i, which in turn is equivalent to i 6∈ E . The result now
follows as in the first case with Nakayama’s lemma. �

The next result also follows Theorem 2, but since it is easy to prove
without much combinatorics we include a separate proof. The equivalence
of the first and third condition also follows from work of Aiba [1, 5, 9].

Corollary. When s 6= 0 the following are equivalent:

(1) d = 1;
(2) ε1, . . . , εp−1 is an s-fold repetition of a sequence 1, 0, 0, . . . , 0;
(3) s | p− 1.

Proof. Clearly, (2) implies (3). Suppose (3) holds, so that p− 1 = sk for an
integer k. Then it is easy to see that (2) holds and that mi−1 = ai − 1 for
each i with 0 < i < p. If i > k then we get ai−k +mk = ai−k + 1 = ai, so
i 6∈ D. If 2 ≤ i ≤ k then we have a1 +mi−1 = 1 + 0 = ai, so again i 6∈ D.
We deduce that D = {1} so that (1) holds. Note that R = A[ϕ,ϕk/π].

Now suppose that (1) holds and that 0 < s < p−1. Then we have D = {1}
and m1 = 0. The smallest l with ml = 1 satisfies 2 ≤ l ≤ p− 1. For each i
with 1 ≤ i < l we have 1 = mi + 1 ≥ ai ≥ ε1 = 1, so ai = 1. Since l 6∈ D
there is an integer i with 0 < i < l and al = ai +ml−i = 1+0 = 1 = ml. By
Lemma 3 we see that l is a sub-period. Thus, the sequence ε1, ε2, . . . , εp−1

satisfies εi = 1 exactly when i ≡ 1 mod l. Using Lemma 2 we see that the
sequence ends with l − 1 zeroes, so (2) follows. �

4. Combinatorial results

In this section we prove the results in section 1 by analyzing the sets D and
E for balanced sequences in a slightly more general setting.

Let x ∈ Q with 0 < x < 1, and write x = s/p with s and p positive
coprime integers. We do not assume that p is prime. We use the notation
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from section 2. In particular we have the sequences (εi), (ai) and (mi). We
define the sets D and E as in section 3. We first look at the set of sub-periods

P = {n : 0 < n < p and an = mn}.
By Lemma 3 these are the n < p for which we have a commutative diagram

{1, 2, . . . , p− 1} {0, 1}.

Z/nZ

i 7→ εi

Clearly, p− 1 always lies in P, and any multiple below p of an element of P
again lies in P. We define M = M(x) to be the set of minimal sub-periods,
that is, the sub-periods for which no proper divisor is a sub-period.

Lemma 4. Suppose i, j ∈ P with i+ j ≤ p. Then gcd(i, j) ∈ P. If i+ j = p
then 1 ∈ P.

Proof. Suppose first that i+j = p. We may assume that j > 1. By Lemma 2
and the fact that i ∈ P we get εj = εp−j+1 = εi+1 = ε1 = 1. Using j ∈ P
and Lemma 1 one sees that for each l with 0 ≤ l < i we have

εl+1 + al = al+1 ≥ εj + · · ·+ εj+l = εj + (ε1 + · · ·+ εl) = 1 + al,

so that εl+1 = 1. Since i ∈ P this implies that s = p− 1 and 1 ∈ P.
Next, suppose that i+j < p and assume that j < i. Suppose i ≡ r mod j

with 0 ≤ r < j. For each k with 1 ≤ k ≤ j we then have εr+k = εi+k = εk,
since j ∈ P and i ∈ P. For each l with 0 < l < p − r there is an integer
k with 1 ≤ k ≤ j so that l ≡ k mod j and εl+r = εk+r = εk = εl. Thus,
r ∈ P. We can repeat the argument with j and r instead of i and j, and by
the Euclidean algorithm it follows that gcd(i, j) ∈ P. �

Theorem 5. If s = p− 1 then D = {1} and E = {0, 1}. Otherwise the map
f : M → D given by f(i) = rem(p, i) is a bijection, and E is the disjoint
union {0} ∪M∪D.

Proof. If s = p − 1 we have ε1 = · · · = εp−1 = 1, and the result is obvious.
So assume 0 < s < p− 1.

Suppose that i ∈M. If i | p then i, p− i ∈ P, and s = p− 1 by Lemma 4,
contradicting our assumption. It follows that f(i) > 0. By Lemma 4, and
minimality of i ∈ P we see that there is no j ∈ P with j ≤ f(i). This implies
that aj = mj+1 for all j with 0 < j ≤ f(i). Using i ∈ P again, and Lemma 2
we see that for each j with 0 < j < f(i) we have εj = εp−f(i)+j = εf(i)−j+1,
so ε1, . . . , εf(i) is a palindrome. This implies that for each j with 0 < j < f(i)
we have

af(i) = aj + af(i)−j = aj + 1 +mf(i)−j > aj +mf(i)−j ,

which implies that f(i) ∈ D. Secondly, this gives

mf(i) = af(i) − 1 > aj +mf(i)−j − 1 = mj +mf(i)−j ,
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which shows that f(i) ∈ E . This proves that f(M) ⊂ D and f(M) ⊂ E .
Now suppose that i ∈ D. Then for each j with 0 < j < i we have

aj +mi−j < ai ≤ aj + ai−j ≤ aj +mi−j + 1,

so ai−j = mi−j + 1 and ai = aj + ai−j . It follows from the first equality
that we have j 6∈ P for each j with 0 < j < i. The second equality
implies that ε1, . . . , εi is a palindrome, so for each j with 0 < j < i we have
εj = εi−j+1 = εp−i+j , and it follows that p − i ∈ P. There is an element
k ∈ M with k | p − i, and we know that k ≥ i. If k = i then 1 ∈ P by
Lemma 4, and s = p − 1. So k > i and i = rem(p, k). This shows that
D ⊂ f(M).

We now show that f is injective. Suppose that k = rem(p, i) = rem(p, j)
for i, j ∈M with i 6= j. Then lcm(i, j) | p−k so i+j < lcm(i, j) ≤ p−k ≤ p.
With Lemma 4 it follows that gcd(i, j) ∈ P, which contradicts minimality
of the periods i and j. This shows that f is a bijection from M to D.

In order to show that M⊂ E , let i ∈M and 0 < j < i. We have

mi = ai ≥ aj +mi−j ≥ mj +mi−j ;
mi = ai ≥ ai−j +mj ≥ mj +mi−j .

If mi = mj + mi−j then aj = mj and ai−j = mi−j , so j, i − j ∈ P. By
Lemma 4 the strict divisor gcd(j, i − j) of i then lies in P, contradicting
minimality of i. We deduce that i ∈ E .

We have proved that M ∪ D ⊂ E\{0}, and we now prove the other
inclusion. Suppose i ∈ E with i 6= 0 and i 6∈ D. We will show that i ∈ M.
Since i 6∈ D, there is an integer j with 0 < j < i and ai = mj + ai−j . Since
i ∈ E we also have

mj ≤ mi −mi−j − 1 ≤ mi − ai−j ≤ ai − ai−j = mj ,

so all inequalities are equalities. It follows that ai = mi, and i ∈ P. If i
has a strict divisor l ∈ P, we have mi = ml +mi−l, which contradicts that
i ∈ E . Therefore we have i ∈M.

Finally, if the union {0} ∪M∪D is not disjoint, then there is an integer
i ∈M∩D with i, p− i ∈ P, so s = p− 1 by Lemma 4. �

Proof of Theorem 1. See the Corollary to Proposition 3 for the case s = 0
and s = p − 1. In the other cases Theorems 4 and 5 give d = #D = #M,
and edim(R) = #E = 1 + #M+ #D = 1 + 2d. �

In order to prove Theorems 2 and 3 we give an inductive procedure to
break down our balanced sequence.

Define g : Z → Z by g(i) 7→ bi/xc. Then for each i ∈ Z the point (g(i), i)
is on or above the line through the origin with slope x = s/p, and (g(i)+1, i)
is below this line. This implies that

{1 + g(i) : i ∈ Z} = {j ∈ Z : εj = 1},
so for i ≥ 0 the (i + 1)th occurrence of a 1 in the sequence ε1, ε2, . . . is at
ε1+g(i).
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Let us now write y = T (x) = d1/xe − 1/x, and put k = d1/xe. Then
x = 1/(k − y) with k ∈ Z and 0 ≤ y < 1. We will see below that this is the
beginning of a continued fraction expansion of x.

The distance between the (i+ 1)th and the ith occurrence of the number
1 in ε1, ε2, . . . is

g(i)− g(i− 1) = bi(k − y)c − b(i− 1)(k − y)c
= k − (diye − d(i− 1)ye) = k − ε′i,

where (ε′i)i is the balanced sequence for the rational number y.
In the following example we give ε1, . . . , ε19 for x = 8/19. We have T (x) =

5/8 and k = 3. For i = 0, . . . 7 the number ε′1+i is written below ε1+g(i) = 1.

1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0

1 1 0 1 1 0 1 0

The next Proposition tells us how to express the set of minimal sub-periods
M(x) of ε1, . . . , εp−1, in terms of the set of minimal sub-periods M(y) of
ε′1, . . . , ε

′
s−1.

Proposition 4. If p ≡ 1 mod s then M(x) = {(p − 1)/s}. Otherwise, we
have p − 1 ∈ M(x) and we have a bijection M(y) → M(x)\{p − 1} given
by i 7→ g(i).

Proof. The first statement is clear: if p = us + 1 then ε1, . . . , εp−1 consists
of s consecutive blocks of a 1 followed by u− 1 zeroes, so P = {i ∈ uZ : 1 ≤
i < p}, and M(x) = {u}.

For the rest of the proof, assume that p 6≡ 1 mod s. Therefore s 6= 1 and
0 < y < 1. We have ε′s = 0 and g(s− 1) = p− k.

We first show that g(P(y)) ⊂ P(x). Suppose that i ∈ P(y). All blocks
in ε′1, . . . , ε

′
s−1 of length i have the same sum, so all blocks in ε1 . . . , εg(s−1)

of sum i starting with a 1 which are not followed by a 0, have the same
length, and this length is g(i). We get the sequence ε1 . . . , εp−1 by adding
a 1, and k − 2 zeroes. It is not hard to see that in this longer sequence
each block of length g(i) has sum i, so that g(i) ∈ P(x). This shows that
g(P(y)) ⊂ P(x)\{p− 1}.

Now suppose that j ∈ P(x) with 1 ≤ j < p − 1. Then εj+1 = ε1 = 1 so
j = g(i) for some i with 1 ≤ i < s. For l with 1 ≤ l < s the symbol ε′l is
determined by the distance between the l-th and the (l+ 1)th occurrence of
the number 1 in the sequence ε1, . . . , εp−1. Since this sequence is obtained
by repeating a block containing i symbols 1, this distance depends only on
l mod i. Thus, i ∈ P(y).

This shows that g gives a bijection P(y) → P(x)\{p− 1}. If i is in P(y),
then for j ≥ 1 with i + j < s the distance from the (i + j + 1)th number
1 to the (i + 1)th is equal to the distance between the (j + 1)th and the
first, so we have g(i + j) = g(i) + g(j). This implies that the bijection
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g : P(y) → P(x)\{p − 1} preserves the divisibilities, so that we obtain a
bijection M(y) →M(x)\{p− 1}.

It remains to show that p − 1 ∈ M(x). Assume this is false. We have
p−1 ∈ P(x), so l ∈M(x) for a strict divisor l of p−1. Writing jl = p−1, we
see that j is a strict divisor of s and that l = g(s/j). By applying Lemma 4
to s/j, s − s/j ∈ P(y) it follows that 1 ∈ P(y), which in turn implies that
p ≡ 1 mod s, contradicting our assumption. �

Iterating the operator T computes the Hirzebruch continued fraction of −x;
see [7]. For instance, if we start with x = 8/19 then T (x) = 5/8 and
T (T (x)) = 2/5, and we get

− 8
19

= −
1

3−
5
8

= −
1

3−
1

2−
2
5

= −
1

3−
1

2−
1

3−
1
2

.

The proposition above implies that we can count M(x) by iterating T on
our rational number x until we have a number a/b with a | b − 1. In the
picture below we outline {εi+1 : i ∈ M(x)} for the values x we encounter
starting from 8/19. We outlined εi+1 for the non-minimal i ∈ P with a
dashed line.

1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0

1 1 0 1 1 0 1 0

1 0 1 0 0

M(8/19) = {7, 16, 18}
M(5/8) = {3, 7}
M(2/5) = {2}

Proof of Theorems 2 and 3. In Proposition 4 we have y = T (s/p) satisfies
y = rem(−p, s)/s, so Theorem 2 follows from Proposition 4 and Theorem 5.

In order to deduce Theorem 3, recall first that the Hirzebruch continued
fraction expansion of −x is

−x = −s
p

= −
1

y1 −
1

. . .
. . .

yn−1 −
1
yn

for integers n ≥ 1 and y1, . . . , yn ≥ 2, which are given by yi = d1/T i−1(x)e
and Tn(x) = 0.

We have the following rewriting rule [8, (19) p. 215] between the usual
continued fraction and the Hirzebruch continued fraction. For integers u, v
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with v ≥ 1 and a rational number w > 1 we have

u+
1

v +
1
w

= u+ 1−
1

2−
1

. . .
. . .

2−
1

w + 1

,

where the number of symbols 2 on the right is v − 1.
The rule also holds when w = ∞, that is, when we replace 1/w and

1/(w+ 1) by 0. This implies that we have s = p− 1 if and only if y1 = y2 =
. . . = yn = 2, and we have s | p − 1 if and only if y2 = y3 = . . . = yn = 2.
Thus, Proposition 4 implies that if s 6= p − 1, the number d is the largest
i ≤ n with yi 6= 2. Starting with the continued fraction in Theorem 3 we
can apply the rewriting rule repeatedly to find the Hirzebruch continued
fraction expansion of −x. Then we find that the largest i ≤ n with yi 6= 2
is the sum of all odd xi with i < m. �
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